美赛历年赛题及其翻译-推荐下载
美赛数学竞赛题目

有关“美赛数学竞赛”的题目
美赛数学竞赛的题目通常涉及多个数学领域,包括代数、几何、概率统计、微积分等。
这些题目通常要求参赛者具有扎实的数学基础和较强的分析能力,能够灵活运用数学知识解决实际问题。
有关“美赛数学竞赛”的题目示例如下:
题目:在一条直线上的n个点,可以构成多少条不同的线段?
这个问题涉及到组合数学的知识,需要参赛者通过分析和推理来找到答案。
具体而言,对于n个点,每两个点可以构成一条线段,所以总共可以构成C(n, 2) = n*(n-1)/2 条不同的线段。
需要注意的是,美赛数学竞赛的题目难度较大,需要参赛者具备较高的数学水平和较强的解题能力。
同时,在解题过程中还需要注意逻辑清晰、表达准确、符合数学规范等要求。
美赛历年赛题

美赛历年赛题
美国数学建模竞赛(MCM/ICM)自1985年创办以来已有35年的历史,每年都会发布三个模型问题供参赛选手在限定时间内进行研究和解答。
经过不断发展和完善,MCM/ICM成为了世界范围内最具影响力的数学建模竞赛之一。
以下是MCM/ICM历年来的一些典型赛题:
1985年 MCM A题:研究在给定经济情况下,如何规划BMW公司未来的生产计划及车型。
1987年 MCM A题:在地球上一个非常均匀的平面,建立一个小型城市,考虑各种环境因素如何影响城市的设施和功能。
1991年 MCM D题:分析社会上性别和种族歧视。
1997年 MCM C题:分析为什么珊瑚礁的污染问题比林区污染问题显得更为严重。
2002年 MCM A题:研究货轮舱位的装载问题,最大化收益同时保证船上货物负荷均衡。
2006年 MCM A题:建立模型研究地球大气环境中的水循环,探究人类活动对水循环的影响。
2010年 MCM A题:分析美国电力网络的可靠性,研究如何在自然灾害和人为故障的情况下使电力网络正常运作。
2014年 MCM A题:分析对于Fermi问题和经济增长的数学建模,探究经济增长的限制因素和未来发展趋势。
2018年 MCM A题:研究美国国家公园的野生动植物种类和数量变化,确定如何平衡保护野生动植物和国家公园的多个目的。
从这些题目中可以看出,MCM/ICM的竞赛内容涵盖了众多领域,如管理学、环保、气象、物流、生物学等等。
这不仅考验了参赛选手的数学建模水平,更需要他们具备良好的跨学科素养。
正是这种多学科交叉融合的特性,使得MCM/ICM成为了培养未来数学、理工科人才的重要平台之一。
美赛题目2024年中文题目

美赛题目2024年中文题目下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!【标题】2024年美赛(MCM/ICM)中文题目解析与展望【正文】美赛,全称为美国数学建模竞赛(Mathematical Contest in Modeling / Interdisciplinary Contest in Modeling),是全球影响力最大的数学建模竞赛之一。
美赛 历年统计类赛题

美赛历年统计类赛题
美赛是指美国大学生数学建模竞赛,是一个涉及数学、统计、
计算机等多个学科的综合性竞赛。
历年的统计类赛题涉及了各种各
样的问题,涵盖了经济、环境、医学、社会等多个领域。
以下是一
些历年美赛统计类赛题的主题和问题:
1. 一年中的能源消耗,要求分析某个地区一年中的能源消耗情况,包括电力、煤气、汽油等各种能源的使用情况,并预测未来的
能源需求。
2. 流感传播模型,要求建立数学模型来描述流感在人群中的传
播规律,包括传染率、潜伏期等参数的估计和预测。
3. 交通拥堵问题,要求分析城市中交通拥堵的原因和影响因素,提出改善交通状况的方案,并对方案的效果进行评估。
4. 医疗资源分配,要求设计合理的医疗资源分配方案,包括医
院的选址、医生的分配等,以最大化医疗资源的利用效率。
5. 森林火灾预测,要求建立森林火灾的预测模型,包括气象条
件、地形因素等对火灾发生的影响,以及对未来火灾的概率预测。
以上仅是一些例子,美赛的统计类赛题涉及的范围非常广泛,涵盖了社会生活的方方面面。
参赛者需要在有限的时间内,应用数学和统计知识,解决实际问题,并撰写完整的论文报告。
这些赛题旨在培养学生的综合分析和解决实际问题的能力,对参赛者的综合素质要求很高。
年美赛d题题目翻译

问题D:优化机场安全检查站乘客吞吐量继2001年9月11日美国发生恐怖袭击事件后,全世界的机场安全状况得到显着改善。
机场有安全检查站。
在那里,乘客及其行李被检查爆炸物和其他危险物品。
这些安全措施的目的是防止乘客劫持或摧毁飞机,并在旅行期间保持所有乘客的安全。
然而,航空公司有既得利益,通过最小化他们在安全检查站排队等候并等待他们的航班的时间,来保持乘客积极的飞行体验。
因此,在最大化安全性和最小化对乘客的不便之前存在对立。
在2016年,美国运输安全局(TSA)受到了对极长线路,特别是在芝加哥的奥黑尔国际机场的尖锐批评。
在此公众关注之后,TSA投资对其检查点设备和程序进行了若干修改,并增加了在高度拥堵的机场中的人员配置。
虽然这些修改在减少等待时间方面有一定的成功,但TSA在实施新措施和增加人员配置方面花费了多少成本尚不清楚。
除了在奥黑尔机场的问题,还有在其他机场,包括通常排队等待时间较短的机场,会出现不明原因和不可预测的排队拥挤情况的事件。
检查点排队状况的这种高度变化性对于乘客来说可能是极其不利的,因为他们面临着不必要地早到达或可能赶不上他们的预定航班的风险。
许多新闻文章,包括[1,2,3,4,5],描述了与机场安全检查站相关的一些问题。
您的内部控制管理(ICM)团队已经与TSA签订合同,审查机场安全检查站和人员配置,以确定潜在的干扰乘客吞吐量的瓶颈。
他们特别感兴趣的解决方案是,既增加检查点吞吐量,减少等待时间的变化,同时保持相同的安全和安全标准。
美国机场安全检查点的当前流程如图1所示。
区域A:乘客随机到达检查站,并等待队列,直到安全人员可以检查他们的身份证明和登机文件。
区域B:然后乘客移动到打开检查的队列;根据机场的预期活动水平,可能开放更多或更少的线路。
一旦乘客到达这个队列的前面,他们准备所有的物品用于X射线检查。
乘客必须去除鞋子,皮带,夹克,金属物体,电子产品和带液体容器,将它们放置在单独的X射线箱中;笔记本电脑和一些医疗设备也需要从其袋中取出并放置在单独的容器中。
美赛历年题目_pdf

马剑整理历年美国大学生数学建模赛题目录MCM85问题-A 动物群体的管理 (3)MCM85问题-B 战购物资储备的管理 (3)MCM86问题-A 水道测量数据 (4)MCM86问题-B 应急设施的位置 (4)MCM87问题-A 盐的存贮 (5)MCM87问题-B 停车场 (5)MCM88问题-A 确定毒品走私船的位置 (5)MCM88问题-B 两辆铁路平板车的装货问题 (6)MCM89问题-A 蠓的分类 (6)MCM89问题-B 飞机排队 (6)MCM90-A 药物在脑内的分布 (6)MCM90问题-B 扫雪问题 (7)MCM91问题-B 通讯网络的极小生成树 (7)MCM 91问题-A 估计水塔的水流量 (7)MCM92问题-A 空中交通控制雷达的功率问题 (7)MCM 92问题-B 应急电力修复系统的修复计划 (7)MCM93问题-A 加速餐厅剩菜堆肥的生成 (8)MCM93问题-B 倒煤台的操作方案 (8)MCM94问题-A 住宅的保温 (9)MCM 94问题-B 计算机网络的最短传输时间 (9)MCM-95问题-A 单一螺旋线 (10)MCM95题-B A1uacha Balaclava学院 (10)MCM96问题-A 噪音场中潜艇的探测 (11)MCM96问题-B 竞赛评判问题 (11)MCM97问题-A Velociraptor(疾走龙属)问题 (11)MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (12)MCM98问题-A 磁共振成像扫描仪 (12)MCM98问题-B 成绩给分的通胀 (13)MCM99问题-A 大碰撞 (13)MCM99问题-B “非法”聚会 (14)MCM2000问题-A空间交通管制 (14)MCM2000问题-B: 无线电信道分配 (14)MCM2001问题- A: 选择自行车车轮 (15)MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15)MCM2001问题-C我们的水系-不确定的前景 (16)MCM2002问题-A风和喷水池 (16)MCM2002问题-B航空公司超员订票 (16)MCM2002问题-C (16)MCM2003问题-A: 特技演员 (18)MCM2003问题-B: Gamma刀治疗方案 (18)MCM2003问题-C航空行李的扫描对策 (19)MCM2004问题-A:指纹是独一无二的吗? (19)MCM2004问题-B:更快的快通系统 (19)MCM2004问题-C安全与否? (19)MCM2005问题A.水灾计划 (19)MCM2005B.Tollbooths (19)MCM2005问题C:不可再生的资源 (20)MCM2006问题A: 用于灌溉的自动洒水器的安置和移动调度 (20)MCM2006问题B: 通过机场的轮椅 (20)MCM2006问题C : 抗击艾滋病的协调 (21)MCM2007问题B :飞机就座问题 (24)MCM2007问题C:器官移植:肾交换问题 (24)MCM2008问题A:给大陆洗个澡 (28)MCM2008问题B:建立数独拼图游戏 (28)MCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。
美赛历年题目汇总
美赛历年题目汇总
以下是美赛历年的一些题目汇总:
2018年的题目是“多跳HF无线电传播语言传播趋势”;
2017年的题目是“管理赞比西河高速路收费合并”;
2016年的题目是“浴缸的水温模型解决空间碎片问题”;
2015年的题目是“根除病毒寻找失踪的飞机”;
2014年的题目是“(交通流、路况)优化(体育教练)综合评价”;
2013年的题目是“平底锅受热,热力学、几何(大模型解答所有题目),可利用淡水资源的匮乏,(水资源)预测、最优化”;
2012年的题目是“一棵树的叶子沿着BigLongRiver野营,(流程)优化”;
需要注意的是,这里只列出了部分美赛历年的题目,而且每年的题目都可能有所不同。
同时,美赛赛题的难度较高,需要具备一定的数学建模和计算机编程能力。
因此,在参加美赛前,建议充分准备,提高自己的数学建模和计算机编程能力。
2020美赛E题参考翻译
2020ICM 周末1问题E :塑料溺水自20世纪50年代以来,塑料的制造因其多种用途而成倍增长,如食品包装、消费品、医疗器械和建筑。
虽然有很大的好处,但增加塑料生产的负面影响是令人关切的。
塑料产品不容易分解,很难处理,只有大约9%的塑料被回收[1],每年进入海洋的大约4-1200万吨塑料废物可以看到效果[1,2]。
塑料废物具有严重的环境后果,据预测,如果我们目前的趋势继续下去,到2050年,海洋中的塑料含量将超过鱼类[2]。
对海洋生物的影响已被研究[3],但对人类健康的影响尚未完全理解[4]单一用途和一次性塑料产品的兴起导致了致力于制造塑料废物的整个行业。
它还表明,产品有用的时间远远短于适当减少塑料浪费所需的时间。
因此,为了解决塑料废物问题,我们需要减缓塑料生产的速度,改进我们管理塑料废物的方法。
..您的团队已被国际塑料废物管理理事会(ICM )雇用,以解决这一不断升级的环境危机。
你必须制定一个计划,以显著减少,如果不消除,一次性使用和一次性塑料产品的浪费..∙开发一个模型,以估计单一用途或一次性塑料产品废物的最大水平,这些废物可以安全地减轻,而不会造成进一步的环境损害。
在许多因素中,您可能需要考虑这种废物的来源、当前废物问题的程度以及处理废物的资源的可用性。
∙讨论在多大程度上可以减少塑料废物,以达到环境安全水平。
这可能涉及考虑影响塑料废物水平的因素,包括但不限于单一用途或一次性塑料的来源和用途、塑料替代品的可用性、对公民生活的影响,或城市、区域、国家和大陆减少单一用途或一次性塑料的政策,以及此类政策的有效性。
这些因素可能因地区而异,因此考虑到特定区域的制约因素可能会使某些政策比其他政策更有效。
∙利用你的模型和讨论,为单一用途或一次性塑料产品的全球废物的最低可达到水平设定一个目标,并讨论实现这一水平的影响。
你可以考虑改变人类生活的方式,环境影响,或对数万亿美元塑料工业的影响。
∙虽然这是一个全球性问题,但其原因和影响在各国或各区域之间并不平等分布。
美赛历年题目2005—2013
MCM 2013 A题:最佳巧克力蛋糕烤盘当你使用一个矩形的烤盘烘烤食物时,热量会集中在烤盘的四个角落,于是角落处的食物就会被烤糊(烤盘边缘处也有类似情形,但程度轻一些)。
当使用一个圆形烤盘时,热量会均匀地分布在整个边缘上,就不会再有边缘上烤糊的现象发生。
然而,由于大多数烤箱内部是矩形的,如果使用圆形烤盘,就不能充分利用烤箱的内部空间了。
建立一个模型,来描述热量在不同形状的烤盘表面的分布。
这些形状包括矩形、圆形以及两者之间的过渡形状。
假设,1、矩形烤箱的宽长比为 W/L。
2、每个烤盘的面积为A。
3、先考虑烤箱内有两个搁架且间隔均匀的情形。
建立一个模型用以选择满足下列条件的最佳烤盘的形状:(1)、使得烤箱中可以容纳的烤盘数量(N)最大。
(2)、使得烤盘上的热量分布(H)最均匀。
3、综合(1)、(2)两个条件,并且为(1)、(2)分别设置权值p和(1-p),寻求最优。
然后描述结果随着 W/L 和 p 的值的变化是如何变化的。
除了撰写 MCM 论文之外,你还要为新的一期巧克力蛋糕美食杂志准备一个一至两页的广告,阐述你的设计和结果的亮点所在。
MCM 2013 B题:水,水,无处不在淡水资源是世界上许多地方持续发展的限制因素。
建立数学模型来确定一个有效的,可行的,低成本的2013年用水计划,来满足某国(从下方的列表中选择一个国家)未来(2025年)的用水需求,并确定最优的淡水分配计划。
特别的,你的数学模型必须包括储存、运输、淡化和节水等环节。
如果可能的话,用你的模型来讨论你的计划对经济,自然和环境的影响。
提供一个非技术性的意见书给政府领导概述你的方法,以及方法的可行性和成本,以及它为什么是“最好的用水计划的选择”。
国家:美国、中国、俄罗斯、埃及或者沙特阿拉伯。
ICM 2013 C题:地球健康的网络建模背景:全社会都在关注如何研究与应用模型来预测我们地球的生物和环境的健康状况。
许多科学研究表明地球的环境和生物系统所面对的压力正在增加,但是能够验证这一观点的全局性模型却很少。
85-09历年美赛(MCM)中文试题
85-09历年美赛(MCM)中文试题校苑资源网整理历年美国大学生数学建模赛题目录MCM85问题-A 动物群体的管理.............................................................................................- 3 - MCM85问题-B 战购物资储备的管理.....................................................................................- 3 - MCM86问题-A 水道测量数据.................................................................................................- 4 - MCM86问题-B 应急设施的位置.............................................................................................- 4 - MCM87问题-A 盐的存贮.........................................................................................................- 5 - MCM87问题-B 停车场.............................................................................................................- 5 - MCM88问题-A 确定毒品走私船的位置.................................................................................- 5 - MCM88问题-B 两辆铁路平板车的装货问题.........................................................................- 6 - MCM89问题-A 蠓的分类.........................................................................................................- 6 - MCM89问题-B 飞机排队.........................................................................................................- 6 - MCM90问题 A 药物在脑内的分布.........................................................................................- 6 - MCM90问题-B 扫雪问题.........................................................................................................- 7 - MCM91问题-B 通讯网络的极小生成树.................................................................................- 7 - MCM 91问题-A估计水塔的水流量........................................................................................- 7 - MCM92问题-A 空中交通控制雷达的功率问题.....................................................................- 7 - MCM 92问题-B 应急电力修复系统的修复计划....................................................................- 7 - MCM93问题-A 加速餐厅剩菜堆肥的生成.............................................................................- 8 - MCM93问题-B 倒煤台的操作方案.........................................................................................- 8 - MCM94问题-A 住宅的保温.....................................................................................................- 9 - MCM 94问题-B 计算机网络的最短传输时间........................................................................- 9 - MCM-95问题-A 单一螺旋线..................................................................................................- 10 - MCM95问题-B A1uacha Balaclava 学院................................................................................- 10 - MCM96问题-A 噪音场中潜艇的探测...................................................................................- 11 - MCM96问题-B 竞赛评判问题...............................................................................................- 11 - MCM97问题-A Velociraptor(疾走龙属)问题..........................................................................- 11 - MCM97问题-B 为取得富有成果的讨论怎样搭配与会成员................................................- 12 - MCM98问题-A 磁共振成像扫描仪.......................................................................................- 12 - MCM98问题-B 成绩给分的通胀...........................................................................................- 13 - MCM99问题-A 大碰撞...........................................................................................................- 13 - MCM99问题-B “非法”聚会...............................................................................................- 14 - MCM2000问题-A 空间交通管制............................................................................................- 14 - MCM2000问题-B: 无线电信道分配......................................................................................- 14 -MCM2001问题- A: 选择自行车车轮.....................................................................................- 15 - MCM2001问题-B 逃避飓风怒吼(一场恶风…)...............................................................- 15 - MCM2001问题-C我们的水系-不确定的前景.......................................................................- 16 - MCM2002问题-A风和喷水池................................................................................................- 16 - MCM2002问题-B航空公司超员订票....................................................................................- 16 - MCM2002问题-C 蜥蜴问题...................................................................................................- 16 - MCM2003问题-A: 特技演员..................................................................................................- 18 - MCM2003问题-B: Gamma刀治疗方案.................................................................................- 18 - MCM2003问题-C航空行李的扫描对策................................................................................- 19 - MCM2004问题-A:指纹是独一无二的吗?.........................................................................- 19 - MCM2004问题-B:更快的快通系统.....................................................................................- 19 - MCM2004问题-C安全与否?................................................................................................- 19 - MCM2005问题 A.水灾计划....................................................................................................- 19 - MCM2005问题 B 收费站问题...............................................................................................- 19 - MCM2005问题C:不可再生的资源.....................................................................................- 20 - MCM2006问题A: 用于灌溉的自动洒水器的安置和移动调度..........................................- 20 - MCM2006问题B: 通过机场的轮椅......................................................................................- 20 - MCM2006问题C : 抗击艾滋病的协调.................................................................................-21 - MCM2007 问题A:不公正的选区划分................................................................................- 23 - MCM2007 问题B:飞机就座问题........................................................................................- 24 - ICM2007 问题C:器官移植:肾交换问题...........................................................................- 24 - MCM2008问题A:给大陆洗个澡............................................................................................- 27 - MCM2008问题B:建立数独拼图游戏.................................................................................- 27 - ICM 2008问题C:寻找好的卫生保健系统...........................................................................- 27 - MCM2009 问题 A 设计一个交通环岛..................................................................................- 28 - MCM2009问题B 能源和手机...............................................................................................- 28 - ICM2009问题C 构建食物系统: 重新平衡被人类影响的生态系统...................................- 29 -校苑数学建模论坛整理MCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年:A题一个国际性组织声称他们研发出了一种能够阻止埃博拉,并治愈隐性病毒携带者的新药。
建立一个实际、敏捷、有效的模型,不仅考虑到疾病的传播、药物的需求量、可能的给药措施、给药地点、疫苗或药物的生产速度,而且考虑你们队伍认为重要的、作为模型一部分的其他因素,用于优化埃博拉的根除,或至少缓解目前(治疗)的紧张压力。
除了竞赛需要的建模方案以外,为世界医学协会撰写一封1-2页的非技术性的发言稿,以便其公告使用。
B题回顾马航MH370失事事件。
建立一个通用的数学模型,用以帮助失联飞机的搜救者们规划一个有效的搜索方案。
失联飞机从A地飞往B地,可能坠毁在了大片水域(如大西洋、太平洋、印度洋、南印度洋、北冰洋)中。
假设被淹没的飞机无法发出信号。
你们的模型需要考虑到,有很多种不同型号的可选的飞机,并且有很多种搜救飞机,这些搜救飞机通常使用不同的电子设备和传感器。
此外,为航空公司撰写一份1-2页的文件,以便在其公布未来搜救进展的新闻发布会上发表。
2014美赛A题翻译问题一:通勤列车的负载问题在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。
大多数火车很长(也许10个或更多的汽车长)。
乘客走到出口的距离也很长,有整个火车区域。
每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。
每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。
走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。
通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。
大多数通勤列车站台有两个相邻的轨道平台。
在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。
建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。
假设一列火车有n个汽车那么长,每个汽车的长度为d。
站台的长度是p,每个楼梯间的楼梯数量是q。
使用您的模型具体来优化(减少)前往主站台的时间,有如下要求:要求1. 一个满载乘客的火车,所有乘客都要出火车。
所有乘客都要出楼梯抵达出主站台的路上。
要求2. 两个满载列车的乘客都要出车厢(所有乘客出到一个公用站台), 所有乘客都要出楼梯抵达出主站台的路上。
要求3.如果你能重新设计楼梯沿着站台的位置,那么这些楼梯应放置在哪,以缩短一列或两列火车的乘客出站所用的时间?要求4.乘客到达出主站台的路上所用的时间跟构建楼梯的台阶数有怎样的关系?要求5. 如果楼梯可以容纳K个人,那么时间会如何变化?k是大于1的整数除了要遵循HiMCM规范,准备一个简短的非技术物品向运输主管解释为什么他们应该采取你的模型来提高出站效率。
2014美国中学数学建模竞赛B题翻译问题二下一场瘟疫?在2014年,世界看到了感染埃博拉病毒在西非蔓延。
纵观人类历史,流行病来了又走,有些感染带到来然后杀死成千上万的人并且持续数百年,另外一些流行病导致少量的人员伤亡的。
一些人认为,这些事件只是大自然控制物种的生长方式,而其他人则认为,这可能是一个阴谋,或者是故意行为造成伤害。
这个问题很可能会归咎到如何花费(或不花费)稀缺资源(医生,防护设施,资金,科研,精华素等),以应对危机。
A部分:一个常见的人道主义报道:在印度尼西亚的一个岛上的一个小村庄,那里的300名居民中几乎有一半都出现了类似的症状。
在过去的一周,15个“传染”着已经死亡。
这个村与附近的村庄和其他岛屿进行交易而出名。
您的建模团队工作的疾病控制的一个主要中心是在贵国的首都(或者,如果你喜欢,可以说是国际世界卫生组织)。
要求1:建立一个数学模型执行以下功能,包括如何/何时最佳分配这些稀缺资源...- 确定和分类的疾病传播的类型和严重程度- 或者,确定疫情是否受控(爆发)- 引发适当的措施(什么时候治疗,什么时候运送受害者,什么时候限制转移,什么时候让疾病听其自然,等等)去控制某种疾病。
注意:此时你可能要开始使用著名的“SIR”模型或该模型的部分,或者考虑别的修正后的SIR模型,多个模型,或者创建自己的模型。
要求2:根据所给出的信息、你的模型以及你的团队所做的假设,你的团队需要为你的国家疾病预防控制中心给出哪些初步建议?(3-5给出建议,理由)附加态势信息:多国研究小组花7天聚集在村里被感染后的信息返回给你的国家首都。
要求3:你可以要求问他们3个问题,以改进你的模型。
你需要问什么问题和原因?附加情境信息:多国研究小组得出结论一致认为,本病:-出现传播是通过与受感染者的体液接触-如果感染,老人和儿童更容易感染-附近的岛上开始出现类似感染的迹象-一个研究者返回到贵国首都出现感染要求4:如何根据以上的附加信息改版/修改模型?要求5:写下你的发现,为当地的非技术广播电台(或电视台)提供新闻稿。
2013年PROBLEM A: The Ultimate Brownie PanWhen baking in a rectangular pan heat is concentrated in the 4 corners and the product gets overcooked at the corners (and to a lesser extent at the edges). In a round pan the heat is distributed evenly over the entire outer edge and the product is not overcooked at the edges. However, since most ovens are rectangular in shape using round pans is not efficient with respect to using the space in an oven.Develop a model to show the distribution of heat across the outer edge of a panfor pans of different shapes - rectangular to circular and other shapes in between.Assume1. A width to length ratio of W/L for the oven which is rectangular in shape.2. Each pan must have an area of A.3. Initially two racks in the oven, evenly spaced.Develop a model that can be used to select the best type of pan (shape) under the following conditions:1. Maximize number of pans that can fit in the oven (N)2. Maximize even distribution of heat (H) for the pan3. Optimize a combination of conditions (1) and (2) where weights p and (1- p) are assigned to illustrate how the results vary with different values of W/L and p.In addition to your MCM formatted solution, prepare a one to two page advertising sheet for the new Brownie Gourmet Magazine highlighting your design and results.(译文:A:当在一个矩形的锅中烘烤时热量集中在锅的4个角落中,并在角落处的食物烤的过了(在某种程度上边缘也是这样)。
在一个圆形盘的热量被均匀地分布在整个外缘,在边缘处的食物烤的不会过头。
然而,因为大多数烤箱是方形的,使用原型的平底锅效率是不高的相对于烤箱中的空间。
建立一个模型来说明不同形状的锅(圆形方形或其他形状)的外边缘热量的不同分布。
假设:1.矩形烤箱的的宽度与长度之比是W / L。
2.每个盘子的面积都是A3.最初,两个机架在烤箱,间隔均匀。
建立一个模型,在下列情况下,可用于选择最佳的锅(形状):1.可以放到烤箱中的锅的最大数量是(N)2.烤箱里最大限度地均匀分布热量为(H),3.优化的组合的条件(1)和(2)式的权重p和(1 – p),用来说明如何随不同的值的W/L和P的变化而影响最终结果。
除了你的格式化的解决方案,准备一个一到两页的广告页为新布朗尼美食杂志突出自己的设计和结果。
)PROBLEM B: Water, Water, EverywhereFresh water is the limiting constraint for development in much of the world. Build a mathematical model for determining an effective, feasible, and cost-efficient water strategy for 2013 to meet the projected water needs of [pick one country from the list below] in2025, and identify the best water strategy. In particular, your mathematical model must address storage and movement; de-salinization; and conservation. If possible, use your model to discuss the economic, physical, and environmental implications of your strategy. Provide a non-technical position paper to governmental leadership outliningyour approach, its feasibility and costs, and why it is the “best water strategy choice.”Countries: United States, China, Russia, Egypt, or Saudi Arabia(问题B:水,水,到处都是淡水已经是约束世界上大部分国家发展的一个限制条件。