八年级数学上期末测试卷三

合集下载

八年级上学期数学《期末检测试卷》及答案解析

八年级上学期数学《期末检测试卷》及答案解析

人 教 版 数 学 八 年 级 上 学 期期 末 测 试 卷一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -= 2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠ B. x 1> C. x 1< D. x 1≠- 3. 下列等式成立的是( )A. 123a b a b+=+ B.212a b a b =++ C. 2ab a ab b a b =-- D. a a a b a b =--++ 4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE .则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS 5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1 B. m ≥-1 C. m >-1且m ≠1 D. m ≥-1且m ≠1 6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是( )A. SSSB. SASC. ASAD. AAS8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线的交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-310. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.12. 分解因式234x x--=________________.13. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P 到BC的距离是_______.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 15. 若分式方程211x m x x -=--有增根,则m =________. 16. 若()22316x m x +-+是完全平方式,则m 的值等于_____.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.18. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线. 20. 如图,在△ABC 中,∠A=50°,O 是△ABC 内一点,且∠ABO=20°,∠ACO=30°.∠BOC 的度数是_________.三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值.24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值. 26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .27. 如图,△ABC 为等腰三角形,AC=BC ,△BDC 和△CAE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 并延长,交AB 于点G .求证:∠ACG=∠BCG .28. 已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?答案与解析一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -=【答案】D【解析】【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A 、0(5)1-=,错误,该选项不符合题意; B 、23x x +不能合并,该选项不符合题意;C 、2362()ab a b =,错误,该选项不符合题意;D 、22a ·12a a -=,正确,该选项符合题意;故选:D .【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠B. x 1>C. x 1<D. x 1≠-【答案】A【解析】【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x ≠1,故选A.3. 下列等式成立的是( )A. 123a b a b +=+B. 212a b a b =++C. 2ab a ab b a b =--D. a a a b a b =--++ 【答案】C【解析】【分析】 根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a aba +=+,故A 错误; B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS【答案】D【解析】 试题解析:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .故选D .5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1B. m ≥-1C. m >-1且m ≠1D. m ≥-1且m ≠1 【答案】D【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.【详解】去分母得,()121m x -=-, ∴12m x +=, ∵方程的解是非负数,∴10m +≥即1m ≥-,又因为10x -≠,∴1x ≠, ∴112m +≠, ∴1m ≠,则m 的取值范围是1m ≥-且1m ≠.故选:D .【点睛】本题考查了分式方程的解,解答本题时,易漏掉1m ≠,这是因为忽略了10x -≠这个隐含的条件而造成的,这应引起同学们的足够重视.6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 【答案】B【解析】【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n .根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点【答案】A【解析】【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【详解】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点睛】本题考查线段垂直平分线的性质,掌握三角形三边垂直平分线的交点到三个顶点的距离相等是本题的解题关键.9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 10. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD【答案】A【解析】【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【详解】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B 、在△ABC 与△BAD 中,ABC BAD AB BA CAB DBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,C D ABC BAD AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (SAS ),故D 正确;故选:A .【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.【答案】9.5×10-7 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00000095米用科学记数法表示为9.5×10-7, 故答案为9.5×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 分解因式234x x --=________________.【答案】(4)(1)x x -+【解析】【分析】把-4写成-4×1,又-4+1=-3,所以利用十字相乘法分解因式即可.【详解】∵-4=-4×1,又-4+1=-3∴234(4)(1)x x x x --=-+.故答案为:(4)(1)x x -+【点睛】本题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.13. 如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=6,则点P 到BC 的距离是_______.【答案】3【解析】分析:过点P 作PE ⊥BC 于E ,根据角平分线上的点到角的两边的距离相等,可得PA=PE ,PD=PE ,那么PE=PA=PD ,又AD=6,进而求出PE=3.详解:如图,过点P 作PE ⊥BC 于E ,∵AB ∥CD ,PA ⊥AB ,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA=PE ,PD=PE ,∴PE=PA=PD ,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ ab =∵a ,b 互为倒数,∴ab =1.∴原式=1.故本题应填写:1.15. 若分式方程211x m x x-=--有增根,则m =________. 【答案】-1【解析】【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.16. 若()22316x m x +-+是完全平方式,则m 的值等于_____. 【答案】7或1-【解析】【分析】由222)2(a ab b a b ±+=±,观察积的2倍项的系数特点得2(3)8,2(3)8m m -=-=-可得答案.【详解】解:因为:222)2(a ab b a b ±+=±,所以2(3)8,2(3)8m m -=-=-解得:7m =或1m =-故答案为:7或1-【点睛】本题考查完全平方式的特点,熟练掌握两个完全平方式是解题关键.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.【答案】75º【解析】【分析】根据三角板的特殊角和三角形的内角和是180度求解即可.【详解】由图知, ∠A=60°, ∠ABE=∠ABC-∠DBC=90°-45°=45°,∴∠AEB=180°-(∠A+∠ABE)= 180°-(60°+45°)=75° .故答案为:7518. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.【答案】3【解析】【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE 的长.【详解】∵△ABC为等边三角形,∴AB=BC=AC,∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=3.故答案为:3.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.【答案】6【解析】【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【详解】设此多边形的边数为x,由题意得:(x-2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为6.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.20. 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.【答案】100°【解析】【分析】延长BO 交AC 于E ,根据三角形内角与外角的性质可得∠1=∠A+∠ABO ,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO 交AC 于E ,∵∠A=50°,∠ABO=20°,∴∠1=∠A+∠ABO =50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理. 三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.【答案】(1)22a ;(2)22b -【解析】【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.详解】(1)2()()()2a b a b a b ab ++-+- 2222(2)()2a ab b a b ab =+++--22a =;(2)2232(2)()a b ab b b a b --÷--22222(2)a ab b a ab b =----+222222a ab b a ab b =---+-22b =-.【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.【答案】(1)()()m x y x y +-;(2)2(2)x - 【解析】【分析】(1)提公因式m 后,再利用平方差公式继续分解即可;(2)根据多项式乘多项式展开,合并后再利用完全平方公式分解即可.【详解】(1)22mx my - 22()m x y =-()()m x y x y =+-;(2)(1)(3)1x x --+2431x x =-++2(2)x =-.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值. 【答案】241x x -+,当2x =时,原式=0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将适合的x 的值代入计算即可求出值.【详解】原式=211(1)2(1)1(1)(1)(1)x x x x x x x x x ++---⋅+-++- =22(1)21(1)1x x x x x x -⋅--++ =2(1)211x x x --++ =241x x -+, ∵满足22x -≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=224021⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+. 24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.【答案】见解析【解析】【分析】根据角平分线上的点到角两边的距离相等可得度假村的修建位置在∠ABC 和∠BCA 的角平分线的交点处.【详解】如图所示:点P 即为所求.【点睛】本题主要考查了作图的应用,关键是掌握角平分线交点到角两边的距离相等.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值.【答案】(1)154;(2)108【解析】【分析】(1)原式先提取公因式xy ,再利用完全平方公式变形,然后整体代入计算即可;(2)根据同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】(1)33x y xy +22()xy x y =+2[()2]xy x y xy =+-,当6x y +=,7xy =时,原式=()27627⨯-⨯=154;(2)32m n x +32()()m n x x =⋅当3m x =,2n x =时,原式32()()m n x x =⋅108=.【点睛】本题考查了代数式求值,因式分解的应用,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等腰三角形的性质和平移的性质,可得∠ABC=∠ACB=∠DCE=∠DEC,AB=AC=DC=DE,根据全等三角形的判定与性质,可得答案;(2)利用平行线的性质证得CG=CH,根据全等三角形的判定与性质,可得答案.【详解】(1)由平移,知△ABC≌△DCE,∵AB=AC=DC=DE,∴∠ABC=∠ACB=∠DCE=∠DEC,∴∠BCD=∠ECA,∴△ACE≌DCB(SAS),∴AE=BD;(2)∵GH∥BE,∴∠CHG=∠HCE=∠ACB=∠CGH,∴CG=CH,∵∠BCH=∠ECG,BC=CE,∴△BCH≌△ECG(SAS),∴BH=GE.【点睛】本题考查了全等三角形的判定与性质,平移的性质,平行线的性质,等腰三角形的性质,掌握全等三角形的判定与性质是解题的关键.27. 如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.【答案】见解析【解析】【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠CAB=∠CBA,∴∠FAG=∠FBG,∴FA=FB,又∵CA=CB,∴FC为AB的垂直平分线,∴∠ACG=∠BCG.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定和性质.掌握等腰三角形底边三线合一的性质是解题的关键.28. 已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC 交于点M,BD与AC交于点N.(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB≌△DCE,△EMC≌△BCN,△AON≌△DOM,△AOB≌△DOE.【解析】【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形.【详解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL).29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】(1)100;(2)二十.【解析】试题分析:(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.试题解析:解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:x=100,经检验x=100是原方程的解.答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:120012002 100100100%y=++,解得:y=20,经检验y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.。

2023年鲁教版(五四制)数学八年级上册期末考试综合检测试卷及部分答案(共三套)

2023年鲁教版(五四制)数学八年级上册期末考试综合检测试卷及部分答案(共三套)

2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共36分)1.某校评选先进班集体,从“学习”“卫生”“纪律”“德育”四个方面考核打分,各项满分均为100,所占比例如下表:九年级1班这四项得分依次为80,86,84,90,则该班四项综合得分为() A.81.5 B.84.5 C.85 D.842.若a+5=2b,则代数式a2-4ab+4b2-5的值是()A.0 B.-10 C.20 D.-303.下列各组图形可以通过平移得到的是()4.下列分式中是最简分式的是()A.xyx2B.63y C.xx-1D.x+1x2-15.将(a-1)2-1分解因式,结果正确的是()A.a(a-1) B.a(a-2)C.(a-2)(a-1) D.(a-2)(a+1)6.下列四个图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是()7.某校为加强学生出行的安全意识,每月都要对学生进行安全知识测评,随机选取15名学生五月份的测评成绩如下表:则这组数据的中位数和众数分别为()A.95,95 B.95,96 C.96,96 D.96,978.分式x+a3x-1中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-13,分式的值为零D.若a≠13,分式的值为零9.如图,E是平行四边形ABCD的边AD的延长线上一点,连接BE交CD于点F,连接CE,BD.添加以下条件,仍不能判定四边形BCED为平行四边形的是() A.∠ABD=∠DCE B.∠AEC=∠CBDC.EF=BF D.∠AEB=∠BCD(第9题) (第11题)10.下面是涂涂同学完成的一组练习题,每小题20分,他的得分是()①x2-1x-1=x+1;②3-x·23-x=2;③1÷ab·ba=1;④1x+1y=x+yxy;⑤⎝⎛⎭⎪⎫xx+1-x÷x2-xx+1=x-x2+xx+1÷x2-xx+1=x(2-x)x+1·x+1x(x-1)=2-xx-1.A.40分B.60分C.80分D.100分11.如图,在平面直角坐标系中,将△ABC绕点P顺时针旋转得到△A′B′C′,则点P的坐标为()A.(1,1) B.(1,2) C.(1,3) D.(1,4)12.已知a1=x+1(x≠0且x≠-1),a2=11-a1,a3=11-a2,…,a n=11-a n-1,则a2 024等于()A.-x+1 B.x+1 C.xx+1D.-1 x二、填空题(每题3分,共18分)13.已知x2+nx+m有因式(x-1)和(x-2),则m=______,n=________.14.分解因式:3(x2+1)-6x=______________.15.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本标准差相同;④两组样本数据的样本极差相同.正确说法的序号是________.16.中华优秀传统文化是中华民族的“根”和“魂”,为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3 600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2 400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x元,则符合题意的方程是______________.17.如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于________.18.若关于x的分式方程3xx-1=m1-x+2的解为正数,则m的取值范围是______________.三、解答题(19题6分,20,22,24题每题8分,其余每题12分,共66分) 19.已知a,b,c为△ABC的三边长,求证:(a-c)2-b2是负数.20.(1)计算:2m m 2-1-1m -1;(2)先化简,再求值:⎝ ⎛⎭⎪⎫x +x x +1÷x +2 x 2+x ,其中x =1+2.21.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (-1,0),B (-4,1),C (-2,2).(1)点B 关于原点对称的点B ′的坐标是________;(2)平移△ABC ,使平移后点A 的对应点A 1的坐标为(2,1),请画出平移后的△A 1B 1C 1; (3)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2.22.如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,EF 过点O ,交AB于点E,交CD于点F.求证:(1)∠1=∠2;(2)△DOF≌△BOE.23.某水果公司以10元/kg的成本价新进2 000箱荔枝,每箱质量为5 kg,在出售荔枝前,需要去掉坏荔枝,现随机抽取20箱,去掉坏荔枝后称得每箱的质量(单位:kg)如下:4.7 4.8 4.6 4.5 4.8 4.9 4.8 4.7 4.8 4.74.8 4.9 4.7 4.8 4.5 4.7 4.7 4.9 4.75.0整理数据:分析数据:(1)直接写出上述表格中a,b,c的值.(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2 000箱荔枝共坏了多少千克.(3)根据(2)中的结果,求该公司销售这批荔枝每千克最低定为多少元才不亏本.(结果保留一位小数)24.八年级(1)班开展“经典诵读,光亮人生”读书活动,小冬和小惠两同学读了同一本480页的名著,小冬每天读的页数是小惠每天读的页数的1.2倍,小惠读完这本书比小冬多用4天,求两人每天读这本名著多少页.25.在△ABC与△DEC中,∠BAC=∠EDC=90°,AB=AC=4,DE=DC,EC=2,将线段BA平移到EF.(1)如图①,当B,C,D三点共线时,求线段CF的长;(2)将△DEC绕点C逆时针旋转至如图②所示的位置,请探究AD与DF的数量关系和位置关系,并证明.答案一、1.B2.C 3.C4.C5.B6.A 7.C8.C9.D10.A11.B12.D点拨:∵a1=x+1,∴a2=11-a1=11-(x+1)=-1x,∴a3=11-a2=11-⎝⎛⎭⎪⎫-1x=xx+1,∴a4=11-a3=11-xx+1=x+1,∴a5=11-a4=-1x,a6=11-a5=xx+1,….∵2 024÷3=674……2,∴a2 024=-1x.故选D.二、13.2;-3 14.3(x-1)2 15.③④16.3 600x -2 4000.8x =417.126° 点拨:∵△ABF 是等边三角形,∴AB =BF ,∠AFB =∠ABF =60°.在正五边形ABCDE 中,AB =BC ,∠ABC =108°, ∴BF =BC ,∠FBC =∠ABC -∠ABF =48°, ∴∠BFC =12(180°-∠FBC )=66°, ∴∠AFC =∠AFB +∠BFC =126°.18.m <-2且m ≠-3 点拨:去分母,得3x =-m +2(x -1),去括号、移项、合并同类项,得 x =-m -2.∵关于x 的分式方程3x x -1=m1-x +2的解为正数,∴-m -2>0. ∴m <-2. 由题意得x -1≠0, ∴x ≠1. ∴-m -2≠1. ∴m ≠-3.∴m <-2且m ≠-3.三、19.证明:∵a ,b ,c 为△ABC 的三边长,∴a +b >c ,b +c >a , 即a -c +b >0,a -c -b <0.∴(a -c )2-b 2=(a -c +b )(a -c -b )<0, ∴(a -c )2-b 2是负数.20.解:(1)原式=2m(m +1)(m -1)-m +1(m -1)(m +1)=2m -m -1(m -1)(m +1)=m -1(m -1)(m +1)=1m +1. (2)原式=⎝ ⎛⎭⎪⎫x 2+xx +1+x x +1·x 2+x x +2=x 2+2x x +1·x 2+x x +2 =x (x +2)x +1·x (x +1)x +2=x 2.当x =1+2时, 原式=(1+2)2 =1+22+2 =3+22. 21.解:(1)(4,-1)(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A 2B 2C 2即为所求. 22.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD . ∴∠1=∠2.(2)∵点O 是BD 的中点, ∴OD =OB .在△DOF 和△BOE 中,⎩⎨⎧∠1=∠2,∠DOF =∠BOE ,OD =OB ,∴△DOF ≌△BOE (AAS).23.解:(1)a =6,b =4.7,c =4.75.(2)选择众数,估算这2 000箱荔枝共坏了2 000×(5-4.7)=600(kg).(答案不唯一)(3)10×5×2 000÷(2 000×5-600)≈10.7(元).答:该公司销售这批荔枝每千克最低定为10.7元才不亏本. 24.解:设小慧每天读这本名著x 页,则小冬每天读这本名著1.2x 页,依题意得480x -4801.2x =4, 解得x =20.经检验,x =20是原方程的解,且符合题意. ∴1.2x =24,答:小慧每天读这本名著20页,小冬每天读这本名著24页. 25.解:(1)∵∠BAC =90°,AB =AC ,∴∠ABC =45°.∵DE =DC ,∠EDC =90°, ∴∠ECD =45°, ∴∠ABC =∠ECD . 又∵B ,C ,D 三点共线, ∴EC ∥AB . 又∵EF ∥AB , ∴C ,E ,F 三点共线. 由题意知EF =AB =4, ∴CF =CE +EF =2+4=6. (2)AD =DF ,且AD ⊥DF .证明:如图,延长FE 交AC 于G .由题意得EF∥AB,∴∠EGA=∠BAC=90°.∴∠FGC=90°=∠EDC.∴∠DEG+∠DCG=180°.又∵∠FED+∠DEG=180°,∴∠ACD=∠FED.又∵EF=AB=AC,DE=DC,∴△ACD≌△FED(SAS).∴AD=DF,∠ADC=∠EDF.∴∠ADF=∠EDC=90°,∴AD⊥DF.2023年鲁教版(五四制)数学八年级上册期末考试测试卷及答案(二)一、选择题(本大题共12道小题,每小题3分,满分36分)1.太原正式步入“地铁时代”,太原轨道交通近期建设的1、2、3号线在全国是第338条线路.下面是中国四个城市的地铁图标,其中是中心对称图形的是()2.若a+b=3,则a2+6b-b2的值为()A.3 B.6 C.9 D.123.把多项式3(x-y)2+2(y-x)3分解因式,结果正确的是()A.(x-y)2(3-2x-2y) B.(x-y)2(3-2x+2y)C.(x-y)2(3+2x-2y) D.(y-x)2(3+2x+2y)4.若分式|x|-2(x-2)(x+1)的值为0,则x的值为()A.±2 B.2 C.-2 D.-15.一个多边形的内角和与外角和相加之后的结果是2 520°,则这个多边形的边数为()A.12 B.13 C.14 D.156.方程23x=1x+2的解为()A.x=-2 B.x=4C.x=0 D.x=67.某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是() A.全班同学在线学习数学的平均时间为2.5 hB.全班同学在线学习数学时间的中位数为2 hC.全班同学在线学习数学时间的众数为20 hD.全班超过半数同学每周在线学习数学的时间超过3 h8.若分式方程6(x+1)(x-1)-mx-1=6有增根,则它的增根是()A.0 B.1 C.-1 D.1或-19.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A.5 B.4 C.3 D.210.如图,将线段AB平移到线段CD的位置,则a+b的值为() A.4 B.0 C.3 D.-511.如图,在▱ABCD中,对角线AC,BD相交于点O,点E是BC的中点,若AB =16,则OE的长为()A.8 B.6 C.4 D.312.如图,E ,F 分别是平行四边形ABCD 的边AD ,BC 上的点,且BE ∥DF ,AC分别交BE ,DF 于点G ,H .下列结论:①四边形BFDE 是平行四边形;②△AGE ≌△CHF ;③BG =DH ;④S △AGE ︰S △CDH =GE ︰DH .其中正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共6道小题,每小题3分,满分18分) 13.如果a 2-2a =0,则2a 2 020-4a 2 019+2 020的值为________. 14.使代数式x +3x -3÷x 2-9x +4有意义的x 的取值范围是________.15.一组数据3,2,x ,2,6,3的唯一众数是2,则这组数据的方差为________. 16.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,且AB ⊥AC ,∠DAC =45°,如果AC =2,那么BD 的长是________.17.如图,在平面直角坐标系中,点A (3,0),点B (0,2),连接AB ,将线段AB绕点A 顺时针旋转90°得到线段AC ,连接OC ,则线段OC 的长度为________.18.如图,在▱ABCD 中,AB =6,∠BAD 的平分线与BC 的延长线交于点E ,与DC交于点F,且点F为边CD的中点,DG⊥AE,垂足为G,若DG=5,则AE的长为________.三、解答题(本大题共7道小题,满分66分)19.(9分)分解因式:(1)x3-x;(2)2a2-4a+2;(3)m4-2m2+1.20.(7分)先化简,再求值:1x÷ ⎝⎛⎭⎪⎫x2+1x2-x-2x-1+1x+1,其中x的值为方程2x=5x-1的解.21.(8分)某校八年级开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据统计图直接写出上表中a,b,c的值;(2)已知爱国班复赛成绩的方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定.22.(10分)如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且∠1=∠2,∠3=∠4.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC是否随之变化?若变化,找出规律或求出其变化范围;若不变,求出这个比.23.(10分)2020年初,市场上防护口罩出现热销.某药店用3 000元购进甲、乙两种不同型号的口罩共1 100只进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少;(2)若甲、乙两种口罩的进价不变,该药店计划用不超过7 000元的资金再次购进甲、乙两种口罩共2 600只,求甲种口罩最多能购进多少只.24.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.25.(12分)已知在△ABC中,AB=AC,点D在BC上,以AD,AE为腰作等腰三角形ADE,且∠ADE=∠ABC,连接CE,过E作EM∥BC交CA的延长线于M,连接BM.(1)求证:△BAD≌△CAE;(2)若∠ABC=30°,求∠MEC的度数;(3)求证:四边形MBDE是平行四边形.答案一、1.C 2.C 3.B 4.C 5.C 6.B7.B8.B【点拨】分式方程的最简公分母为(x+1)(x-1),去分母得6-m(x+1)=6(x+1)(x-1).由分式方程有增根,得到(x+1)(x-1)=0,即x=1或x=-1,把x=-1代入整式方程得6=0,无解,则它的增根是1.故选B.9.B【点拨】由平移的性质可知,AD=BE,∵BC=CE,BC=2,∴BE=4,∴AD=4.故选B.10.A【点拨】由题意知,线段AB向左平移3个单位长度,再向上平移4个单位长度得到线段CD,∴a=5-3=2,b=-2+4=2,∴a+b=4.故选A. 11.A【点拨】∵在▱ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点.又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=12AB=8.故选A.12.D【点拨】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵BE∥DF,∴四边形BFDE是平行四边形,故①正确;∵四边形BFDE 是平行四边形, ∴BF =DE ,DF =BE ,∴AE =FC ,∵AD ∥BC ,BE ∥DF ,∴∠DAC =∠ACB ,∠ADF =∠DFC ,∠AEB =∠ADF , ∴∠AEB =∠DFC , ∴△AGE ≌△CHF (ASA ),故②正确;∵△AGE ≌△CHF ,∴GE =FH , ∵BE =DF ,∴BG =DH ,故③正确; ∵△AGE ≌△CHF ,∴S △AGE =S △CHF , ∵S △CHF ︰S △CDH =FH ︰DH ,∴S △AGE ︰S △CDH =GE ︰DH ,故④正确.故选D. 二、13.2 020 14.x ≠±3且x ≠-415.2 【点拨】∵数据3,2,x ,2,6,3的唯一众数是2,∴x =2.∴3,2,2,2,6,3的平均数为16×(3+2+2+2+6+3)=3,则这组数据的方差为16×[(2-3)2×3+(3-3)2×2+(6-3)2]=2.16.25 【点拨】∵四边形ABCD 是平行四边形,∴AD ∥BC ,OB =OD ,OA =12AC =1,∴∠ACB =45°.∵AB ⊥AC ,∴△ABC 是等腰直角三角形,∴AB =AC =2.在Rt △AOB 中,根据勾股定理,得OB =5,∴BD =2BO =2 5. 17.34 【点拨】如图,作CH ⊥x 轴于H .∵A (3,0),B (0,2),∴OA =3,OB =2,∵∠AOB =∠BAC =∠AHC =90°,∴∠BAO +∠HAC =90°,∠HAC +∠ACH =90°,∴∠BAO =∠ACH .∵AB =AC ,∴△ABO ≌△CAH (AAS ),∴AH =OB =2,CH =OA =3,∴OH =OA +AH =3+2=5,∴OC =OH 2+CH 2=52+32=34.18.8 【点拨】∵AE 为∠DAB 的平分线, ∴∠DAE =∠BAE .∵四边形ABCD 为平行四边形, ∴AD ∥BC ,DC ∥AB ,DC =AB . ∵DC ∥AB ,∴∠BAE =∠DFA ,∴∠DAE =∠DFA , ∴AD =FD . 又∵DG ⊥AE ,∴AG =FG ,即AF =2AG . ∵F 为DC 的中点,∴DF =CF , ∴AD =DF =12DC =12AB =3.在Rt △ADG 中,根据勾股定理得AG =2,则AF =2AG =4. ∵AD ∥BC ,∴∠DAF =∠E ,∠ADF =∠ECF . 在△ADF 和△ECF 中,⎩⎨⎧∠DAF =∠E ,∠ADF =∠ECF ,DF =CF ,∴△ADF ≌△ECF (AAS), ∴AF =EF ,则AE =2AF =8.三、19.解:(1)x 3-x =x (x 2-1)=x (x +1)(x -1); (2)2a 2-4a +2=2(a 2-2a +1)=2(a -1)2; (3)m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2. 20.解:1x ÷⎝ ⎛⎭⎪⎫x 2+1x 2-x -2x -1+1x +1 =1x ÷x 2+1-2x x (x -1)+1x +1=1x ·x (x -1)(x -1)2+1x +1=1x-1+1 x+1=2x(x+1)(x-1).解方程2x=5x-1,得x=1 3.当x=13时,原式=-34.21.解:(1)a=85;b=80;c=85.(2)求知班成绩的方差为15×[(70-85)2+(75-85)2+(80-85)2+2×(100-85)2]=160.∵70<160,∴爱国班的成绩比较稳定.22.解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=120°,∴∠COA=180°-∠C=180°-120°=60°.∵∠1=∠2,∠3=∠4,∴∠COA=2∠1+2∠4=2(∠1+∠4)=2∠EOB.∴∠EOB=12∠COA=12×60°=30°.(2)不变化.∵CB∥OA,∴∠OBC=∠2,∠OFC=∠FOA.又∵∠1=∠2,∴∠OBC=∠1,∴∠OFC=2∠1,∴∠OBC∠OFC=∠12∠1=1 2.23.解:(1)3 000÷2=1 500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,由题意,得1 500 1.2x+1 500x=1 100,解得x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.∴甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2 600-a)只,由题意,得3a+2.5(2 600-a)≤7 000,解得a≤1 000.∴甲种口罩最多能购进1 000只.24.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.∵AC平分∠DAE,∴∠DAC=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠DAC=40°.(2)证明:∵四边形ABCD是平行四边形,∴OA=OC.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.25.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°-2∠ABC.∵以AD,AE为腰作等腰三角形ADE,∴AD=AE,∴∠ADE=∠AED,∴∠DAE=180°-2∠ADE.∵∠ADE=∠ABC,∴∠BAC=∠DAE,∴∠BAC-∠CAD=∠DAE-∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∴∠ACB=∠ABC=30°.∵△BAD≌△CAE,∴∠ABD=∠ACE=30°,∴∠ECB=∠ACB+∠ACE=60°.∵EM∥BC,∴∠MEC+∠ECD=180°,∴∠MEC=180°-60°=120°.(3)证明:∵△BAD≌△CAE,∴DB=CE,∠ABD=∠ACE.∵AB=AC,∴∠ABD=∠ACB,∴∠ACB=∠ACE.∵EM∥BC,∴∠EMC=∠ACB,∴∠ACE=∠EMC,∴ME=EC,∴DB=ME.又∵EM∥BD,∴四边形MBDE是平行四边形.2023年鲁教版(五四制)数学八年级上册期末考试测试卷(三)一.选择题(本题共10个小题)每小题均给出标号为A、B.C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.下列图形中,是中心对称图形的是()A.B.C.D.2.分式﹣可变形为()A.B.C.﹣D.﹣3.下列分式,,,中,最简分式有()A.1个B.2个C.3个D.4个4.空气是混合物,为了直观介绍空气各成分的百分比,最适合用的统计图是()A.折线统计图B.条形统计图C.散点统计图D.扇形统计图5.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)5055606570车辆数(辆)54821则上述车速的中位数和众数分别是()A.60,8B.60,60C.55,60D.55,86.早上6:20的时候,钟表的时针和分针所夹的锐角是()A.50°B.60°C.70°D.80°7.计算:101×1022﹣101×982=()A.404B.808C.40400D.808008.如图,已知四边形ABCD中,R、P分别为BC、CD上的点,E、F分别为AP、RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长不变C.线段EF的长逐渐减小D.线段EF的长与点P的位置有关9.如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.平均数是95分B.中位数是95分C.众数是90分D.方差是1510.如图1,平行四边形纸片ABCD的面积为120,AD=20.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片,若将甲、丙合井(AD、CB重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为()A.26B.29C.24D.25二、填空题(本题共10个小题)11.如图,△ABC是等边三角形,D为BC边上的点,△ABD经旋转后到达△ACE的位置,若∠CAE=15°,那么∠DAC=.12.若关于x的二次三项式x2+ax+16是完全平方式,则a的值是.13.若m2﹣n2=3,且m﹣n=6,则m+n=.14.若关于x的方程﹣=0产生增根,则m=.15.如图,△ABC沿边BC所在直线向右平移得到△DEF,下列结论:①△ABC≌△DEF;②∠DEF=∠B;③AC=DF;④EC=CF.正确的有(只填序号).16.一个多边形的内角和比四边形内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是.17.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.18.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为19,OE=2.5,则四边形EFCD的周长为.19.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.20.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若CG=2BG,S△BPG=2,则S▱AEPH=.三、解答题(本大题共9个小题)21.分解因式:(1)(x2+25)2﹣100x2.(2)3(x﹣1)2﹣18(x﹣1)+27.22.先化简(1﹣)÷,再从﹣2,﹣1,2中选一个合适的数代入并求值.23.解方程:﹣=﹣.24.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C.(2)平移△ABC,使点A的对应点A2坐标为(﹣3,﹣4),请画出平移后对应的△A2B2C2.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.25.我省某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩数据如图表所示.平均分(分)中位数(分)众数(分)方差初中部 a 85 b s 初中2 高中部85c100160(1)计算出a 、b 、c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好? (3)计算初中代表队决赛成绩的方差S中,并判断哪一个代表队选手成绩较为稳定.26.阅读下列材料,并解答其后的问题: 定义:两组邻边分别相等的四边形叫做筝形,如图1,四边形ABCD 中,若AD =AB ,CD =CB ,则四边形ABCD 是筝形. 类比研究我们在学完平行四边形后,知道可以从对称性、边角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成表格. 四边形 示例图形对称性边角 对角线 平行 四边形是中心对称图形两组对边分别平行,两组对边分别相等.两组对角分别相等. 对角线互相平分.筝形① 两组邻边分别相等有一组对角相等②(1)表格中①、②分别填写的内容是: ① ;② ;(2)证明筝形有关对角线的性质.已知:如图2,在第形ABCD 中,AD =AB ,BC =DC ,对角线AC ,BD 交于点O . 求证: ; 证明:(3)运用:如图2,已知筝形ABCD 中,AD =AB =4,CD =CB ,∠BAD ﹣120°,∠DCB=60*.求筝形ABCD的面积.27.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,同样用3600元购买排球要比购买篮球多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?28.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.29.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证DE+DF=AC.(2)当点D在边BC的延长线上时,如图②,线段DE,DF,AC之间的数量关系是为什么?(3)当点D在边BC的反向延长线上时,如图③,线段DE,DF,AC之间的数量关系是(不需要证明).。

人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。

2024-2025学年人教版数学八年级上册期末综合测试卷(三)

2024-2025学年人教版数学八年级上册期末综合测试卷(三)

2024-2025学年人教版数学八年级上册 期末综合测试卷(三)一、单选题1.若六边形的最大内角为m 度,则必有( ) A .60180m <<︒ B .90180m ︒<<︒C .120180m ︒≤<︒D .120180m ︒<<︒2.已知多项式3261392x x x +++可以写成两个因式的积,又已知其中一个因式为2352x x ++,那么另一个因式为( ) A .21x -B .21x +C .21x --D .21x -+3.如图,两车从南北方向的路段AB 的A 端出发,分别向东、向西行进相同的距离到达C D 、两地,若C 与B 的距离为a 千米,则D 与B 的距离为( )A .a 千米B .12a 千米C .2a 千米D .无法确定4.如图在边长为a 的正方形中挖掉一个边长为b 的小正方形(a b >).把余下的部分前拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )A .()()22a b a b a b -=+- B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()2a ab a a b -=-5.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( ) A .3个B .4个C .5个D .6个6.如图,在ΔABC 中,AB AC =,55A ∠=︒,点P 是AB 上的一个动点,则APC ∠的度数可能是( )A .55︒B .62︒C .80︒D .130︒7.已知如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若∠MON =60°,OP =4,则PQ 的最小值是( )A .2B .3C .4D .不能确定8.如图,在ABC V 中,AD 平分BAC ∠,EG AD ⊥,且分别交AB ,AD ,AC 及BC 的延长线于点 E ,H ,F ,G ,若45B ∠=︒,75ACB ∠=︒,则G ∠的度数为( )A .15︒B .22.5︒C .27.5︒D .30°9.如图,在ΔABC 中,AD 平分BAC ∠,2B ADB ∠=∠,4,7AB CD ==,则AC 的长为( )A .3B .11C .15D .910.关于x 的方程11x a x a +=+的两个解为121,x a x a ==;22x a x a+=+的两个解为122,x a x a ==;33x a x a +=+的两个解为123,x a x a ==,则关于x 的方程101011x a x a +=+--的两个解为( )A .1210,x a x a== B .128,1a x a x a +==- C .1210,1x a x a ==- D .129,1a x a x a +==-二、填空题11.设三角形三边之长分别为2,9,5a +,则a 的取值范围为.12.如图,已知ΔABC 中,40,,,A AB AC BD CE BE CF ︒∠====,则DEF ∠=13.若201920200245202020192021202054a b c ⎛⎫⎛⎫==⨯-=-⨯ ⎪ ⎪⎝⎭⎝⎭,,,则a ,b ,c 的大小关系用“<”连接为.14.对于两个非零的实数a ,b ,定义运算※如下:11a b b a=-※.例如:111344312=-=-※.若2x y =※,则xyx y-的值为. 15.如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n -=.16.如图,△ABC 中,DH 是AC 的垂直平分线,交BC 于P ,MN 是AB 的垂直平分线,交BC 于点Q ,连接AP 、AQ ,已知72BAC ︒∠=,则PAQ ∠=度.17.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用12秒通过AC ,其中通过BC 的速度是通过AB 速度的1.5倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:.18.如图,ΔABC 中,AD 平分BAC ∠,3ACB B ∠=∠,CE AD ⊥,8AC =,74BC BD =,则CE =.三、解答题19.如图,在ABC V 中,AD 是BC 边上的高,AE 平分BAC ∠,45C ∠=︒,10DAE ∠=︒,求B ∠的度数.20.(1)化简: 22142x x x --- (2)分解因式: ① 216m m -; ②()228a b ab -+21.如图,点E F 、在BC 上,AB CD =,BE CF =,AF DE =,AF 与DE 交于点O . (1)求证:A D ∠=∠;(2)若90EOF ∠=︒,试判断OEF ∆的形状,并说明理由.22.如图1和图2,P 是直线m 上一动点,A B 、两点在直线m 的同侧,且点A B 、所在直线与m 不平行.(1)当P 点运动到1P 位置时,距离A 点最近,在图1中的直线m 上画出点1P 的位置;(2)当P 点运动到2P 位置时,与A 点的距离和与B 点距两相等,请在图2中作出2P 位置; (3)在直线m 上是否存在这样一点3P ,使得到A 点的距离与到B 点的距离之和最小?若存在请在图3中作出这点,若不存在请说明理由. (要求:不写作法,请保留作图痕迹)23.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为a 的大正方形,两块是边长都为b 的小正方形,五块是长为a ,宽为b 的全等小矩形,且a b >.(1)观察图形,将多项式22252a ab b ++分解因式;(2)若每块小矩形的面积为10,四个正方形的面积和为58.求下列代数式的值: ①a b +. ②22a b ab +.24.如图,已知在ABC V 和AEF △中,AB AC =,AE AF =,CAB EAF ∠=∠,BE 分别与AC ,CF 交于点D ,O .(1)求证:BE CF =;(2)当70BAC ∠=︒时,求BOC ∠的度数.25.如图,三角形ABC 中,AC =BC ,D 是BC 上的一点,连接AD ,DF 平分∠ADC 交∠ACB 的外角∠ACE 的平分线于F . (1)求证:CF ∥AB ;(2)若∠DAC =40°,求∠DFC 的度数.26.【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形.并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式_________. 【拓展升华】(2)利用(1)中的等式解决下列问题. ①已知2210a b +=,6a b +=,求ab 的值;②已知()()202120192020c c --=-,求()()2220212019c c -+-的值.27.观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”: ①52×=×25;② ×396=693× .(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a 、b ),并证明. 28.综合与实践:阅读下面的材料,并解决问题.(1)已知在ΔABC 中,60A ∠=︒,图1,图2,图3中的ΔABC 的内角平分线或外角平分线都交于点O ,请直接写出下列角的度数如图1,O ∠=_________;如图2,O ∠=_________;如图3,O ∠=_________;如图4,ABC ∠,ACB ∠的三等分线交于点1O ,2O ,连接12O O ,则21BO O ∠=_________.(2)如图5,点O 是ΔABC 两条内角平分线的交点,求证:1902O A ∠=︒+∠.(3)如图6,在ΔABC 中,ABC ∠的三等分线分别与ACB ∠的平分线交于点1O ,2O ,若1115∠=︒,2135∠=︒,求A ∠的度数.。

人教版数学八年级上学期《期末考试题》带答案解析

人教版数学八年级上学期《期末考试题》带答案解析
故答案为:35°.
[点睛]本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.
15.若多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,则m=_____.
[答案]﹣7或5
[解析]
[分析]
利用完全平方公式得到9x2﹣2(m+1)xy+4y2=(3x±2y)2,则﹣2(m+1)xy=±12xy,即m+1=±6,然后解m的方程即可.
[解析]
试题解析:∵x2+(m-2)x+9是一个完全平方式,
∴(x±3)2=x2±2(m-2)x+9,
∴2(m-2)=±12,
∴m=8或-4.
故选D.
10.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()
A. 30°B. 15°C. °D. 35°
[答案]2
[解析]
[分析]
本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.
[详解]解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,
只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.
故答案为:2.
[点睛]本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
[答案]A
[解析]
[分析]
由于点C关于直线MN的对称点是B,所以当 三点在同一直线上时, 的值最小.
[详解]由题意知,当B.P、D三点位于同一直线时,PC+PD取最小值,

2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)

2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)

2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。

人教版八年级数学上册期末综合测试卷(附有参考答案)

人教版八年级数学上册期末综合测试卷(附有参考答案)

人教版八年级数学上册期末测试卷(附有参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若三角形的两条边的长度是4cm 和7cm ,则第三条边的长度可能是( )A .2cmB .5cmC .11cmD .12cm2.如图所示,点D ,E 分别是△ABC 的边BC ,AB 上的点,分别连结AD ,DE ,则图中的三角形一共有( )A .3个B .4个C .5个D .6个3.下列各题的计算,正确的是( )A .()3515=a aB .5210a a a ⋅=C .32242a a a -=-D .()3236ab a b -=4.下列等式中不成立的是( )A .()222396x y x xy y -=-+.B .()()22a b c c a b +-=--. C .2221124⎛⎫-=-+ ⎪⎝⎭m n m mn n . D .()22244x y x y -=-. 5.在学校“文明学生”表彰会上,6名获奖者每两位都相互握手祝贺,则他们一共握了多少次手( )A .6B .8C .13D .156.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,内错角相等D .如果两个角都是30°,那么这两个角相等 7.已知实数x 、y 满足33x ?y 27=-,当x 1>时,y 的取值范围是( )A .y 3<-B .3y 0-<<C .y 3<-或y 0>D .3y 0-<<或y 0>8.下列计算中,(1) m n mn a a a ⋅=; (2) ()22m n m n a a ++= ; (3) ()311211263n n n n a b ab a b -++⎛⎫⋅-=- ⎪⎝⎭;(4)633a a a ÷=;正确的有( )A .0个B .1个C .2个D .3个9.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D . 10.要使分式21x x +-有意义,x 必须满足的条件是( ) A .1x ≠ B .0x ≠ C .2x ≠- D .2x ≠-且1x ≠11.《居室内空气中甲醛的卫生标准》(GB /T 16127-1995)规定:居室内空气中甲醛的最高容许浓度为0.00008g /m 3.将0.00008用科学记数法可表示为( )A .40.810-⨯B .4810-⨯C .50.810-⨯D .5810-⨯12.如图,AO ⊥OM ,OA=8,点B 为射线OM 上的一个动点,分别以OB 、AB 为直角边,B 为直角顶点,在OM 两侧作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交OM 于P 点,当点B 在射线OM 上移动时,PB 的长度是 ( )A .3.6B .4C .4.8D .PB 的长度随B 点的运动而变化二、填空题13.已知3x y -=,则代数式()()2122x x y y x +-+-的值为 .14.计算:(1)202220241(4)4⎛⎫-⨯-= ⎪⎝⎭ .(2)10298⨯= .15.在螳螂的示意图中AB DE ∥,ABC 是等腰三角形12672ABC CDE ∠=︒∠=︒,,则ACD ∠的度数是 .16.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是 .17.若()22224x k x x k +=++,则k = .18.一个多边形截去一个角后,形成一个新的多边形内角和为360°,那么原来的多边形的边数为19.如图,在ABC 中,AD 为BC 边上的高线,且AD BC =,点M 为直线BC 上方的一个动点,且ABC 面积为MBC 的面积2倍,则当MB MC +最小时,MBC ∠的度数为 °.20.计算()22x xy x -÷的结果是 .21.如图,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,拼第3个正方形需要16个小正方形……按照这样的方法拼成的第n 个正方形比第(n )1-个正方形多 个小正方形.22.在等边△ABC 中,E 是∠B 的平分线上一点,∠AEB =105°,点P 在△ABC 上,若AE =EP ,则∠AEP 的度数为 .三、解答题23.化简:231124a a a -⎛⎫-÷⎪+-⎝⎭ 24.计算:(1)860.10.1÷;(2)741133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3)()()3a b a b -÷-;(4)()()53xy xy ÷;25.我们知道多项式的乘法可以利用图形的面积进行解释,例如,(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: .(2)试画出一个图形,使它的面积能表示成(a+b )(a+3b )=a 2+4ab+3b 2.26.有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦12000kg 和14000kg ,已知第一块试验田每公顷的产量比第二块少1500kg .如果设第一块试验田每公顷的产量为xkg ,那么x 满足怎样的分式方程?27.春笋含有丰富的营养成分,是春天的重要食材.今年4月初,某蔬菜批发市场一店主张先生用2000元购进一批春笋,很快售完;张先生又用3200元购进第二批春笋,所购春笋的重量是第一批的2倍,由于进货量增加,第二批春笋的进价比第一批每千克少2元,求第一批春笋每千克进价多少元?28.下表为抄录某运动会票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图如图所示.比赛项目票价(张/元)足球1000男篮800乒乓球x依据上述图表,回答下列问题:(1)其中观看足球比赛的门票有______张,观看乒乓球比赛的门票占全部门票的______%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是______;(3)若购买乒乓球门票的总款数占全部门票总款数的542,求每张乒乓球门票的价格.29.某高速路修建项目中有一项挖土工程,招标时接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完成.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完成,你将选择哪一种方案?说明理由.30.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.的边BC,CD上,∠EAF=12(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.线上,∠EAF=12(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.答案: 1.B 2.C 3.A 4.D 5.D 6.C 7.B 8.C 9.A 10.A 11.D 12.B 13.414.16 999615.45︒/45度16.ASA17.1218.5或4或3.19.4520.2x y -21.21n +/1+2n22.90︒或120︒23.2-a24.(1)0.01(2)127-(3)222a ab b -+(4)22x y 25.(1)(a +2b )(2a +b )=2a 2+5ab +2b 226.12000140001500x x =+. 27.第一批春笋每千克进价10元28.(1)50,20;(2)310;(3)每张乒乓球门票的价格为500元. 29.(1)20天(2)方案三30.(1)EF =BE +DF ;(2)EF =DF−BE ;(3)5.。

人教版数学八年级上学期《期末测试卷》带答案解析

人教版数学八年级上学期《期末测试卷》带答案解析
B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)
D.(a+2b)(a-b)=a2+ab-2b2
[答案]C
[解析]
[分析]
分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.
[详解]解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即 ,乙图中阴影部分长方形的长为 ,宽为 ,阴影部分的面积为 ,根据两个图形中阴影部分的面积相等可得 .
18.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)
三、解答题(共8题,共66分 )
19.分解因式:
A. ∠1=∠2+∠AB. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠AD. 2∠1=∠2+∠A
二、填空题(每小题3分,共24分)
11.当x=时,分式 无意义.
12.如图,在△ABC中,AM是中线,AN是高.如果BM=3.5cm,AN=4cm,那么△ABC的面积是___________cm2.
13.如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.
8.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()
A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°
[答案]B
[解析]
[详解]∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011学年八年级上数学期末模拟测试卷(三 )
一、选择能手——看谁的命中率高(每小题3分,共30分) 1.8的立方根是( )A .2 B .±2 C .-2 D .±4 2.一个多边形的每个内角都是108°,那么这个多边形是( )
A .五边形
B .六边形
C .七边形
D .八边形 3.下列说法中错误的是( )
A .四个角相等的四边形是矩形
B .对角线互相垂直的矩形是正方形
C .对角线相等的菱形是正方形
D .四条边相等的四边形是正方形 4.一次函数b kx y +=的图象如右图所示,则k 、b 的值为( )
A .k >0, b >0
B .k >0, b <0
C .k <0, b >0
D .k <0, b <0 5.以下五个大写正体字母中,是中心对称图形的共有( ) G S M X Z A .1个B .2个C .3个D .4个
6.在下列各数中是无理数的有( )-0.333…, 4,5, π-, 3.1415, 1
7
-,2.010101…(相邻两个1之间有1个0),A .1个 B .2个C .3个 D .4个 7
)A
B .4
C .2
D .±4 8.下列说法正确的是( )A .数据3,4,4,7,3的众数是4. B .数据0,1,2,5,a 的中位数是2.C .一组数据的众数和中位数不可能相等.
D .数据0,5,-7,-5,7的中位数和平均数都是0.
9.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ) A .1、2、3 B .2、3、4 C .3、4、5 D .4、5、6
10.如图,在新型俄罗斯方块游戏中(出现的图案可进行顺时针、逆时针旋转;向左、向右平移),已拼好的图案如图所示,现又出现一个形如的方块正向下运动,你必须进
行以下哪项操作,才能拼成一个完整的矩形( ). A .顺时针旋转0
90,向右平移B .逆时针旋转0
90,向右平移 C .顺时针旋转0
90,向左平移D .逆时针旋转0
90,向左平移 二、填空能手——看谁填得既快又准确(每小题3分,共30分) 11
.= .
12.16的算术平方根是.
13
.化简:1)= .
14.菱形有一个内角是60°,边长为5cm,则它的面积是.15.一个多边形的内角和等于它的外角和的3倍,它是边形.
16.
1
2
x
y
=


=

是方程组
4
6
x my
nx y
+=


-=

的解, 则2m n
+= .
17.点M(4,-3)关于原点对称的点N的坐标是.
18.从双柏到楚雄的距离为60千米,一辆摩托车以平均每小时30千米的速度从双柏出发到楚雄,则摩托车距楚雄的距离s(千米)与行驶时间t(时)的函数表达式为.
19.如图是学校与小明家位置示
意图,如果以学校所在位置
为坐标原点,水平方向为x
轴建立直角坐标系,那么
小明家所在位置的坐标为.
20.如图,以数轴的单位长线段为边作一个矩形,以数轴的原点为旋转中心,将过原点的对角线逆时针旋转,使对角线的另一端点落在数轴负半轴的点A处,则点A表示的数是.
三、解答能手——看谁写得既全面又整洁(共60分)
21.计算:(本小题8分,每小题4分)
(1
)(2
22.(本小题4分)解方程组:
329
21 x y
x y
-=⎧

+=-⎩
23.(本小题8分)已知一次函数y=kx +b
正比例函数1
2
y x
的图象相交于点(2,a ). (1)求a 的值.(2)求一次函数y=kx +b (3)在同一坐标系中,画出这两个函数的图象.
24.(6分)某校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.
25.(本小题6分)动手画一画(1)(本小题3分)在图①中的方格纸上有A 、B 、C 、D 四点(每个小方格的边长为1个单位长度):自己建立适当的直角坐标系,分别写出点A 、B
、C 、D 的坐标; (2)(本小题3分)如图②,经过平移,小船上的点A 移到了点B ,作出平移后的小船.
图① 图②
26.(本小题6分)如图,在□ABCD 中,AC 交BD 于点O ,点E 、点F 分别是OA 、OC 的中点, BE 、DF 相等吗?说明你的理由。

(6分)
x
A B F
E
O
D
C
B
A
27.(8分)学校准备添置一批计算机.
方案1:到商家直接购买,每台需要7000元;
方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.
(1)分别写出y1、y2的函数解析式;
(2)当学校添置多少台计算机时,两种方案的费用相同?
(3)若学校需要添置计算机50台,那么采用哪一种方案较省钱?说说你的理由.
28.(本小题14分)如图,l1表示某商场一天的手提电脑销售额与销售量的关系,l2表示该商场一天的销售成本与手提电脑销售量的关系.
(1)当销售量x=2时,销售额= 万元,
销售成本= 万元,
利润(收入-成本)= 万元.(3分)
(2)一天销售台时,销售额等于销售成本.(1分)
(3)当销售量时,该商场赢利(收入大于成本),(1分)当销售量时,该商场亏损(收入小于成本).(1分)(4)l1对应的函数表达式是.(3分)
(5)写出利润与销售额之间的函数表达式.(3分)
l2。

相关文档
最新文档