19-20 第3章 3.1 3.1.2 第1课时 函数的表示法
人教A版(2019)高中数学必修第一册3.1.2函数的表示法课件

S 350t
函数的三种表示方法:
函数的三种表示方法:
1、解析法:就是用数学表达式表示两个变量之间的对应关系
2、图像法:就是用图象表示两个变量之间的对应关系 3、列表法:就是列出表格来表示两个变量之间的对应关系
函数的三种表示方法:
1、解析法:就是用数学表达式表示两个变量之间的对应关系
函数的三种表示法
例1 某种笔记本的单价是5元,买 x(x∈{1,2,3,
4,5})个笔记本需要 y 元,请用函数的三种表示法表示 函数 y=f(x).
解:用图象法可将函 数 y=f(x)表示为 图3.1-2.
分段函数的解析式和图像
例2 画出函数 f(x)=|x| 的图像,并根据图像求函数 f(x)值域
x
0
0,
图像为
这样的函数叫分段函数, 在生活中,有很多可以用分段 函数描述的实际问题,比如出 租车计费,个人所得税等
分段函数的解析式和图像
例3 给定函数f ( x) = x + 1,g( x) = ( x + 1)2 ,
(1)在同一直角坐标系中画 出f ( x)和g( x)的图像 (2)∀x∈ R,用M ( x)表示f ( x), g( x)中的较大者, 记为:
函数的三种表示法
例1 某种笔记本的单价是5元,买 x(x∈{1,2,3,
4,5})个笔记本需要 y 元,请用函数的三种表示法表示 函数 y=f(x).
函数的三种表示法
例1 某种笔记本的单价是5元,买 x(x∈{1,2,3,
4,5})个笔记本需要 y 元,请用函数的三种表示法表示 函数 y=f(x).
函数的三种表示法
例1 某种笔记本的单价是5元,买 x(x∈{1,2,3,
第三章 3.1.2 第1课时 函数的表示法

3.1.2 函数的表示法 第1课时 函数的表示法学习目标 1.了解函数的三种表示法及各自的优缺点.2.掌握求函数解析式的常见方法.3.尝试作图并从图象上获取有用的信息.知识点 函数的表示法思考 任何一个函数都可以用解析法、列表法、图象法三种形式表示吗?答案 不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x )=⎩⎪⎨⎪⎧0,x ∈Q ,1,x ∈∁RQ .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段. 特别提醒 函数三种表示法的优缺点比较1.已知函数f (x )由下表给出,则f (3)=________.x 1≤x <2 2 2<x ≤4 f (x )123答案 3解析 ∵当2<x ≤4时,f (x )=3,∴f (3)=3.2.已知函数y =f (x )的图象如图所示,则其定义域是________.答案 [-2,3]解析 由图象可知f (x )的定义域为[-2,3].3.已知f (x )的图象如图,则f (x )的值域为________.答案 [-4,3]解析 由f (x )的图象知,f (x )的值域为[-4,3].4.若一次函数f (x )的图象经过点(0,1)和(1,2),则该函数的解析式为________. 答案 f (x )=x +1解析 由题意设f (x )=kx +b ,则⎩⎪⎨⎪⎧b =1,k +b =2,解得k =b =1,所以f (x )=x +1.一、函数的三种表示法例1 已知完成某项任务的时间t 与参加完成此项任务的人数x 之间适合关系式t =ax +bx .当x=2时,t =100;当x =14时,t =28,且参加此项任务的人数不能超过20人. (1)写出函数t 的解析式; (2)用列表法表示此函数; (3)画出函数t 的图象.解 (1)由题设条件知,当x =2时,t =100, 当x =14时,t =28,列出方程组⎩⎨⎧2a +b2=100,14a +b14=28,解得⎩⎪⎨⎪⎧a =1,b =196.所以t =x +196x .又因为x ≤20,x 为正整数,所以函数的定义域是{x |0<x ≤20,x ∈N }.(2)x =1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,共取20个值,列表如下:x 1 2 3 4 5 6 7 8 9 10 t 197 100 68.3 53 44.2 38.7 35 32.5 30.8 29.6 x 11 12 13 14 15 16 17 18 19 20 t 28.828.328.12828.128.2528.528.929.329.8注:表中的部分数据是近似值.(3)函数t 的图象是由20个点组成的一个点列, 如图所示.(学生)反思感悟 理解函数表示法的三个关注点(1)列表法、图象法、解析法均是函数的表示法,无论是哪种方式表示函数,都必须满足函数的概念.(2)列表法更直观形象,图象法从形的角度描述函数,解析法从数的角度描述函数.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.跟踪训练1 已知函数f (x )=-x -1,x ∈{1,2,3,4}, 试分别用图象法和列表法表示函数y =f (x ). 解 用图象法表示函数y =f (x ),如图所示.用列表法表示函数y =f (x ),如表所示.x 1 2 3 4 y-2-3-4-5二、函数的图象的画法 例2 作出下列函数的图象: (1)y =2x +1,x ∈[0,2]; (2)y =2x ,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].解 (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分. 如图所示,(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分.如图所示,(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.如图所示,(教师) 延伸探究根据作出的函数图象求其值域. 解 观察图象可知: (1)中函数的值域为[1,5]. (2)中函数的值域为(0,1]. (3)中函数的值域为[-1,8]. (学生)反思感悟 作函数y =f (x )图象的方法(1)若y =f (x )是已学过的函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y =f (x )不是所学过的函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y =f (x )的图象.跟踪训练2 作出下列函数的图象: (1)y =1-x (x ∈Z ); (2)y =x 2-4x +3,x ∈[1,3].解 (1)因为x ∈Z ,所以图象为直线y =1-x 上的孤立点,其图象如图①所示. (2)y =x 2-4x +3=(x -2)2-1,当x =1,3时,y =0; 当x =2时,y =-1,其图象如图②所示.三、求函数的解析式例3 (1)已知f (x +1)=x +2x ,求f (x );(2)已知f (x )为二次函数,且f (x +1)+f (x -1)=2x 2-4x ,求f (x ); (3)已知函数f (x )对于任意的x 都有2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ). 解 (1)方法一 (换元法):令t =x +1, 则x =(t -1)2,t ≥1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )的解析式为f (x )=x 2-1(x ≥1). 方法二 (配凑法):f (x +1)=x +2x =x +2x +1-1=(x +1)2-1. 因为x +1≥1,所以f (x )的解析式为f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f (x +1)+f (x -1)=a (x +1)2+b (x +1)+c +a (x -1)2+b (x -1)+c =2ax 2+2bx +2a +2c =2x 2-4x , ∴⎩⎪⎨⎪⎧ 2a =2,2b =-4,2a +2c =0,∴⎩⎪⎨⎪⎧a =1,b =-2,c =-1,∴f (x )=x 2-2x -1.(3)f (x )+2f ⎝⎛⎭⎫1x =x ,令x =1x , 得f ⎝⎛⎭⎫1x +2f (x )=1x, 于是得关于f (x )与f ⎝⎛⎭⎫1x 的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x.解得f (x )=23x -x3(x ≠0).(学生)反思感悟 求函数解析式的四种常用方法(1)换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可.(2)配凑法:对f (g (x ))的解析式进行配凑变形,使它能用g (x )表示出来,再用x 代替两边所有的“g (x )”即可.(3)待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性. 跟踪训练3 (1)已知f (x +1)=x 2-3x +2,求f (x ); (2)已知函数f (x )是一次函数,若f (f (x ))=4x +8,求f (x ). 解 (1)方法一 (配凑法):∵f (x +1)=x 2-3x +2 =(x +1)2-5x +1=(x +1)2-5(x +1)+6, ∴f (x )=x 2-5x +6.方法二 (换元法):令t =x +1,则x =t -1, ∴f (t )=(t -1)2-3(t -1)+2=t 2-5t +6, 即f (x )=x 2-5x +6. (2)设f (x )=ax +b (a ≠0),则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又f (f (x ))=4x +8,∴a 2x +ab +b =4x +8,即⎩⎪⎨⎪⎧a 2=4,ab +b =8,解得⎩⎪⎨⎪⎧a =2,b =83或⎩⎪⎨⎪⎧a =-2,b =-8. ∴f (x )=2x +83或f (x )=-2x -8.函数图象的应用典例已知函数f(x)=x2-2x(x>1或x<-1),(1)求函数f(x)的值域;(2)若函数f(x)的图象与y=m有两个交点,求实数m的取值范围.解f(x)=x2-2x=(x-1)2-1(x>1或x<-1)是抛物线y=x2-2x去掉-1≤x≤1之间的部分后剩余曲线.如图所示.(1)由图可知,函数f(x)的值域为(-1,+∞).(2)f(x)的图象与直线y=m有2个不同交点,由图易知m>3.[素养提升](1)函数图象很直观,在解题过程中常用来帮助理解问题的数学本质,依托函数图象可以更直观地寻求问题的解决思路和要点.(2)借助几何直观认识事物的位置关系、形态变化与运动规律;利用图形分析数学问题,是直观想象的核心内容,也是数学的核心素养.1.函数y=f(x)的图象如图,则f(x)的定义域是()A.R B.(-∞,1)∪(1,+∞)C.(-∞,0)∪(0,+∞) D.(-1,0)答案 C解析由题图知x≠0,即x∈(-∞,0)∪(0,+∞).2.已知函数f(2x-1)=4x+6,则f(x)的解析式是()A.f(x)=2x+8 B.f(x)=2x+1C.f(x)=2x+2 D.f(x)=4x+2答案 A解析因为f(2x-1)=4x+6=2(2x-1)+8,所以f(x)=2x+8.3.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为()x 12 3f(x)230A.3 B.2 C.1 D.0答案 B解析由函数g(x)的图象知,g(2)=1,则f(g(2))=f(1)=2.4.已知函数f(x)由下表给出,则f(f(3))=________.x 123 4f(x)324 1答案 1解析由题设给出的表知f(3)=4,则f(f(3))=f(4)=1.5.已知二次函数f(x)的图象经过点(-3,2),顶点是(-2,3),则函数f(x)的解析式为________________.答案f(x)=-x2-4x-1解析设f(x)=a(x+2)2+3(a≠0),由y=f(x)过点(-3,2),得a=-1,∴f(x)=-(x+2)2+3=-x2-4x-1.1.知识清单: (1)函数的表示法. (2)函数的图象. (3)求函数解析式.2.方法归纳:待定系数法、换元法、数形结合法. 3.常见误区:求函数解析式时易忽视定义域.1.购买某种饮料x 听,所需钱数为y 元.若每听2元,用解析法将y 表示成x (x ∈{1,2,3,4})的函数为( ) A .y =2x B .y =2x (x ∈R )C .y =2x (x ∈{1,2,3,…})D .y =2x (x ∈{1,2,3,4}) 答案 D解析 题中已给出自变量的取值范围,x ∈{1,2,3,4}. 2.已知f (1-2x )=1x 2,则f ⎝⎛⎭⎫12的值为( ) A .4 B.14 C .16 D.116答案 C解析 根据题意知1-2x =12,解得x =14,故1x2=16.3.已知f (x -1)=x 2+4x -5,则f (x )的解析式是( ) A .f (x )=x 2+6x B .f (x )=x 2+8x +7 C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10答案 A解析 方法一 设t =x -1,则x =t +1. ∵f (x -1)=x 2+4x -5,∴f (t )=(t +1)2+4(t +1)-5=t 2+6t ,∴f (x )的解析式是f (x )=x 2+6x .方法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x ,∴f (x )的解析式是f (x )=x 2+6x .4.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值为( )A .-1B .5C .1D .8答案 C解析 由3x +2=2得x =0,所以a =2×0+1=1.5.李明在放学回家的路上,开始时和同学边走边讨论问题,走得比较慢,后来他们索性停下来将问题彻底解决,再后来他加快速度回到了家.下列图象中与这一过程吻合得最好的是( )答案 D解析 由题意可知,李明离家的距离随时间的变化先是变小,且变化得比较慢,后来保持不变,再后来继续变小,且变化得比较快,直至为0,只有D 选项符合题意.6.已知函数f (x )=x -m x,且此函数图象过点(5,4),则实数m 的值为________. 答案 5解析 将点(5,4)代入f (x )=x -m x,得m =5. 7.已知f (x )是一次函数,且满足3f (x +1)=6x +4,则f (x )=________.答案 2x -23解析 设f (x )=ax +b (a ≠0),则f (x +1)=a (x +1)+b =ax +a +b ,依题设,3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧ 3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23. 8.某航空公司规定,乘客所携带行李的重量x (kg)与其运费y (元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为________ kg.答案 19解析 设一次函数解析式为y =ax +b (a ≠0),代入点(30,330)与点(40,630)得⎩⎪⎨⎪⎧ 330=30a +b ,630=40a +b , 解得⎩⎪⎨⎪⎧a =30,b =-570.即y =30x -570, 若要免费,则y ≤0,所以x ≤19.9.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题:(1)比较f (0),f (1),f (3)的大小;(2)求函数f (x )的值域.解 f (x )=-(x -1)2+4的图象如图所示.(1)f (0)=3,f (1)=4,f (3)=0,所以f (1)>f (0)>f (3).(2)由图象可知二次函数f (x )的最大值为f (1)=4,则函数f (x )的值域为(-∞,4].10.(1)已知函数f (x +1)=3x +2,求f (x );(2)已知f ⎝⎛⎭⎫x -1x =x 2+1x2,求f (x ); (3)已知函数f (x )对于任意的x 都有f (x )-2f (-x )=1+2x ,求f (x ).解 (1)方法一 (换元法):令x +1=t ,∴x =t -1,∴f (t )=3(t -1)+2=3t -1,∴f (x )=3x -1.方法二 (配凑法):f (x +1)=3x +2=3(x +1)-1,∴f (x )=3x -1.(2)∵f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2, 令t =x -1x,∴f (t )=t 2+2,∴f (x )=x 2+2. (3)由题意,在f (x )-2f (-x )=1+2x 中,以-x 代替x 可得f (-x )-2f (x )=1-2x ,联立可得⎩⎪⎨⎪⎧f (x )-2f (-x )=1+2x ,f (-x )-2f (x )=1-2x ,消去f (-x )可得f (x )=23x -1.11.函数y =x 1+x 的大致图象是( )答案 A解析 方法一 y =x 1+x的定义域为{x |x ≠-1},排除C ,D ,当x =0时,y =0,排除B. 方法二 y =x 1+x =1-1x +1,由函数的平移性质可知A 正确.12.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( )A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)答案 D解析 由题意得y +2x =20,所以y =20-2x ,又2x >y ,即2x >20-2x ,即x >5,由y >0即20-2x >0得x <10,所以5<x <10.13.设f (x )=2x +a ,g (x )=14(x 2+3),且g (f (x ))=x 2-x +1,则a 的值为________. 答案 -1解析 因为g (x )=14(x 2+3), 所以g (f (x ))=14[(2x +a )2+3] =14(4x 2+4ax +a 2+3)=x 2-x +1, 求得a =-1.14.已知函数F (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且F ⎝⎛⎭⎫13=16,F (1)=8,则F (x )的解析式为________________.答案 F (x )=3x +5x(x ≠0) 解析 设f (x )=kx (k ≠0),g (x )=m x (m ≠0,且x ≠0),则F (x )=kx +m x. 由F ⎝⎛⎭⎫13=16,F (1)=8,得⎩⎪⎨⎪⎧13k +3m =16,k +m =8, 解得⎩⎪⎨⎪⎧ k =3,m =5,所以F (x )=3x +5x (x ≠0).15.如图所示的四个容器高度都相同.将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的有()A.1个B.2个C.3个D.4个答案 A解析对于第一幅图,水面的高度h的增加应是均匀的,因此不正确,其他均正确.16.已知函数f(x)=x2+(a+1)x+b满足f(3)=3,且f(x)≥x恒成立,求f(x)的解析式.解由f(3)=3,得b=-3a-9.由f(x)≥x恒成立可知,x2+ax+b≥0恒成立,所以a2-4b≤0,所以a2+12a+36=(a+6)2≤0,所以a=-6,b=9.所以f(x)=x2-5x+9.。
3.1.2函数的表示法-高一数学课件(人教A版2019必修第一册)

= 0.8 × 189600 − 117360 = 34320.
将t的值代入(1)中,得y = 0.03 × 34320 = 1029.6.
所以,小王应缴纳得综合所得税税额为1029.6元.
练习巩固
2x + 1,x < 1,
练习1:已知函数f(x) =
则f(9) =( )
f(x − 3),x ≥ 1,
(1)在同一直角坐标系中画出f(x),g(x)的图象;
解:在同一直角坐标系中画出函数f(x),g(x)的图象.
练习巩固
例6:给定函数f(x) = x + 1,g(x) = (x + 1)2 ,x ∈ R,
(2)∀x ∈ R,用M(x)表示f(x),g(x)中的最大者,记为M(x) = max{f(x),g(x)}.
解:由2 (−) + () = ,①
可得2 + − = −.②
联立①②,得:f x = −x.
小结
解析法
常用表示法
列表法
图像法
函数的表示法
定义
分段函数
图像
函数的实际应用
练习巩固
例8:依法纳税是每个公民应尽的义务,个人取得的所得应依照 《中华人民共和国
个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税
额根据应纳税所得额、税率和速算扣除数确定,计算公式为:个税税额=应纳税所
得额×税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收
复习导入
新知探究
问题1:我们初中已经接触过了函数常见的三种表示方法,你还记得是三种
方法吗?
解析法:用数学表达式表示两个变量之间的对应关系。
1【课件(人教版)】第1课时 函数的表示法

法二:(换元法) 令 x+1=t(t≥1),则 x=(t-1)2(t≥1), 所以 f(t)=(t-1)2+2 (t-1)2=t2-1(t≥1). 所以 f(x)=x2-1(x≥1). (3)f(x)+2f1x=x,令 x=1x, 得 f1x+2f(x)=1x.
于是得到关于 f(x)与 f1x的方程组
(3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数, 而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的 关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变 量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法).
1.(2020·辽源检测)设函数 f11- +xx=x,则 f(x)的表达式为
解析:选 A.法一:令 2x+1=t,则 x=t-2 1.
所以 f(t)=6×t-2 1+5=3t+2,
所以 f(x)=3x+2.
法二:因为 f(2x+1)=3(2x+1)+2,
所以 f(x)=3x+2.
()
3.已知函数 f(x)=x-mx ,且此函数的图象过点(5,4),则实数 m 的值为 ________. 解析:因为函数 f(x)=x-mx 的图象过点(5,4), 所以 4=5-m5 ,解得 m=5. 答案:5
5.已知 f(x)是二次函数,且满足 f(0)=1,f(x+1)-f(x)=2x,求 f(x). 解:因为 f(x)是二次函数,设 f(x)=ax2+bx+c(a≠0), 由 f(0)=1,得 c=1. 由 f(x+1)-f(x)=2x, 得 a(x+1)2+b(x+1)+1-ax2-bx-1=2x.
4.下表表示函数 y=f(x),则 f(x)>x 的整数解的集合是________.
高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法第一册数学教案

3.1.2 函数的表示法最新课程标准:(1)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用.(2)通过具体实例,了解简单的分段函数,并能简单应用.知识点一 函数的表示法状元随笔 1.解析法是表示函数的一种重要方法,这种表示方法从“数”的方面简明、全面地概括了变量之间的数量关系.2.由列表法和图象法的概念可知:函数也可以说就是一张表或一张图,根据这张表或这张图,由自变量x 的值可查找到和它对应的唯一的函数值y.知识点二 分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.状元随笔 1.分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.2.分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x≤0,x ,0<x≤3,其“段”是不等长的.[教材解难]教材P 68思考(1)三种表示方法的优缺点比较适用于所有函数,如D (x )=⎩⎪⎨⎪⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段). [基础自测]1.购买某种饮料x 听,所需钱数为y 元,若每听2元,用解析法将y 表示成x (x ∈{1,2,3,4})的函数为( )A .y =2xB .y =2x (x ∈R )C .y =2x (x ∈{1,2,3,…}) D.y =2x (x ∈{1,2,3,4}) 解析:题中已给出自变量的取值范围,x ∈{1,2,3,4},故选D.答案:D2.已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0 B.13C .1D .2解析:f (2)=2-1=1. 答案:C3.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4解析:方法一 令2x +1=t ,则x =t -12.∴f (t )=6×t -12+5=3t +2.∴f (x )=3x +2.方法二 ∵f (2x +1)=3(2x +1)+2. ∴f (x )=3x +2. 答案:A4.已知函数f (x ),g (x )分别由下表给出.则f (g (1))的值为 当g (f (x ))=2时,x =________.解析:由于函数关系是用表格形式给出的,知g (1)=3, ∴f (g (1))=f (3)=1.由于g (2)=2,∴f (x )=2,∴x =1. 答案:1 1题型一 函数的表示方法[经典例题]例 1 (1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )(2)已知函数f(x)按下表给出,满足f(f(x))>f(3)的x的值为________.【解析】(1)所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.【答案】(1)D由题意找到出发时间与离校距离的关系及变化规律【解析】(2)由表格可知f(3)=1,故f(f(x))>f(3)即为f(f(x))>1.∴f(x)=1或f(x)=2,∴x=3或1.【答案】(2)3或1观察表格,先求出f(1)、f(2)、f(3),进而求出f(f(x))的值,再与f(3)比较.方法归纳理解函数的表示法应关注三点(1)列表法、图象法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示方法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.跟踪训练1 某商场新进了10台彩电,每台售价3 000元,试求售出台数x (x 为正整数)与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.解析:(1)列表法:(3)解析法:y =3 000x ,x ∈{1,2,3,…,10}.状元随笔 本题中函数的定义域是不连续的,作图时应注意函数图象是一些点,而不是直线.另外,函数的解析式应注明定义域.题型二 求函数的解析式 [经典例题] 例2 根据下列条件,求函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫1x =x1-x 2,求f (x );(2)f (x )是二次函数,且f (2)=-3,f (-2)=-7,f (0)=-3,求f (x ).【解析】 (1)设t =1x ,则x =1t (t ≠0),代入f ⎝ ⎛⎭⎪⎫1x =x1-x 2,得f (t )=1t1-⎝ ⎛⎭⎪⎫1t 2=tt 2-1,故f (x )=xx 2-1(x ≠0且x ≠±1).(2)设f (x )=ax 2+bx +c (a ≠0).因为f (2)=-3,f (-2)=-7,f (0)=-3.所以⎩⎪⎨⎪⎧4a +2b +c =-3,4a -2b +c =-7,c =-3.解得⎩⎪⎨⎪⎧a =-12,b =1,c =-3.所以f (x )=-12x 2+x -3.(1)换元法:设1x=t ,注意新元的范围.(2)待定系数法:设二次函数的一般式f(x)=ax 2+bx +c. 跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________;(2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________.解析:(1)因为f (x 2+2)=x 4+4x 2 =(x 2+2)2-4,令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2),所以f (x )=x 2-4(x ≥2).(2)因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:(1)f (x )=x 2-4(x ≥2)(2)2x -13或-2x +1(1)换元法 设x 2+2=t. (2)待定系数法 设f(x)=ax +b.题型三 求分段函数的函数值 [经典例题] 例3 (1)设f (x )=⎩⎪⎨⎪⎧|x -1|-2|x |≤1,11+x 2|x |>1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( )A.12B.413 C .-95 D.2541(2)已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.【解析】(1)∵f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+94=413,故选B. 判断自变量的取值范围,代入相应的解析式求解. (2)因为8<10,所以代入f (n )=f (f (n +5))中, 即f (8)=f (f (13)).因为13>10,所以代入f (n )=n -3中,得f (13)=10, 故f (8)=f (10)=10-3=7. 【答案】 (1)B (2)7 方法归纳(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得.(2)像本题中含有多层“f ”的问题,要按照“由里到外”的顺序,层层处理.(3)已知函数值求相应的自变量值时,应在各段中分别求解.跟踪训练3 已知f (x )=⎩⎪⎨⎪⎧x +1 x >0,π x =0,0 x <0,求f (-1),f (f (-1)),f (f (f (-1))).解析:∵-1<0,∴f (-1)=0,∴f (f (-1))=f (0)=π, ∴f (f (f (-1)))=f (π)=π+1. 根据不同的取值代入不同的解析式. 题型四 函数图象[教材P 68例6]例4 给定函数f (x )=x +1,g (x )=(x +1)2,x ∈R , (1)在同一直角坐标系中画出函数f (x ),g (x )的图象; (2)∀x ∈R ,用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )}.例如,当x =2时,M (2)=max{f (2),g (2)}=max{3,9}=9. 请分别用图象法和解析法表示函数M (x ).【解析】 (1)在同一直角坐标系中画出函数f (x ),g (x )的图象(图1).(2)由图1中函数取值的情况,结合函数M (x )的定义,可得函数M (x )的图象(图2).由(x +1)2=x +1,得x (x +1)=0.解得x =-1,或x =0. 结合图2,得出函数M (x )的解析式为M (x )=⎩⎪⎨⎪⎧x +12,x ≤-1,x +1,-1<x ≤0,x +12,x >0.状元随笔 1.先在同一坐标系中画出f(x)、g(x); 2.结合图象,图象在上方的为较大者; 3.写出M(x). 教材反思(1)画一次函数图象时,只需取两点,两点定直线.(2)画二次函数y =ax 2+bx +c 的图象时,先用配方法化成y =a (x -h )2+k的形式⎝ ⎛⎭⎪⎫其中h =-b 2a ,k =4ac -b 24a ,确定抛物线的开口方向(a >0开口向上,a <0开口向下)、对称轴(x =h )和顶点坐标(h ,k ),在对称轴两侧分别取点,按列表、描点、连线的步骤画出抛物线.(3)求两个函数较大者,观察图象,图象在上方的为较大者. 跟踪训练4 作出下列函数的图象: (1)y =-x +1,x ∈Z ; (2)y =2x 2-4x -3,0≤x <3; (3)y =|1-x |.解析:(1)函数y =-x +1,x ∈Z 的图象是直线y =-x +1上所有横坐标为整数的点,如图(a)所示.(2)由于0≤x <3,故函数的图象是抛物线y =2x 2-4x -3介于0≤x <3之间的部分,如图(b).(3)因为y =|1-x |=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,故其图象是由两条射线组成的折线,如图(c).(2)先求对称轴及顶点,再注意x 的取值(部分图象).(3)关键是根据x 的取值去绝对值.解题思想方法 数形结合利用图象求分段函数的最值例 求函数y =|x +1|+|x -1|的最小值.【解析】 y =|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x ≤-1,2,-1<x ≤1,2x ,x >1.作出函数图象如图所示:由图象可知,x ∈[-1,1]时,y min =2.【反思与感悟】 (1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、选择题1.如图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是( )A .这天15时的温度最高B .这天3时的温度最低C .这天的最高温度与最低温度相差13 ℃D .这天21时的温度是30 ℃解析:这天的最高温度与最低温度相差为36-22=14 ℃,故C 错.答案:C2.已知f (x -1)=1x +1,则f (x )的解析式为( )A .f (x )=11+xB .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x解析:令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t ,∴f (x )=1x +2.答案:C3.函数y =x 2|x |的图象的大致形状是( )解析:因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图象为选项A.答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a等于( )A .-3B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,符合题意.答案:A 二、填空题5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈1,2]的定义域为______,值域为______.解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1].答案:[0,2] [0,1]6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________. 解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=________.解析:∵f (x )-12f (-x )=2x ,∴⎩⎪⎨⎪⎧f 2-12f-2=4,f-2-12f2=-4,得⎩⎪⎨⎪⎧2f 2-f -2=8,f -2-12f 2=-4,相加得32f (2)=4,f (2)=83.答案:83三、解答题8.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.解析:(1)列表法x /张 1 2 3 4 5 y /元20406080100(2)(3)解析法:y =20x ,x ∈{1,2,3,4,5}. 9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x );(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析:(1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. [尖子生题库]10.画出下列函数的图象:(1)f (x )=[x ]([x ]表示不大于x 的最大整数); (2)f (x )=|x +2|.解析:(1)f (x )=[x ]=⎩⎪⎪⎨⎪⎪⎧…-2,-2≤x <-1,-1,-1≤x <0,0,0≤x <1,1,1≤x <2,2,2≤x <3,…函数图象如图1所示.图1 图2(2)f (x )=|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.画出y =x +2的图象,取[-2,+∞)上的一段;画出y=-x-2的图象,取(-∞,-2)上的一段,如图2所示.。
新人教版高中数学必修第一册3.1.2 函数的表示法

y
25
笔记本数m
1
2
3
4
5
20
钱数y
5
10
15
20
25
15
【图像法】函数图像可以表示如图:
10
5
0
1
2
3
4
5
m
函数的表示法
在用三种方法表示函数时要注意:
【1】解析法必须标明函数的定义域
【2】列表法必须罗列出所有的自变量与函数值之间的对应关系
【3】图像法必须搞清楚函数图像是“点”还是“线”
=
−
=
(2)含绝对值符号的函数:
− , <
(3)自定义函数:
− , ≤
= − = −, < <
+ , ≥
(3)取整函数:
= ( 表示不大于 的最大整数)
如图,把直截面半径为25的圆柱形木头锯成直截面为矩形的木料,如果
并不是所有函数都能用解析法表示,如某地一年中每天的最高气温是日期
的函数,该函数就不能用解析法表示;也不是所有函数都可以用列表法表示,
如函数f(x)=x.
Hale Waihona Puke 分段函数【题】画出函数y=|x|的图像
【解】由绝对值的概念,有y=
画出图像如图:
-x,x<0,
x,x≥0.
像这样的函数,叫做分段函数.分段函数一般在实际问题中出
(1)5km以内(含5km),票价2元;
(2)5km以上,每增加5km,票价增加1元(不足5km按5km算)
如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式,
新教材人教版高中数学必修1 第三章 3.1.2 函数的表示法(一)

集合B { x, y | x R, y R}
对应关系f : 平面直角坐标系中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆} 对应关系f : 每一个三角形都对应它的内切圆; (4)集合A {x | x是新华中学的班级}, 集合B {x | x是新华中学的学生}, 对应关系f : 每一个班级都对应班里的学生.
f’:平面直角坐标系内的点跟它的坐标对应
f’ : E F
➢映射概念
非空集合、唯一确定的对应关系、任意x、唯一确定的y
1、下列对应中,能构成映射的有(
)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(1)
A
B
a1
b1 b2
a2
b3 b4
(4)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(2)
A
B
a1
b1
a2
b2
(5)
(3) f ( x) 2x2 3x 5
[0, )
(, 2) U(2, ) [ 31 , )
8
一、复习回顾
实例1:炮弹距地面的高度h(单位:m)随时间t(单位:s)
变化的规律是 : h=130t-5t2
解析法
实例2:南极上空臭氧空洞的面积从1979~2001年的变
化情况:
图象法
实例3:
列表法
二、基础知识讲解
A
B
a1
b1
a2
3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

03
拓展提升
Expansion And Promotion
函数的表示
解析式的求法 - 代入法
题型一. 由f(x)的解析式求f[g(x)]的解析式.
例1.已知f(x)=x2 +x -1,则f(x+1)=________.
【解析】因为f (x) x2 x 1, 所以f (x 1) (x 1)2 (x 1) 1
函数的表示
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张 城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同学的成绩基本上 都大幅领先于班级平均水平.
函数的表示
【练习1】已知f (x) x 1,则f ( f (2)) _______. x
【解析】因为f (2)
【解析】令t x 1 1, 则 x t 1, x (t 1)2 所以f (t) (t 1)2 2(t 1) t 2 1 所以f (t) t 2 1,t 1 所以f (x) x2 1,x 1
换元法:已知f(g(x))=h(x),求f(x)时,往往可设g(x)=t,从中解出x,代入h(x)
代入法:已知f (x)求f(g(x)),只需把f (x)中的x用g(x)代入即可; 配凑法:已知f (g(x))=h(x),求f (x)的问题,往往把右边的h(x)整理或配凑成只
含g(x)的式子, 再用x将g(x)替换即可得f(x); 换元法:已知f(g(x))=h(x),求f (x)时,往往可设g(x)=t,从中解出x,代入h(x) 进行
【解析法】y=5x,x∈{1,2,3,4,5} 【图像法】函数图像可以表示如图:
y
【列表法】函数可以表示如下表:
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③解析法:y=3 000x,x∈{1,2,3,…,10}.
栏目导航
列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的 对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时 要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有 代表性,应能反映定义域的特征;③图象法中要注意是否连线.
栏目导航
(3)列表
x
-2
-1
0
1
2
y
0
-1
0
3
8
画图象,图象是抛物线 y=x2+2x 在-2≤x<2 之间的部分.
由图可得函数的值域为[-1,8).
栏目导航
描点法作函数图象的三个关注点
1画函数图象时首先关注函数的定义域,即在定义域内作图.
2图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图
因为 x+1≥1, 所以 f(x)=x2-4x+3(x≥1).
栏目导航
(2)设 f(x)=ax+b(a≠0), 则 f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b.
又 f(f(x))=4x+8, 所以 a2x+ab+b=4x+8,
象.
3要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.
要分清这些关键点是实心点还是空心圈.
提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的
点等.
栏目导航
2.画出下列函数的图象: (1)y=x+1(x≤0); (2)y=x2-2x(x>1,或 x<-1). [解] (1)y=x+1(x≤0)表示一条射线,图象如图①. (2)y=x2-2x=(x-1)2-1(x>1,或 x<-1)是抛物线 y=x2-2x 去掉- 1≤x≤1 之间的部分后剩余曲线.如图②.
栏目导航
1.已知函数 f(x)由下表给出,则 f(3)等于( )
x
1≤x<2
2
2<x≤4
f(x)
1
2
3
A.1
B.2
C.3
D.不存在
C [∵当 2< x≤4 时,f(x)=3,∴f(3)=3.]
栏目导航
2.二次函数的图象的顶点为(0, B [把点(0,-1)代入四个选项 -1),对称轴为 y 轴,则二次函数的 可知,只有 B 正确.] 解析式可以为( )
栏目导航
[解] (1)列表
x
0
1
-2
3
y
0
-1
2
-3
函数图象只是四个点(0,0),(1,-1),(-2,2),(3,-3),其值域为{0,
-1,2,-3}.
栏目导航
(2)列表…
y
1
2 3
1 2
2 5
…
当 x∈[2,+∞)时,图象是反比例函数 y=2x的一部分,观察图象可知
其值域为(0,1].
A.y=-14x2+1 B.y=14x2-1 C.y=4x2-16 D.y=-4x2+16
栏目导航
3.已知函数 y=f(x)的图象如图
[-2,3] [由图象可知 f(x)的定义
所示,则其定义域是______.
域为[-2,3].]
栏目导航
合作探究 提素养
栏目导航
函数的三种表示方法
【例 1】 某商场新进了 10 台彩电,每台售价 3 000 元,试求售出台
第三章 函数的概念与性质
3.1 函数的概念及其表示 3.1.2 函数的表示法 第1课时 函数的表示法
栏目导航
学习目标
核心素养
1.掌握函数的三种表示方法:解析 1.通过函数表示的图象法培养直观
法、图象法、列表法.(重点)
想象素养.
2.会根据不同的需要选择恰当的方 2.通过函数解析式的求法培养运算
法表示函数.(难点)
数 x 与收款数 y 之间的函数关系,分别用列表法、图象法、解析法表示出
来. [解] ①列表法如下:
x(台)
1
2
y(元)
3 000
6 000
x(台)
6
7
y(元)
18 000 21 000
3 9 000
8 24 000
4 12 000
9 27 000
5 15 000
10 30 000
栏目导航
②图象法:如图所示.
慢减少,最后到 0,故选 D.
(2)由题意可知,f(1)=4,f(4)=2,∴f(f(1))=f(4)=2,故选 B.]
栏目导航
图象的画法及应用 【例 2】 作出下列函数的图象并求出其值域. (1)y=-x,x∈{0,1,-2,3};(2)y=2x,x∈[2,+∞);(3)y=x2+2x, x∈[-2,2).
素养.
栏目导航
自主预习 探新知
栏目导航
函数的表示法
数学表达式 图象
表格
栏目导航
思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示 吗?
提示:不一定. 并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用
0,x∈Q, 于所有函数,如 D(x)=1,x∈∁RQ. 列表法虽在理论上适用于所有函数, 但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片 段.
栏目导航
(1)x2-4x+3(x≥1) (2)2x+83或-2x-8 (3)23x-1 [(1)法一(换元 法):令 t= x+1,则 t≥1,x=(t-1)2,代入原式有 f(t)=(t-1)2-2(t-1) =t2-4t+3,f(x)=x2-4x+3(x≥1).
法二(配凑法):f( x+1)=x+2 x+1-4 x-4+3=( x+1)2-4( x+ 1)+3,
栏目导航
1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下 列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走 法的是( )
A
B
C
D
栏目导航
(2)由下表给出函数 y=f(x),则 f(f(1))等于( )
x
1
2
3
4
5
y
4
A.1
5
3
B.2
2
1
C.4
D.5
(1)D (2)B [(1)结合题意可知,该生离校的距离先快速减少,又较
栏目导航
函数解析式的求法 [探究问题] 已知 f(x)的解析式,我们可以用代入法求 f(g(x)),反之,若已知 f(g(x)), 如何求 f(x). 提示:若已知 f(g(x))的解析式,我们可以用换元法或配凑法求 f(x).
栏目导航
【例 3】 (1)已知 f( x+1)=x-2 x,则 f(x)=________; (2)已知函数 f(x)是一次函数,若 f(f(x))=4x+8,则 f(x)=________; (3)已知函数 f(x)对于任意的 x 都有 f(x)-2f(-x)=1+2x,则 f(x)= ________. [思路点拨] (1)用换元法或配凑法求解;(2)用待定系数法求解;(3) 用方程组法求解.