【VIP专享】矩阵变换及应用开题报告

合集下载

《矩阵与变换》专题教学设计研究的开题报告

《矩阵与变换》专题教学设计研究的开题报告

《矩阵与变换》专题教学设计研究的开题报告标题:《矩阵与变换》专题教学设计研究一、研究背景和意义矩阵与变换是高中数学中的重要内容之一,对于培养学生的科学思维和创新能力具有重要意义。

然而,当前高中数学教学中矩阵与变换的内容仍然存在一些问题,如:教学内容的灵活性和针对性不足,教学方法单一,难以激发学生的学习兴趣和创造力。

因此,本研究旨在设计一套针对《矩阵与变换》专题的课程,以提高学生的学习兴趣和学习质量。

二、研究问题和目标问题:高中数学教学中矩阵与变换的如何解决教学内容的灵活性和针对性不足,教学方法单一等问题?目标:设计一套针对《矩阵与变换》专题的课程,加强学生的实际运用和创造性思维,提高学生的学习兴趣和学习质量。

三、研究方法本研究采用实证研究和教学实验相结合的研究方法。

首先,针对现有研究和教学情况,收集和整理相关数据,并进行初步分析。

然后,选取一所高中的学生进行实验研究,进行针对性的课程设计,并对学生的学习情况进行探究和分析。

最后,根据实验结果,对设计的课程进行优化和改进,提高课程的实际操作性和实用性。

四、研究内容和进度安排1.收集和整理相关文献资料(1周)。

2.对现有的研究和教学情况进行分析和总结(2周)。

3.针对一所高中的学生进行实验研究,设计并实施针对《矩阵与变换》专题的课程,并对学生的学习情况进行探究和分析(4周)。

4.根据实验结果,对课程进行优化和改进(1周)。

5.编写研究成果报告并撰写论文(2周)。

五、研究成果的预期效益通过本研究,可以探索出一套针对《矩阵与变换》专题的教学设计方案,并通过实验研究加以验证和优化。

这将有助于提高学生的学习兴趣和学习质量,同时也能推动高中数学课程的改革和创新,提高教学水平和教学质量。

矩阵初等变换及应用研究

矩阵初等变换及应用研究

矩阵初等变换及应用研究矩阵初等变换是线性代数中的一个基本概念,它是指对矩阵进行一系列的基本操作,包括交换两行(列),某行(列)乘k(k≠0),某行(列)乘k再加到另一行(列)上。

矩阵初等变换在线性代数中有广泛的应用,可以用来求解线性方程组、计算矩阵的秩和逆矩阵、求解特征值与特征向量等。

首先,矩阵初等变换可以用来求解线性方程组。

对于一个线性方程组,可以将其系数矩阵与增广矩阵进行同样的初等变换,从而化简方程组。

这样做的目的是为了找到一个等价的简化方程组,可以更方便地求解解集。

通过初等变换,可以将线性方程组化为行最简形式(也即梯形形),进而利用高斯-约当消元法或者矩阵的初等行变换求解线性方程组,得到唯一解、无解或无穷解。

其次,矩阵初等变换可以用来计算矩阵的秩和逆矩阵。

通过一系列的初等行(列)变换,可以将一个矩阵化为行最简形式(也即行阶梯形矩阵),从中可以直接读出矩阵的秩。

对于方阵,如果秩等于矩阵的阶数,则该矩阵可逆,可以利用初等变换求解逆矩阵。

逆矩阵的求解是矩阵初等变换的重要应用之一,通过应用矩阵初等变换,可以将一个方阵转化为单位矩阵,从而求出逆矩阵。

另外,矩阵初等变换还可以用来求解特征值与特征向量。

对于一个n阶方阵A,特征值一般通过求解方程det(A-λI)=0来求得,其中I是单位矩阵,λ是特征值。

通过初等行变换,可以将A-λI化为行最简形式,从而求解特征值。

特征值求解完毕后,可以利用矩阵初等变换求解对应的特征向量。

总结起来,矩阵初等变换是线性代数中的重要工具,广泛应用于求解线性方程组、计算矩阵的秩和逆矩阵、求解特征值与特征向量等方面。

通过一系列的基本操作,可以将矩阵化简为行最简形式,从而更方便地进行进一步的计算和分析。

矩阵初等变换的应用使得矩阵的求解和计算更加简便高效,提高了线性代数在实际问题中的应用能力。

矩阵应用的开题报告

矩阵应用的开题报告

矩阵应用的开题报告矩阵应用的开题报告引言矩阵是数学中的一种重要工具,广泛应用于各个领域,如物理、工程、计算机科学等。

本次开题报告将探讨矩阵应用的相关问题,并介绍矩阵在实际问题中的应用。

一、矩阵的基本概念和性质1.1 矩阵的定义和表示方法矩阵是一个按照行和列排列的数表,通常用大写字母表示。

例如,一个m行n 列的矩阵A可以表示为A=[aij],其中aij表示矩阵A的第i行第j列的元素。

1.2 矩阵的运算矩阵的运算包括加法、减法和乘法。

矩阵的加法和减法遵循相同维度的矩阵进行逐元素的运算。

矩阵的乘法是指两个矩阵相乘得到一个新的矩阵,其乘法规则需要满足矩阵维度的要求。

1.3 矩阵的转置和逆矩阵矩阵的转置是指将矩阵的行和列互换得到的新矩阵。

逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A乘以B等于单位矩阵。

二、矩阵在线性代数中的应用2.1 线性方程组的求解线性方程组是指一组线性方程的集合,可以用矩阵的形式表示。

通过矩阵的运算,可以将线性方程组转化为矩阵方程,从而求解未知数的值。

2.2 特征值和特征向量特征值和特征向量是矩阵在线性代数中的重要概念。

特征值表示矩阵在某个方向上的缩放比例,而特征向量则表示该方向上的向量。

2.3 矩阵的奇异值分解矩阵的奇异值分解是将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另外两个矩阵是对角矩阵。

奇异值分解在数据分析和图像处理中有广泛的应用。

三、矩阵在计算机科学中的应用3.1 图像处理图像处理是指对图像进行数字化处理的过程,其中矩阵在图像的表示和处理中起到了重要的作用。

通过将图像像素表示为矩阵,可以进行各种图像处理操作,如模糊、锐化、旋转等。

3.2 数据压缩数据压缩是指通过减少数据的冗余性来减小数据的存储空间。

矩阵在数据压缩中的应用主要体现在矩阵的奇异值分解和主成分分析等方法上。

3.3 神经网络神经网络是一种模拟人脑神经元网络的计算模型,其中矩阵在神经网络的权重矩阵和输入矩阵表示中起到了关键作用。

矩阵的变换和应用

矩阵的变换和应用

矩阵的变换和应用矩阵是线性代数中重要的概念之一,它具有广泛的应用范围。

在数学、工程、科学等领域,矩阵用于描述和处理各种数据和问题。

本文将重点介绍矩阵的变换和应用,包括线性变换、旋转变换、缩放变换和平移变换等。

一、线性变换矩阵的线性变换是矩阵在向量空间中的应用之一。

线性变换是指将一个向量或一个向量组通过矩阵的相乘操作进行转换的过程。

在二维空间中,线性变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}a &b \\c & d\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,矩阵的第一行表示了原始向量在x轴上的线性变换,第二行表示了原始向量在y轴上的线性变换。

通过对矩阵进行相乘运算,可以得到经过线性变换后的新向量坐标。

二、旋转变换旋转变换是矩阵在几何学中的重要应用之一。

通过矩阵的乘法运算,可以将一个向量绕着原点进行旋转。

在二维空间中,旋转变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}\cos\theta & -\sin\theta \\\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,θ表示旋转的角度。

通过对原始向量和旋转矩阵进行相乘运算,可以得到经过旋转变换后的新向量坐标。

三、缩放变换缩放变换是矩阵在图形学和几何学中的常见应用之一。

通过矩阵的乘法运算,可以将一个向量在x轴和y轴上进行不同比例的缩放。

在二维空间中,缩放变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=s_x & 0 \\0 & s_y\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,s_x表示x轴的缩放比例,s_y表示y轴的缩放比例。

矩阵的变换与应用

矩阵的变换与应用

矩阵的变换与应用矩阵是数学中一种重要的工具,具有广泛的应用。

它可以用来表示线性变换、解决线性方程组、描述图形的旋转、缩放和平移等操作。

在计算机图形学、物理学、经济学以及工程学等领域,矩阵的变换与应用发挥着重要的作用。

一、矩阵的基本定义与性质矩阵是由数所组成的矩形阵列,通常用方括号表示。

一个矩阵包含若干行和若干列,行和列的交点处的元素是矩阵的元素。

矩阵的大小由它的行数和列数确定。

例如,一个3行4列的矩阵可以表示为:[ a11 a12 a13 a14 ][ a21 a22 a23 a24 ][ a31 a32 a33 a34 ]矩阵的性质包括可加性、可乘性、转置等。

矩阵的加法满足交换律和结合律,即(A + B) + C = A + (B + C)。

矩阵的乘法满足结合律,但不满足交换律,即AB ≠ BA。

矩阵的转置是将矩阵的行和列对调得到的新矩阵。

二、矩阵的变换1. 线性变换矩阵可以表示线性变换,例如,平移、旋转和缩放。

对于二维坐标系上的点P(x, y),通过矩阵变换可以得到新的坐标P'(x', y')。

比如平移变换可以表示为:[ 1 0 dx ][ 0 1 dy ]其中dx和dy表示平移的距离,在矩阵乘法的运算中,将原点移动到(dx, dy)处。

2. 矩阵乘法的几何意义矩阵乘法的几何意义是将一个向量通过矩阵的变换得到另一个向量。

考虑一个二维向量V(x, y),通过矩阵乘法可以实现旋转、平移和缩放等操作。

若矩阵A表示旋转变换,矩阵B表示平移变换,矩阵C表示缩放变换,则最终的变换为V' = ABCV。

三、矩阵在不同领域的应用1. 计算机图形学在计算机图形学中,矩阵的变换与应用用于实现平移、旋转、缩放和投影等操作。

通过矩阵变换,可以实现图像的变形和移动,并将三维图像投影到二维屏幕上。

2. 物理学在物理学研究中,矩阵的变换与应用广泛应用于描述物体的运动、变形和相互作用等。

矩阵的变换可以描述刚体的运动,将物体的位移、速度和加速度通过矩阵运算进行计算。

分块矩阵的初等变换及其应用开题报告 [开题报告]

分块矩阵的初等变换及其应用开题报告 [开题报告]

毕业论文开题报告信息与计算科学分块矩阵的初等变换及其应用一、选题的背景、意义1.选题的背景在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。

换个方式来说,就是以较小的矩阵组合成一个矩阵。

分块矩阵的分割原则是以水平线和垂直线进行划分。

分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。

通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。

例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。

2.选题的意义矩阵的分块是处理较高阶矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵。

在运算中,我们有时把这些子块当作元素一样来处理,从而简化了表示,便于计算。

分块矩阵初等变换是线性代数中重要而基本的运算,它在研究矩阵行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程中有着广泛的应用。

因此,如何直接对分块矩阵实行初等变换显得非常重要,本文的目的就是讨论分块矩阵的初等变换及其应用[1]。

二、研究的基本内容与拟解决的主要问题2.1 分块矩阵及其初等变换2.1.1 分块矩阵的定义:将一个分块矩阵A用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A 的子块。

以子块为元素的矩阵A称为分块矩阵。

我们将单位矩阵E分块:⎪⎪⎪⎭⎫⎝⎛=s r r E E E 000001O ,其中E r 是r i 阶单位矩阵(1<i<s) 称E 为分块单位矩阵[2]。

2.1.2 分块矩阵与广义初等变换[3]分块矩阵可以解释为矩阵中的矩阵,而对这个矩阵进行初等变换, 相应的初等矩阵也要变为可计算的分块矩阵,所进行的变换陈维广义初等变换.其目的在于简化计算和证明.定义 1 矩阵 称为分块矩阵,如果元素A ij 为 阶矩阵,其中m 1+m 2+m 3+…+m r =M 注释:定义规定分块矩阵为与同行的矩阵有相同的行数,位于同列的元素有相同的列数.它们的行数之和构成分块矩阵的行数, 列数之和构成分块矩阵的列数. 分块矩阵的运算满足矩阵的运算定义,由于它的特殊性,故此给出各自的定义.•设 A,B 为两个分块矩阵,则定义它们的加法为 A+B=(A ij + B ij )条件:A,B 为同阶矩阵而且A ij , B ij 也为同阶矩阵.•设 A=(A ij )rxt , B=(B ij )txs 为两个分块矩阵,则定义它们的乘法为A X B=(C ij )其中∑==tj kj ikij B AC 1的列数t 等于B 的行数而且A ij x B ij 也存在.同样地,广义初等变换与广义初等矩阵可简单叙述如下:定义 2 广义初等变换是对分块矩阵进行以下的变换的统称.• 交换矩阵的两行(列); • 将某行(列)左(右)乘可逆矩阵;•将某行(列)左(右)乘矩阵加到另一行(列)上;定义 3 设E nXn 为分块的单位矩阵,对其进行一次广义初等变换所得到的矩阵称为广义初等矩阵[4].例子 1 广义初等矩阵具体形式⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛0000mn n mE E E E , ⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛n n mE P E E 0000, ⎪⎪⎭⎫⎝⎛→⎪⎪⎭⎫ ⎝⎛En Q E E E mn m000 广义初等矩阵(变换)的作用如同一般的初等矩阵(变换),遵守"左行右列"原则. 例子 2 设 ⎪⎪⎭⎫ ⎝⎛=D C B A M那么 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛B A D C D C B A EE m n 00, ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D C PB PA D C B A En P 00 ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D QB C QA B A D C B A En Q E m 02.1.3 分块矩阵的初等行(列)变换的定义[5]与普通矩阵的初等行变换类似,分块矩阵也有三种类型的初等行变换:1.把一个块行的左P 倍(P 是矩阵)加到另一个块行上;2.换两个块行的位置;3.用一个可逆矩阵左乘 某一块行。

矩阵的开题报告

矩阵的开题报告

矩阵的开题报告矩阵的开题报告一、引言矩阵是线性代数中一项重要的概念,广泛应用于各个领域,包括物理学、计算机科学、经济学等等。

本次开题报告旨在探讨矩阵的基本概念、性质以及其在现实生活中的应用。

二、矩阵的基本概念1. 定义矩阵是由m行n列的数按照一定的顺序排列形成的一个数表。

其中,m表示矩阵的行数,n表示矩阵的列数。

矩阵中的每一个数称为元素,用小写字母表示。

2. 矩阵的类型矩阵可以按照元素的性质进行分类。

常见的矩阵类型包括零矩阵、对角矩阵、上三角矩阵、下三角矩阵等。

3. 矩阵的运算矩阵之间可以进行加法、减法、数乘等运算。

加法和减法的运算规则与数的加法和减法类似,而数乘则是将矩阵中的每个元素乘以一个数。

三、矩阵的性质1. 矩阵的转置矩阵的转置是将矩阵的行与列对调得到的新矩阵。

转置后的矩阵记作A^T,其中A表示原矩阵。

转置矩阵具有如下性质:(A^T)^T = A,(A + B)^T = A^T +B^T,(kA)^T = kA^T。

2. 矩阵的乘法矩阵的乘法是矩阵运算中的重要操作。

两个矩阵A和B的乘积记作AB,其中A 的列数必须等于B的行数。

矩阵乘法满足结合律,但不满足交换律,即AB≠BA。

3. 矩阵的逆对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。

矩阵B称为矩阵A的逆矩阵,记作A^(-1)。

逆矩阵具有如下性质:(A^(-1))^(-1) = A,(kA)^(-1) = (1/k)A^(-1)。

四、矩阵在现实生活中的应用1. 物理学中的矩阵矩阵在物理学中有着广泛的应用。

例如,量子力学中的波函数可以用矩阵表示,从而描述粒子的运动状态。

矩阵的特征值和特征向量也在量子力学中起着重要作用。

2. 计算机科学中的矩阵矩阵在计算机科学中有着诸多应用。

图像处理中常常使用矩阵运算,如图像的旋转、缩放等操作。

矩阵还可以用于表示图的邻接矩阵,从而进行图的遍历和路径搜索。

3. 经济学中的矩阵矩阵在经济学中的应用主要体现在输入产出模型中。

矩阵分解的研究[开题报告]

矩阵分解的研究[开题报告]

毕业论文开题报告数学与应用数学矩阵分解的研究一、选题的背景、意义数学作为一种创造性活动不仅拥有真理,而且拥有至高无上的美.矩阵是数学中的重要组成部分,因此对矩阵的研究具有重大的意义。

在近代数学、工程技术、经济理论管理科学中,大量涉及到矩阵理论的知识。

因此,矩阵理论自然就是学习和研究上述学科必不可少的基础之一。

矩阵理论发展到今天,已经形成了一整套的理论和方法,内容非常丰富。

矩阵分解对矩阵理论及近代计算数学的发展起了关键的作用。

寻求矩阵在各种意义下的分解形式,是对与矩阵有关的数值计算和理论都有着极为重要的意义。

因为这些分解式的特殊形式,一是能明显的反映出原矩阵的某些特征;二是分解的方法与过程提供了某些有效的数值计算方法和理论分析根据。

这些分解在数值代数和最优化问题的解决中都有着十分重要的角色以及在其他领域方面也起着必不可少的作用。

二、研究的基本内容与拟解决的主要问题本文简单的介绍了矩阵的定义,通过矩阵的定义,由m n ⨯个数(1,2,,,1,2,,)ij a K i m j n ∈==K K 排成的m 行、n 列的长方形表111212122212n n m m mn a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭K K M M O M K (1) 称为数域K 上的一个m n ⨯矩阵。

其中的ij a 称为这个矩阵的元。

两个矩阵相等就是它们对应位置的元全相等[1]。

矩阵通常用一个大写拉丁字母表示。

如(1)的矩阵可以被记为A .如果矩阵的行数m 与列数n 相等,则称它为n 阶方阵。

数域K 上所有m n ⨯矩阵的集合记为(),m n M K ,所有n 阶方阵的集合记为()n M K ,元全为0的矩阵称为零矩阵,记为0.矩阵A 的位于第i 行、第j 列的元简称为A 的(),i j 元,记为(),A i j 。

如果矩阵A 的(),i j 元是(1,2,,,1,2,,)ij a i m j n ==K K ,则可以写成()ij A a =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鞍山师范学院
数学系13届学生毕业设计(论文)开题报告
课题名称:浅谈矩阵的变换及其应用
学生姓名:李露露
专业:数学与应用数学
班级:10级1班
学号:30
指导教师:裴银淑
2013年12月26日
一、选题意义
1、理论意义:
矩阵是数学中的一个重要内容,是线性代数核心。

矩阵的变换是矩阵中一种十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到非常重要的作用。

很多复杂、繁琐的问题经过变换都可以化为简单、易于解决的问题。

因此,矩阵变换是研究代数问题的一个重要工具。

2、现实意义:
矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着不可代替的作用。

二、论文综述
1、国内外有关研究的综述:
矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内外有许多有关于矩阵的研究。

英国数学家西尔维斯特首先使用了“矩阵”一词,他与矩阵论的创立者凯莱一起发展了行列式理论。

1858年,凯莱发表了关于矩阵的第一篇论文《矩阵论的研究报告》。

自此以后,国内外有了许多关于矩阵的研究。

在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容,在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在第四章中也提到了Householder变换和Givens旋转。

美国著名的约翰斯.霍普金斯大学的RogerA.Horn和威廉姆和玛丽学院的CharlesR.Johnson 联合编著的《矩阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。

国内外关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出了巨大贡献。

2 、本人对以上综述的评价:
矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础,近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,
也极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的
数学家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并
应用到更多的领域中去。

三、论文提纲
前言
(一)、矩阵初等变换及应用
1、矩阵初等变换的基本概念
2、初等变换在方程组中的应用
3、初等变换在向量组中的应用
(二)、Householder变换及应用
1、Householder变换与Householder矩阵
2、Householder变换的保范性
3、Householder变换算法
4、Householder变换在参数估计中的应用
(三)、Givens变换及应用
1、反射与旋转
2、Givens旋转及快速Givens旋转
3、Kogbetliantz算法
4、Givens变换在图像旋转中的应用
四、预期的结果:
本论文是在前人研究的基础上就矩阵变换及其应用进行简要讨论,将矩阵
变换分为初等矩阵变换、Householder变换、Givens旋转,并将矩阵变换在矩阵、方程组和向量组中的应用进行归纳,希望通过本论文的研究能巩固对矩阵变换
知识的掌握,同时熟练运用矩阵变换解决矩阵、方程组和向量组中的繁琐问题,还能将矩阵变换应用于解决实际的问题。

五、参考文献
1.《矩阵理论及应用》陈公宁著科学出版社
2.《矩阵分析与应用》张贤达著清华大学出版社
3.《矩阵分析》史荣昌编著北京理工大学出版社
4.《矩阵论》戴华编著科学出版社
5《高等代数》(第三版)王萼芳石生明修订高等教育出版社
6.《矩阵分析》RogerA.Horn CharlesR.Johnson 编著机械工业出版社
六、论文写作进度安排
2013年11月17日~12月24日搜集材料,做好论文前期准备工作,确定论文题
目2013年12月26日~12月30日搜集、归纳、分析材料,撰写开题报告
2014年12年1月3日交毕业设计开题报告
假期及下学期第1~2周系统分析与设计,撰写毕业论文
2014年2月~4月初毕业设计院毕业论文初检
2014年4月下旬修改完善论文初稿,完成论文二稿及论文英文摘要
学院抽查英文摘要
2014年5月15日前完成毕业论文撰写工作
2014年5月中旬论文外审
2014年5月25日~6月5日毕业答辩
2014年6月初公开答辩
2014年6月中旬上报学院毕业论文相关材料。

相关文档
最新文档