分数和小数互化
分数和小数的互化教学反思5篇

分数和小数的互化教学反思5篇分数和小数的互化教学反思篇1上周开头班级中流感来袭,看着那一个个空空的位子,作为数学教师的我真是不知所措。
上新课吧,这么多学生缺席,上了心里也不踏实。
只好“炒冷饭”了。
本周四,学生根本上来全了,终于又开头正常地上课了。
周四教学了《百分数和小数的互化》。
课一开头,我出示了两幅百格图(上有阴影局部),要求学生分别用小数、分数和百分数来表示阴影局部。
0.65=65/100=65%0.7=70/100=70%借助百格图写数,引入百分数和小数、分数的互化,让学生直观地知道三者可以表示同一个对象,给学生的探究活动搭了一个脚手架,供应了讨论的素材。
让学生感受到了百分数、小数、分数这三者之间有着亲密的联系,而且可以相互转化,本教案的设计也正是围绕三者之间的联系进展教学的。
接着让学生观看两个等式并思索:你从中能发觉小数化百分数的方法吗?学生通过观看,得出:小数可以先写成分母是100的分数,再改写成百分数形式。
让学生尝试练习,将0.24,1.4,0.123,3改写成百分数。
再次让学生观看这些等式:0.24=24/100=24%1.4=140/100=140%0.123=12.3/100=12.3%4=400/100=400%你认为怎样能更快把小数转化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
接着连续观看百格图的两个等式,你能发觉百分数化小数的方法吗?原来是让学生发觉把百分数改写成分母是100的分数,再化成小数这一方法。
不过由于前面直接方法的阅历,学生很快迁移了过来,得出方法:只要把百分号去掉,同时把小数点向左移动两位就行了。
只好让学生进展验证自己的想法,再出示了方法,让学生读一读,然后进展练习稳固。
探究活动搭了一个脚手架,再放手让学生自己去发觉,去探究,效果很好。
本课练习的设计形式多样,从不同角度稳固了百分数和小数的互化,在选择练习中潜意识渗透了百分数、小数、分数比大小,通过比拟,学生能加深它们之间的互化。
五年级数学分数和小数的互化

当我们学习数学时,经常会涉及到分数和小数之间的转换。
分数是表示部分或份额的数,它由两个数字组成,分子和分母,分子表示部分的数量,分母表示整体的数量。
而小数则是用十进制表示的数,它通常有整数部分和小数部分。
1.将分数转换为小数:
a.如果分子可以整除分母,那么这个分数就是一个整数,可以直接写成一个
整数的形式。
例如,3/3 = 1。
b.如果分子不能整除分母,那么我们需要进行长除法计算。
将分子作为被除
数,分母作为除数。
一步一步将小数部分的位数不断增加,直到得到我们想要的精度或者出现周期性数字为止。
例如,1/3 ≈ 0.333333(一直重复)。
c.如果出现了无限不循环小数,我们可以使用取近似值的方法,保留合适的
小数位数。
例如,1/7 ≈ 0.142857(重复部分为142857)。
2.将小数转换为分数:
a.如果小数部分是一个有限小数,即没有无限不循环的数字出现,我们可以
将小数的数字直接写成分数的形式。
例如,0.5 = 1/2。
b.如果小数部分是一个无限不循环小数,例如0.333333,我们可以通过设变
量的方法进行求解。
假设该小数为x,那么我们可以得到一个方程10x =
3.333333,进而得到9x = 3,即x = 1/3。
在转换分数和小数时,我们需要注意的是精度和适用范围。
当小数部分无限循环时,我们可以用省略号或横线表示重复的部分。
常见的分数小数互化表

常见的分数小数互化表1. 分数与小数的概念分数和小数是数学中常见的数值形式,用于表示有限和无限的实数。
分数是一个整数除以另一个非零的整数的比值,通常以分子和分母表示。
小数则是一个实数的十进制表示形式。
2. 分数到小数的转换2.1 真分数转换为小数真分数是分子小于分母的分数。
将真分数转换为小数的方法如下:1.将分子除以分母,得到一个小数;2.如果小数是有限小数,则直接将其写出;3.如果小数是无限循环小数,则使用“…”表示循环部分。
例如,将分数2/3转换为小数的过程如下:2 ÷3 = 0.6666…所以,2/3转换为小数为0.6666…2.2 假分数转换为小数假分数是分子大于等于分母的分数。
将假分数转换为小数的方法如下:1.将分子除以分母,得到一个小数的整数部分;2.将分子除以分母,得到一个小数的小数部分;3.整数部分与小数部分相加,得到最终的小数。
例如,将分数5/2转换为小数的过程如下:5 ÷ 2 = 2.5所以,5/2转换为小数为2.53. 小数到分数的转换3.1 有限小数转换为分数有限小数可以直接转换为分数。
转换方法如下:1.根据小数的位数确定分母的长度;2.分母为10的幂次方;3.将小数的每一位数字作为分子。
例如,将小数0.75转换为分数的过程如下:分母的长度为2,即10的幂次方为2,所以分母为100。
0.75的每一位数字作为分子,所以分子为75。
所以,0.75转换为分数为75/100,可以约分为3/4。
3.2 循环小数转换为分数循环小数是一种无限不循环的小数。
将循环小数转换为分数的方法如下:1.设循环部分为x;2.设置一个方程式,令n为循环部分的长度,10^n * x - x = c,其中c为一个常数;3.解方程得到x = c / (10^n - 1);4.x作为分子,10^n - 1作为分母。
例如,将循环小数0.333…转换为分数的过程如下:设循环部分为x,长度为n。
分数小数的互化方法

分数小数的互化方法分数和小数是数学中常见的数值表示方法,它们之间的互化是数学学习中的基本内容之一。
下面详细介绍分数和小数的互化方法。
一、分数转换为小数的方法:要将分数转换为小数,可使用除法的运算方法,具体步骤如下:1. 将分数的分子除以分母;2. 若商是有限的小数,则该小数即为分数的小数表示;3. 若商是无限循环小数,则可以通过长除法或使用计算器等工具计算到一定精度进行近似表示。
例如,我们将分数2/3转换为小数:2 ÷3 = 0.666666...可见,商为无限循环小数,接下来是具体的计算过程:0.666666...= 0.666 ×10/10 + 0.666 ×1/10 + 0.666 ×1/100 + ...= 6/10 + 6/100 + 6/1000 + ...= 6 ×1/10 + 6 ×1/100 + 6 ×1/1000 + ...= 0.6 + 0.06 + 0.006 + ...= 6/10 + 6/100 + 6/1000 + ...= 600/1000 + 60/1000 + 6/1000 + ...= (600 + 60 + 6) / 1000= 666/1000所以,2/3转换为小数表示为0.666。
二、小数转换为分数的方法:要将小数转换为分数,可根据小数的性质进行科学化简,具体步骤如下:1. 找到小数部分的数位,并确定要转换为分数的部分;2. 分子是小数部分数位除以10的位数;3. 分母是10的位数。
例如,我们将小数0.25转换为分数:0.25的小数部分是0.25,有两个小数位数。
根据分数的定义,我们可以得到以下转换:0.25 = 25/100所以,0.25转换为分数表示为25/100。
再例如,我们将小数0.555...转换为分数:0.555...的小数部分是0.555...,由于小数部分是无限循环的,我们可以用一个未知数x表示,并进行如下计算:x = 0.555...10x = 5.555...因为10x与x的小数部分相同,所以我们可以得到以下等式:10x - x = 5.555... - 0.555...9x = 5x = 5/9所以,0.555...转换为分数表示为5/9。
分数与小数的互化

分数与小数的互化是六年级数学上学期第二章第2节中的内容.通过本讲的学习,我们需要学会分数与有限小数及无限循环小数的互化,并利用分数与小数互相转化的方法比较分数与小数的大小,从而熟练分数与小数的互化,为后面学习分数与小数的四则混合运算做好准备.1、分数化小数利用分数与除法的关系,进行分数向小数的转化,例如:3350.65=÷=.2、可化为有限小数的分数的规律一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能化成有限小数.3、有限小数化为分数原来有几位小数,就在1后面添几个零作为分母,原来的小数去掉小数点作分子,若有整数部分作为带分数的整数部分.注意:结果一定要化为最简分数.分数与小数的互化内容分析知识结构模块一:分数与有限小数的互化知识精讲【例1】 把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.35、56、18、920、7112、124【难度】★【答案】0.6;0.833;0.125;0.45;1.583;2.25. 【解析】考察分数与小数的互化.【例2】 把下列小数化成分数.0.12,0.076,1.35,2.02.【难度】★【答案】3197112252502050,,,.【解析】2531001212.0==,25019100076076.0==,207110035135.1==,50121002202.2==.【总结】考察分数与小数的互化.【例3】 比较下列两组数的大小:1320______0.66,1.35______37180. 【难度】★【答案】< ;<. 【解析】66.065.02013<=,35.14625.180371>=.【总结】考查分数与小数的大小比较,可以将分数化为小数,也可将小数化成分数,然后再比较大小.【例4】 将12,35,58,710,1320,1725按从小到大的顺序排列.【难度】★★【答案】12<35<58<1320<1725<710. 【解析】1=0.52,3=0.65,5=0.6258,7=0.710,13=0.6520,17=0.6825.【总结】主要考查分数的大小比较,可以将分数化为小数,然后再比较大小.例题解析【例5】 下列说法错误的是( )A .任何分数都能化为小数B .任何小数都能化为最简分数C .任何分数都能化为有限小数D .任何有限小数都能化为分数【难度】★★ 【答案】C【解析】分数可以化为有限小数和无限不循环小数. 【总结】考查分数化为小数的方法.【例6】 在分数313,714,1150,1215,2332,76中能化为有限小数的分数有______个.【难度】★★【答案】4【解析】714,1150,1215,2332均可化为有限小数.【总结】考察分数转化为有限小数的条件.【例7】 10.26分米 = ______分米 = ______米;0.26天 =______小时.(填分数) 【难度】★★ 【答案】501310;500131;25156.【解析】501310100261026.10==,251562450132426.0=⨯=⨯. 【总结】考察利用小数分数之间的转化表示单位之间的换算.【例8】 0.24的倒数是______,1.35的倒数是______. 【难度】★★【答案】625,2720.【解析】2561002424.0==,2027207110035135.1===. 【总结】先将小数化为分数,然后再求倒数.【例9】 (1)120.252-;(2)120.253-.【难度】★★【答案】(1)2.25;(2)1212. 【解析】(1)120.25 2.50.25 2.252-=-=;(2)111120.252233412-=-=.【总结】分数与小数混合运算时,有不能化为有限小数的分数时,将所有的数字转化为分数来进行运算.如果可以转换为有限小数时,则可以化做小数再加减运算.【例10】 甲水果店的苹果以9元4千克的价格出售,乙水果店的苹果以16元7千克的价格出售,哪家水果店苹果的价格比较便宜?【难度】★★ 【答案】乙. 【解析】因为1696416916494⨯=⨯⨯=,9166391697167⨯=⨯⨯=,所以16794>, 故乙水果店便宜.【总结】考查利用分数的大小比较解决实际问题.【例11】 某学校组织“分数计算竞赛”,甲、乙、丙三位同学分别耗时0.6小时、3760小时和42分钟,三人中用时最少的是谁?【难度】★★★ 【答案】甲. 【解析】42分钟=6042小时;0.6小时=53小时=6036小时.所以分钟小时小时4260376.0<<,故甲用时最少.【总结】考查利用分数的大小比较解决实际问题.【例12】 已知,a 是一个不大于30的正整数,且9a能化成有限小数,则a 可能取的值有______个.【难度】★★★ 【答案】13【解析】满足条件的有2,4,6,8,10,12,15,16,18,20,24,25,30,共有13个.【总结】本题主要考查分数化为有限小数的条件,主要化成最简分数之后,分母的因数 只有2和5就可以.1、 循环小数一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数.一个循环小数的小数部分中依次不断地重复出现的第一个最少的数字组,叫做这个循环小数的循环节.为了书写方便,小数的循环部分只写出第一个循环节,在这个循环节的首位和末位的数字上面各记一个圆点.例如:0.3333…的循环节为“3”,写作0.3g;0.1363636…的循环节为“36”,写作0.136g g. 像“0.3g”这样的循环小数称为纯循环小数,其循环节从小数点后第一位开始; 像“0.136g g ”这样的循环小数称为混循环小数,其循环节不从小数点后第一位开始. 2、 纯循环小数化为分数纯循环小数化分数:这个分数的分子等于一个循环节所组成的数,分母全部由9构成,9的个数等于一个循环节中的位数,最后再化为最简分数.例如:123410.123999333==g g . 3、 混循环小数化为分数混循环小数化分数:这个分数的分子是第二个循环节之前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的前几位数是9,末几位数是0,9的个数等于一个循环节中的位数,0的个数等于小数点后不循环部分的位数.例如:1231122610.123990990495-===g g . 模块二:分数与循环小数的互化知识精讲【例13】0.102102…的循环节是_______,写作_________,保留2位小数写作_______.【难度】★【答案】102;••201;0.10.【解析】考察循环小数的读法和写法.【例14】已知:0.12222,0.353555…,3.23232323,0.1010010001…,0.1353535…,0.231544307…,其中循环小数有_____个.【难度】★【答案】2个【解析】循环小数有0.353555…,0.1353535….【总结】考察循环小数的定义.【例15】将下列分数化为有限小数,若不能化为有限小数,则化为循环小数,并说出其循环节.(1)75;(2)1215;(3)79;(4)4199.【难度】★【答案】(1)1.4;(2)0.8;(3)•7.0,循环节为7;(4)••14.0,循环节为41.【解析】考察分数与小数的互化.【例16】将下列两组数按从小到大的顺序排列.(1)29、16、0.2、516;(2)315、1.62g、138、1.60g g.【难度】★★【答案】(1)16<0.229<516<;(2)3151.60<g g1.62<g138<.【解析】(1)因为20.29•=、10.166•=、0.2、50.312516=,所以16<0.229<516<;(2)因为31 1.65=、131.6258=,所以3151.60<g g1.62<g138<.【总结】考察分数与小数的大小比较,可以将小数化为分数,也可将分数化为小数.例题解析【例17】 将下列循环小数化为分数.(1)0.3g;(2)0.21g g;(3)0.36g;(4)0.321g g.【难度】★★【答案】(1)31;(2)337;(3)3011;(4)53165.【解析】(1)310.393==g; (2)2170.219933==g g ;(3)36333110.36909030-===g ; (4)3213318530.321990990165-===g g . 【总结】考察循环小数化为分数的方法,参考知识精要.【例18】 分数511化为循环小数后,小数点右边第200位上的数字是______. 【难度】★★【答案】5.【解析】••=54.0115,则小数点右边第200位上的数字为5.【总结】考察分数化为小数的方法以及数字的规律.【例19】 移动循环小数2.3020304gg的前一个循环点,使产生的循环小数尽可能小,这个新循环小数是__________.【难度】★★ 【答案】2.3020304gg.【解析】考察循环小数的比较大小.【例20】 将67化为循环小数后,小数点后的前100个数字之和为多少? 【难度】★★【答案】453.【解析】••=257148.076循环数字有6位,因为100÷6=16余4,所以小数点后的前100个数字之和为:()()453175824175816=+++++++++⨯.【总结】考察分数化成小数的方法,以及对循环节的理解和运用.【例21】 将31 1.25⨯g 的结果化为带分数:______.【难度】★★【答案】45431.【解析】因为9212.1=•,所以381188431 1.215594545⨯=⨯==g .【总结】现将循环小数化为分数,然后根据分数的乘法法则进行计算.【例22】 计算:(1)2.45 3.13+g gg;(2)2.609 1.32-gg g;(3)4.3 2.4⨯gg;(4)1.240.3÷g gg. 【难度】★★ 【答案】(1)165975;(2)283919900;(3)27286;(4)1141 【解析】(1)45131527522972.453.13232323599901115165165165-+=+=+=+=g gg; (2)609603261322.609 1.3221219009910099--=-=-g g g 283919900=; (3)3439222864.3 2.442999927⨯=⨯=⨯=g g ;(4)243123411.240.3139999911÷=÷=⨯=g g g .【总结】本题主要考查无限循环小数化成分数的方法以及分数的运算.【例23】 10.610.610.60.6+++gggg.【难度】★★【答案】132205.【解析】212121212121212126443333321231333331339233263=+=+=+=+=+++++++原式239205344132=+=. 【总结】考察繁分数的运算,本题要先将小数化成分数再进行计算.【例24】 计算:0.140.250.360.470.58++++ggggg. 【难度】★★★【答案】1831.【解析】0.140.250.360.470.58++++ggggg.141252363474585=909090909013233343539090909090165319018-----++++=++++== 【总结】本题一方面考查无限循环小数化成分数的方法,另一方面考查分数的加法运算.【例25】 将纯循环小数0.ab g g化为最简分数时,分子与分母之和为19,求a 和b . 【难度】★★★ 【答案】72a b ==,. 【解析】100.99a b ab +=g g,当分母为9时,则分子为10,则分数为910,不合题意;当分母为11时,分子为8,则分数为••=27.0118,所以72a b ==,. 【总结】考察循环小数化为分数的方法以及对纯循环小数的理解及运用.【例26】 某学生计算1.23g乘以一个数a 时,把1.23g误看成1.23,使乘积比正确结果减少0.3,则正确的结果该是多少?【难度】★★★ 【答案】111. 【解析】因为30719021190223132.1==-=•,所以3.023.13071=-a a ,所以3.03001=a ,所以90=a ;则正确的结果为111903037903071=⨯=⨯.【总结】本题一方面考查学生对题意的理解,另一方面考查无限循环小数与分数的互化以及分数的运算.【例27】 循环小数0.12345gg与0.2345gg在小数点后面第几位第一次同时出现数字5? 【难度】★★★【答案】小数点后面第20位第一次 同时出现数字5.【解析】0.12345gg循环节有5位,0.2345gg循环节有4位,则小数点后面第20位第一次同时出现数字5.【总结】考察循环小数循环节的规律以及对最小公倍数的运用.【例28】 真分数7x化为小数后,如果从小数点后第一位数字开始连续若干个数字之和是91,那么x 等于多少?【难度】★★★【答案】2【解析】••=742851.071,••=485712.072,••=128574.073,••=871425.074,••=514287.075,••=257148.076,观察发现循环节的数字都是1,4,2,8,5,7,一个循环节的和为27758241=+++++,32791=÷余10,只有72中1082=+,所以x 等于2.【总结】考察分数与小数的互化以及对数字规律的观察与总结.【例29】 求证:20.63=g. 【难度】★★★【答案】设a =•6.0,则a 106.6=•,所以66.06.610=-=-••a a ,所以69=a ,所以32=a . 【解析】考察分数化为循环小数的方法.【例30】 求证:110.3630=g . 【难度】★★★【答案】设a =•63.0,则a 106.3=•,a 1006.36=•,所以336.36.3610100=-=-••a a ,所以3390=a ,所以3011=a . 【解析】考察分数化为循环小数的方法.【习题1】 把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.74、415、1324、8335. 【难度】★【答案】7 1.754=、41 1.85=、130.54224=、83 3.22935=. 【解析】考察分数化小数的方法.【习题2】将1722化为循环小数:______. 【难度】★【答案】••7277.0.【解析】考察分数化小数的方法.【习题3】 将0.1503g g 化为分数:______. 【难度】★★【答案】4995751. 【解析】1503115027510.1503999099904995-===g g . 【总结】考察循环小数化成分数的方法.【习题4】 将1.44、1.4g、41100、1.41从大到小排列:____________________. 【难度】★★【答案】41100<1.41<1.44<1.4g . 【解析】因为04.110041=,所以41100<1.41<1.44<1.4g . 【总结】考察分数与小数的大小比较,注意合理方法的选用.随堂检测【习题5】 计算:30.4524⨯=g g ______. 【难度】★★ 【答案】45. 【解析】因为115994554.0==••,所以351150.45241144⨯=⨯=g g . 【总结】先将循环小数化为分数,然后再做乘法.【习题6】 甲、乙两个工人加工零件,甲平均每分钟加工0.9个,乙平均每分钟加工1011个,谁的工作效率高些? 【难度】★★【答案】乙 【解析】因为100.900.911••=>,所以乙的工作效率高.【总结】考查分数与小数的大小比较在实际问题中的应用.【习题7】 0.540.36+=g g g______. 【难度】★★ 【答案】990899. 【解析】545364945393608990.540.3690999011990990990-+=+=+=+=g g g . 【总结】先将循环小数化为分数,然后再做分数加减法.【习题8】 将613化为循环小数后,小数点后的前100个数字之和为多少?. 【难度】★★【答案】448. 【解析】••=861534.0136,循环节共有6位,则4166100Λ=÷, 所以()448516483516416=+++++++++⨯. 【总结】考察分数化成小数的方法,以及对循环节的总结及运用.【习题9】 计算:0.010.120.230.340.780.89+++++g g g g g g .【难度】★★★ 【答案】512. 【解析】0.010.120.230.340.780.89+++++g g g g g g11212323437878989090909090901112131718190909090909021612905-----=+++++=+++++== 【总结】考察循环小数化为分数的方法以及分数的加法运算,注意结果要化到最简.【习题10】 设a 、b 、c 是0 ~ 9的数字(允许相同),将循环小数0.abc g g 化成最简分数后,分子有多少种不同的情况?【难度】★★★【答案】660. 【解析】0.999abc abc =g g ,因为a 、b 、c 是0 ~ 9的数字,所以abc 可以为001到999.因为373331119999⨯⨯⨯=⨯=,所以001到999中以3为公因数有333个数可以约分,还剩666个.以37为公因数的有27个可以约分,还剩639个.算重复的有 9个,所以剩 下639+9=648.而其中81的倍数有12个,所以共有648+12=660个.【总结】本题综合性较强,考查的知识点比较多,也比较综合,主要是认真分析题意,根据所学知识求出结论.【作业1】 填空: 12=______; 14=______; 34=______; 15=______; 18=______; 38=______; 58=______; 78=______; 120=______; 125=______; 140=______; 150=______. 【难度】★ 【答案】0.5;0.25;0.75;0.2;0.125;0.375;0.625;0.875;0.05;0.04;0.025;0.02.【解析】考察分数化成小数的方法.【总结】常见分数与小数需要背诵.【作业2】 将无限循环小数3.102g g表示成分数形式:______. 【难度】★【答案】333343. 【解析】102343.10233999333==g g . 【总结】考察循环小数化分数.【作业3】 将下列小数化成最简分数.0.35,0.02,1.135【难度】★【答案】712712050200,,. 【解析】0.3520710035==,0.022110050==,1.13520027110001351==. 【总结】考察小数化成分数的方法,注意分数一定要化成最简分数.课后作业【作业4】 将435化成循环小数是______,小数点右边第2016位上的数字是______. 【难度】★★ 【答案】0.1142857&&,5. 【解析】40.114285735=&&循环节共有6个数字,()2016163355-÷=L ,所以小数点右 边第2016位上的数字是5.【总结】考察分数化小数的方法以及对循环节的理解及运用.【作业5】 119、522、0.227g g 、0.227g g 、1.2g 这些数中,是否有相等的两个数?若有,请将它们一一写出来.【难度】★★ 【答案】119=1.2g 、522=0.227g g . 【解析】227222550.22799099022-===g g ;2270.2271000=g g ;2111.2199==g . 【总结】考察循环小数化分数的方法以及分数的大小比较.【作业6】 化肥厂第一天生产化肥12.5吨,第二天比第一天多生产113吨,两天共生产化肥多少吨?【难度】★★ 【答案】3126. 【解析】31263115.125.12=⎪⎭⎫ ⎝⎛++(吨). 【总结】考察分数加减法的实际应用.【作业7】 191.21.2427⨯+g g g . 【难度】★★ 【答案】920. 【解析】192241911123194119201.21.241127999279992727279⨯+=⨯+=⨯+=+=g g g .【总结】先将循环小数化为分数再做乘法运算.【作业8】 有8个数,0.51g g ,23,59,0.51g ,2447,1325是其中6个,如果按从小到大的顺序排列时,第4个数是0.51g ,那么按从大到小排列时,第6个数是哪一个数?【难度】★★★【答案】0.51g. 【解析】因为20.63•=,50.59•=,240.510647=L ,130.5225=, 所以2447<0.51g 0.51<g g 1325<59<23<,由于这6个数从小到大的顺序排列0.51&在第二位,而0.51&在八个数按从小到大的顺序排列时位于第4个,所以另外两个数都小于0.51&,所以这八个数从大到小排列时,第四个是0.51&. 【作业9】 纯循环小数0.abc g g写成最简分数时,分子和分母的和是58,那么三位数abc = ______.【难度】★★★【答案】567. 【解析】0.999abc abc =g g ,而37391119999⨯⨯=⨯=,又因为0.abc g g 小于1,且分子和分母 的和是58,所以当分母为37时,则分子为21,即分数为••=765.03721;所以567abc =. 【总结】考察循环小数化为分数的方法.【作业10】 真分数13a 化成小数后,如果小数点后连续2017个数字之和是9075,那么a 等于多少?【难度】★★★【答案】4或5. 【解析】将分数131213111310139138137136135134133132131,,,,,,,,,,,化为小数后发现所有的循环节都是又0、7、6、9、2、3或4、6、1、5、3、8构成.则一个循环节的和为27329670=+++++, 或46153827+++++=,而3336279075Λ=÷,而 只有134,135小数点后第一位为3, 所以45a =或. 【总结】本题主要考查对循环节的规律的归纳及运用.。
分数与小数的互化教学反思

分数与小数的互化教学反思分数与小数的互化教学反思1本节课的内容是分数与小数的互化。
教学目标是要求学生理解和掌握分数和小数的互化方法。
并能正确熟练的把分数化成小数以及把小数化成分数。
我认为分数化小数是本课的重点内容,教学时我把这部分内容分为三种情况:一是分母是10、100、1000这样的数,二是分母不是10、100、1000的数,但能化成分母是这样的分数,例如:3/25的分子和分母同时乘4,得到12/100。
三是分母不是也不能化成10、100、1000的数。
特别是分母不是也不能化成10、100、1000的数,需要作分子去除以分母,这时又出现两种情况,一是能除尽的,即能化成有限小数的,一种是不能除尽的即不能化成有限小数的',引导学生讨论,分析分母,探索能化成有限小数分母的特点。
即:分母只含有质因数2和5。
再通过判断题3/12能否化成有限小数,因为12里面有质因数3,可是通过试验,3/12也能化成有限小数,因此告诉学生需要补充一个前提条件:必须是一个最简分数。
这样不仅使学生掌握了针对具体分数的情况去用合适的方法转化,也掌握了一个最简分数化成有限小数的规律。
把教材100页的“你知道吗?”提到这里来讲解。
本节教学中,分数与小数的相互转化,沟通了分数与小数的联系,既使学生对已学的旧知识加深了理解,也让学生认识到事物是相互联系,相互转化的。
更重要的是让学生清楚在解决具体的问题时,是选择“分数化成小数”还是“小数化成分数”要根据具体情境和数的特征来确定。
分数与小数的互化教学反思2本课是在学生知道怎样把分母是整十、整百、整千的分数转化为小数,理解了分数和除法的关系的关系的基础上进行教学的。
应该说学生有这些知识的铺垫,对本课内容的理解和掌握还是比较容易的。
在教学中我结合两个例题的教学,引导学生自主探索分数与小数的互化方法,学生说的都不错,通过观察例题的三个分数,学生基本上都能得出一位小数的分母是10、两位小数的分母是100、三位小数的分母是1000,分子就看小数的小数部分是多少的结论。
常见分数小数互化必背表

常见分数小数互化必背表一、常见分数转小数1/2 = 0.51/3 = 0.333...2/3 = 0.666...1/4 = 0.253/4 = 0.751/5 = 0.22/5 = 0.43/5 = 0.64/5 = 0.81/6 = 0.166...5/6 = 0.833...1/8 = 0.1253/8 = 0.3755/8 = 0.6257/8 = 0.8751/10 = 0.13/10 = 0.37/10 = 0.79/10 = 0.9二、常见小数转分数0.1 = 1/100.2 = 1/50.25 = 1/40.3 = 3/100.4 = 2/50.5 = 1/20.6 = 3/50.625 = 5/80.666... = 2/30.7 = 7/100.75 = 3/40.8 = 4/50.833... = 5/60.875 = 7/80.9 = 9/10三、人类视角下的分数小数互化当我们在日常生活中进行计算或者遇到一些实际问题时,常常需要将分数转化为小数,或者将小数转化为分数。
这样可以方便我们进行计算,也更加符合我们对实际问题的理解。
举个例子,假设我们要计算一件商品打折后的价格,原价是100元,折扣是四分之一。
我们可以将四分之一转化为小数,即0.25,然后用原价乘以0.25,就可以得到打折后的价格25元。
又比如,我们要计算一个圆的面积,半径是1/2米。
这时,我们可以将1/2转化为小数,即0.5,然后利用圆的面积公式πr²,就可以计算出圆的面积为π × (0.5)² = 0.7854 平方米。
在实际生活中,分数和小数的互化经常出现在各种计算和测量中。
掌握常见的分数小数互化必背表,可以提高我们解决问题的效率和准确性,让我们更好地应对各种实际情况。
总结:分数和小数的互化在日常生活中非常常见,我们需要熟练掌握常见的分数小数互化必背表。
通过将分数转化为小数或将小数转化为分数,我们能够更加方便地进行计算和解决实际问题。
《分数与小数的互化》教学反思

《分数与小数的互化》教学反思《分数与小数的互化》教学反思1本节课的教学内容是九年义务教育课程标准实验教科书六年级上册,第四单元第二小节中的百分数和分数、小数的互化的例1例2,它是在学生学习了百分数的意义,明确了百分数与小数之间的联系的基础上进行教学的,通过本节课的教学,不仅要使学生理解和掌握百分数与小数互化的方法和规律,即百分数化成小数、小数化成百分数,还要向学生渗透转化的数学思想。
百分数与小数之间的互化,既是百分数与小数之间联系的具体体现、扩展与深化,又是便于百分数和分数、小数之间的比较,便于百分数、分数、小数四则混合运算计算的基础。
学生学好这部分知识,就为后面学习百分数的的计算和应用创造了条件。
本节课的教学目标:1、使学生理解百分数和小数的互化的必要性,能正确熟练地进行互化方法。
2、使学生总结和分析小数、百分数互化的规律,培养学生的抽象概括能力和分析比较能力。
3、使学生学会运用以前学过的知识来解决新问题。
教学重点:使学生掌握百分数和小数的互化方法,并能熟练运用。
教学难点:探究归纳百分数与小数地互化方法,弄清其推理过程。
这节课的内容难度不大,在考虑教学策略的时候,我把重点放在学生自主发现方法,完成知识的迁移,同时利用练习来巩固学生对百分数和小数互化的熟练程度。
《分数与小数的互化》教学反思2学生的学习起点是教学的重要立足点。
只有正确把握学生的学习起点,才能从学生的实际需要出发,合理确定每一节课的重点和难点,使教学活动有的放矢,从而提高课堂教学的效率。
为了更好地了解学生的学习起点,在上本节课前,我们精心设计了课前测题(展示题目),前测题由两大部份组成,1—3题是旧知“小数和分数的互化、小数点的移动引起小数大小的变化、分数和百分数的相互改写”的内容,意在了解学生掌握的程度;4、5题是新知“小数和百分数互化”的内容,意在调查学生对新知的了解程度。
通过检测,我们发现学生虽然以前学过分数与小数的互化,但是已有所遗忘;小数点的移动(向左或向右)容易混淆;对刚学习过的百分数和小数的相互改写基本掌握;学生对新知百分数和小数的互化有模糊的认识,但对过程和理由不会表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.填空。
(1)0.8里面有( 8 )个( 十 )分之一,表示( 十 )分之( 八 ), 化成分数是( 4 )。 5
(2)0.56里面有( 56 )个( 百 )分之一,表示( 百 )分之
( 五十六 ),化成分数是( 14 )。
25
(3)0.009里面有( 9 )个( 千 )分之一,表示( 千 )分之 九( ),化成分数是1(0900 )。
分数和小数的互化
石家庄市高新区外国语学校 董婧娴
谁先到家呢?
探究点1 真分数和小数的互化
1分钟赛跑。
羚羊跑了0.9千米。 鸵鸟跑了 4 千米。
5
4=4 5=0.8 5 0.8<0.9
所以 4 <0.9 5
0.9= 9 10
9>8 10 10 所以0.9> 4
5
4= 8 5 10
怎样把分数化成小数?怎样把小数化成分数?
(4)分别用小数和分数表示下面每个图中涂色部分的大小。
0.6=
3 5
0.7
=
7 10
0.4=
2 5
2.连一连。(把大小相同的数连起来)
0.6 1.25 0.35 1.5 0.125
7
1
3
3
11
20
8
5
2
4
0.56=
14 25
3.把下面的分数化成小数。(除不尽的保留两位小数)
11 20
=0.55
探究点2 假分数、带分数和小数的互化
把下面的分数化成小数,小数化成带分数和假分数。
15 8
=1.875
1
2 5
=1.4
2.6 =2 3=13 55
3.08 =3 2 = 77 25 25
用自己的方法试一试。
小组合作,总结分数和小数互化的方法。
归纳总结:
1.小数的意义是小数化分数的基础,而分数化小数, 其依据是分数与除法的关系、分数的基本性质。 2.判断一个分数能否化成有限小数的前提: (1)必须是最简分数; (2)分母中除了2和5以外,不含有其他质因数。
2 ≈0.13
15
13 8
=1.375
15 =3.75
4
40 9
=0.225
5
6 ≈0.83
4.把下面的小数化成带分数,再化成假分数。
3.4
2.56.ຫໍສະໝຸດ 2数的互化3.4=3 2 =17 55
6.12=6 3 =153 25 25
4.08
2.5=2 1 =5 22
4.08=4 2 =102 25 25
分析:比1大的小数化成分数时,不要丢掉了整数部分。