GPS卫星定位基本原理
gps卫星定位基本原理

gps卫星定位基本原理
GPS卫星定位基本原理
GPS(全球定位系统)是一种基于卫星定位的技术,可以精确地确定地球上任何一个点的位置。
GPS系统由一组卫星、地面控制站和接收器组成。
GPS卫星定位基本原理是通过卫星发射的信号,接收器接收到信号后计算出自己的位置。
GPS卫星定位基本原理包括三个主要的部分:卫星、接收器和信号。
卫星:GPS系统由24颗卫星组成,这些卫星在地球轨道上运行,每颗卫星都有自己的轨道和时钟。
卫星发射的信号包含了卫星的位置和时间信息。
接收器:接收器是用来接收卫星发射的信号的设备。
接收器可以接收到多颗卫星发射的信号,并计算出自己的位置。
接收器需要至少接收到三颗卫星的信号才能计算出自己的位置。
信号:GPS卫星发射的信号是一种无线电波,这种无线电波可以穿过云层和建筑物,到达地面上的接收器。
信号包含了卫星的位置和时间信息,接收器通过计算信号的传播时间和卫星的位置信息来确定自己的位置。
GPS卫星定位基本原理的实现过程如下:
1. 接收器接收到卫星发射的信号。
2. 接收器计算信号的传播时间。
3. 接收器通过卫星发射的信号中包含的卫星位置信息计算出卫星和接收器之间的距离。
4. 接收器接收到多颗卫星发射的信号,并计算出自己的位置。
5. 接收器通过计算多颗卫星发射的信号,可以确定自己的位置和精度。
GPS卫星定位基本原理是通过卫星发射的信号,接收器接收到信号后计算出自己的位置。
GPS系统可以在全球范围内提供高精度的定位服务,广泛应用于交通、军事、航空、航海、地质勘探等领域。
第五章 GPS定位基本原理

第五章 GPS定位基本原理
8
2)、相对定位
• 确定同步跟踪相同的GPS信号的若干台接收机之间的相对 位臵的方法。可以消除许多相同或相近的误差(如卫星钟、 卫星星历、卫星信号传播误差等),定位精度较高。但其 缺点是外业组织实施较为困难,数据处理更为烦琐。
• 在大地测量、工程测量、地壳形变监测等精密定位领域内 得到广泛的应用。
j为卫星数,j=1,2,3,…
第五章 GPS定位基本原理
27
三、用测距码来测定伪距的特点
• 利用测距码测距的必要条件
– 必须了解测距码的结构
(1)易于将微弱的卫星信号提取出来。
卫星信号的强度一般只有噪声强度的万分之一或更低。 只有依据测距码的独特结构,才能将它从噪声的汪洋大海中 提取出来;
第五章 GPS定位基本原理
接收机钟差
t tk t tk (G) t (G) tk t
j j
j
信号真正传播时 间
第五章 GPS定位基本原理 22
如果不考虑大气折射的影响,则有:
' ct c[tk t ]
j
c tk (G ) t (G ) c(tk t )
j j
ρ = τ*C= △t*C 上式求得的距离ρ并不等于卫星至地面测站的真正距 离,称之为伪距。
第五章 GPS定位基本原理 19
二、伪距测量的观测方程
• 码相关法测量伪距时,有一个基本假设,即卫星钟和接 收机钟是完全同步的。
• 但实际上这两台钟之间总是有差异的。因而在R(t) =max 的情况下求得的时延τ就不严格等于卫星信号的传播时间 Δt,它还包含了两台钟不同步的影响在内。
第五章 GPS定位基本原理 17
GPS_百度百科

GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。
它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。
GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。
首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。
这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。
其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。
接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。
通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。
最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。
GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。
接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。
二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。
下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。
2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。
3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。
4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。
5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。
GPS定位原理和简单公式

GPS定位原理和简单公式GPS是全球定位系统的缩写,是一种通过卫星系统来测量和确定地球上的物体位置的技术。
它利用一组卫星围绕地球轨道运行,通过接收来自卫星的信号来确定接收器(GPS设备)的位置、速度和时间等信息。
GPS定位原理基于三角测量原理和时间测量原理。
1.三角测量原理:GPS定位主要是通过测量接收器与卫星之间的距离来确定接收器的位置。
GPS接收器接收到至少4颗卫星的信号,通过测量信号的传播时间得知信号的传播距离,进而利用三角测量原理计算出接收器的位置。
2.时间测量原理:GPS系统中的每颗卫星都具有一个高精度的原子钟,接收器通过接收卫星信号中的时间信息,利用接收时间和发送时间之间的差值,计算出信号传播的时间,从而进一步计算出接收器与卫星之间的距离。
简单的GPS定位公式:1.距离计算公式:GPS接收器与卫星之间的距离可以通过测量信号传播时间得到。
假设接收器与卫星之间的距离为r,光速为c,传播时间为t,则有r=c×t。
2.三角测量公式:GPS定位是通过测量与至少4颗卫星的距离,来计算接收器的位置。
设接收器的位置为(x,y,z),卫星的位置为(x_i,y_i,z_i),与卫星的距离为r_i,根据三角测量原理,可得到以下方程:(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=r_1^2(x-x_2)^2+(y-y_2)^2+(z-z_2)^2=r_2^2...(x-x_n)^2+(y-y_n)^2+(z-z_n)^2=r_n^2这是一个非线性方程组,可以通过迭代方法求解,求得接收器的位置。
3.定位算法:GPS定位一般使用最小二乘法来进行计算。
最小二乘法是一种数学优化方法,用于最小化误差的平方和。
在GPS定位中,通过最小化测量距离与计算距离之间的差值的平方和,来确定接收器的位置。
总结:GPS定位原理基于三角测量和时间测量原理,通过测量接收器与卫星之间的距离,利用三角测量公式和最小二乘法来计算接收器的位置。
GPS导航定位原理以及定位解算算法

GPS导航定位原理以及定位解算算法全球定位系统(GPS)是一种基于卫星导航的定位技术。
其基本原理是通过接收来自卫星系统的信号,并利用这些信号的时间差来计算接收器与卫星之间的距离,进而确定接收器的位置。
GPS定位原理:1.卫星信号发射:GPS系统由一组运行在地球轨道上的卫星组成。
这些卫星通过周期性地广播信号来与地面上的GPS接收器进行通信。
2.接收器接收信号:GPS接收器接收来自卫星的信号,一般至少需要接收到4颗卫星的信号才能进行定位。
3.信号延迟计算:GPS接收器通过测量信号从卫星发射到接收器接收的时间来计算信号的传播延迟,然后将延迟转换为距离。
4.距离计算:GPS接收器通过比较接收的信号与预先知道的卫星发射信号之间的时间差,进而计算出接收器与卫星之间的距离。
5.定位解算:通过同时计算接收器与多颗卫星之间的距离,可以确定接收器所在的位置。
这一过程通常使用三角测量或者多路径等算法来完成。
GPS定位解算算法:1.平面三角测量:这是一种常用的定位解算算法。
通过测量接收器与至少三颗卫星之间的距离,可以得到三个方程,从而确定接收器的位置。
2.弧长法:这一算法通过测量接收器与至少四颗卫星之间的距离,将每个卫星看作是一个弧线,然后通过计算不同卫星间弧线的交点来确定接收器的位置。
3.最小二乘法:这种算法将测量误差最小化,通过最小二乘法来计算接收器与卫星之间的距离和接收器的位置。
4.系统解算:该算法利用多个时间点上的观测数据,通过组合计算来减小误差,精确确定接收器的位置。
GPS定位解算算法根据具体的应用场景和精度要求有所不同,不同的算法有着各自的优缺点。
在实际应用中,通常结合多种算法进行定位,以提高精度。
同时,还可以通过使用差分GPS(DGPS)来消除大气延迟和接收器误差,进一步提高定位精度。
总结:GPS导航定位原理基于卫星信号的接收和测量,通过计算信号传播的时间差来确定接收器与卫星之间的距离,并通过不同的算法进行定位解算。
gps定位基本原理

gps定位基本原理
GPS定位基本原理是利用卫星进行定位的技术。
GPS系统由一组卫星、地面控制站和用户设备组成。
卫星向地面控制站发送信号,控制站对这些信号进行处理和分析,并将处理后的信息发送给用户设备。
用户设备中的GPS接收器接收到来自卫星的信号,并测量信号的传播时间。
由于信号以光速传播,可以根据传播时间计算出信号的传播距离。
通过接收来自多颗卫星的信号,并计算出这些信号的传播距离,GPS接收器可以确定自身的位置。
为了准确计算位置,GPS接收器需要同时接收来自至少四颗卫星的信号。
每颗卫星都会向接收器发送一个具有时间戳的信号,并通过该时间戳与接收器中的时钟进行同步。
接收器使用来自多颗卫星的信号和时间戳来确定自身的位置。
GPS定位的精度取决于接收器接收到的卫星数量以及这些卫星的几何分布。
当接收器处于开阔地区,能够同时接收到来自多个方向的卫星信号时,定位精度会更高。
但当接收器处于有遮挡物的地区,如高楼大厦或树木茂密的地区,定位精度可能会下降。
总的来说,GPS定位基本原理是通过接收卫星信号并测量信号的传播时间来确定自身位置的。
这种定位技术在许多领域中得到广泛应用,例如导航、车辆追踪和地图绘制等。
gps卫星定位系统工作原理

gps卫星定位系统工作原理
GPS卫星定位系统工作原理如下:
1. GPS卫星发射信号:GPS卫星通过地面控制站向空中发射
无线电信号,信号包含时间信息和卫星的位置信息。
2. 接收信号:GPS接收器收到GPS卫星发射的信号,通常会
接收到来自多颗卫星的信号。
3. 三角定位原理:GPS接收器通过接收多颗卫星的信号,利
用三角定位原理计算自身的位置。
接收器会测量信号的传播时间,因为光在真空中传播的速度是已知的,所以通过测量时间可以计算出信号的传播距离。
4. 定位计算:GPS接收器通过接收到的多颗卫星信号,将自
身的位置坐标与卫星的位置信息进行计算和比对,从而确定自身的准确位置。
5. 误差修正:GPS系统中存在许多误差因素,例如大气影响、钟差等。
GPS接收器会校正这些误差,以提高定位的准确性。
6. 定位结果输出:GPS接收器将计算出的准确位置信息输出
给用户,用户可以通过显示屏等方式查看自身的位置坐标、速度等相关信息。
总的来说,GPS卫星定位系统的工作原理是通过接收多颗卫
星发射的信号,并通过三角定位原理计算自身的位置,再校正误差以提高定位的准确性,最后将定位结果输出给用户。
全球卫星定位系统的原理

全球卫星定位系统的原理一、概述全球卫星定位系统(GPS,GlobalPositioningSystem)是由美国国防部开发的一种全天候、全球性的卫星导航系统。
该系统利用人造卫星广播位置信息,用户设备通过接收卫星信号,计算出自身在地球上的位置。
GPS系统广泛应用于航空、航海、车辆导航、地震监测、地形测量等领域。
二、工作原理1.卫星定位原理GPS系统由24颗卫星组成,均匀分布在地球的六个轨道上(轨道高度约20000公里)。
用户设备通过接收至少三颗卫星的信号,来确定自身的位置。
卫星信号包括卫星的位置信息(纬度、经度、高度)和时钟信息。
2.伪距测量用户设备通过测量卫星信号的传输时间,计算出与卫星的距离,称为伪距。
伪距测量涉及到多边差分算法,以提高测量精度。
3.坐标系GPS系统使用WGS84坐标系,这是一种全球性的地理坐标系,具有固定的椭球参数。
用户设备可以根据接收到的卫星位置和伪距测量结果,计算出自身的纬度、经度和高度。
三、应用领域1.导航与定位GPS系统广泛应用于车辆导航、移动设备定位、户外活动定位等场景。
通过接收卫星信号,用户可以获得自身的位置信息,并实现路径规划、导航等功能。
2.农业与土地资源调查GPS系统可用于农业领域的土地资源调查、农田管理等。
通过GPS 定位,可以实现精准播种、施肥、灌溉等作业。
3.地震监测与应急救援GPS系统可用于地震监测和应急救援。
在地震发生后,GPS系统可以用于确定地震位置、受灾程度等信息。
同时,救援队伍可以利用GPS 系统进行快速定位和救援。
4.地形测量与城市规划GPS系统可用于地形测量和城市规划。
通过接收卫星信号,可以获取地形的三维信息,为城市规划和土地资源开发提供数据支持。
四、结论全球卫星定位系统是一种高效、精确的导航和定位工具,广泛应用于各个领域。
了解GPS系统的原理和应用,对于更好地发挥GPS系统的优势具有重要意义。
随着技术的不断进步,GPS系统的应用场景也将不断拓展,为人类生活带来更多便利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/celiang则: 1、 GPS 网点应有一定的密度 2、 GPS 网点应有一定的精度,布设GPS 网时, 测量成果的精度,既要能满足当前任务的需要, 还应考虑到今后其它任务和其它部门的使用,精 度要适当地留有余地。 3、 GPS 网点划分等级的原则:1992年10月我国 家测绘局发布的《全球定位系统(GPS )测量范 围》(简称"GPS 测量规范")提出了将GPS 网点 划分为A、B、C、D、E五个等级的原则。
/celiang2007
测量实验室 制作
2、 基本图形的选择 A、 三角形网,根据经典测量的经验 可知,这种几何图形结构强,具有良 好的自检能力,能够有效地发现观测 成果的粗差,以确保网的可靠性。缺 点是观测工作量大,尤其是当接收机 数量时,将使观测时间大为延长。
/celiang2007
测量实验室 制作
8.2
踏勘.选点与埋石
1. 踏勘又叫测区调查。 一般应在技术设计之前进行。通过测 区有关情况和各种数据资料。收集的资料 包括测区已有的各种比例尺地形图.行政 区划图和交通图;测区内外各级各类测量 成果;测区内交通.经济.气象.民族和 治安等方面的情况和资料。
第八章 GPS 测量的设计与实施
主讲:马福义
测量实验室 制作
内容提要 8.1 8.2
8.3 8.4 8.5
GPS 测量的总体设计 踏勘.选点与埋石 外业观测和记录 GPS 测量的作业模式 实时动态测量系统及应用
/celiang2007
测量实验室 制作
8.1
GPS 测量的总体设计
/celiang2007
测量实验室 制作
C、 星状网,优点是, 观测中通常只需要两台 GPS 接收机,作业简单。
/celiang2007
测量实验室 制作
3、 网的基准设计 网的基准设计包括:网的位置基准设 计包括:网的位置共准、方向基准和尺度 基准。网的共准确定是通过网的整体平差 来实现的。一般来说,在GPS 网的整体平 差中,可能含有两类观测量,即相对观测 量(如基线的向量)和绝对观测量(点在 WGS-84坐标系中的坐标值) GPS 的基准设计,一般主要的指确定网的 位置基准,其方法如下:
/celiang2007
测量实验室 制作
B、 环形网,由若干条独立观测边组 成的闭合环,称环形网,这种网与传 统的导线网测量相似,其图形结构强 度比三角网差,环形网的优点是观测 工作量小,且具有较好的自检性(多 边形条件)和可靠性其缺点是非直接 观测的基线边的精度较直接观测边低, 相邻点的基线精度分布不均。
一、 GPS 测量外业分类: GPS 测量外业可分为外业准备、外 业实施和外业结束三个阶段。
/celiang2007
测量实验室 制作
外业准备阶段的主要内容是根据测量 任务的性质和技术要求,编写技术设 计书,进进行踏勘、选点,制订外业 实施计划; 外业实施阶段主要包括外业的观测和记 录以及有关的后勤管理;
/celiang2007
测量实验室 制作
外业结束阶段主要内容为观测数据和其 它资料的检查、整理和上交,对不合 格的数据或资料进行重测或淘汰。
/celiang2007
测量实验室 制作
二、 技术设计: 技术设计是根据测量任务书提出的任务范 围和目的,精度和密度的要求以及完成任 务的期限和经济指标,结合测区的自然地 理条件,依据测量规范的有关技术条款, 选择适宜的GPS 接收机,设计出最佳GPS 卫星定位网形,提出观测纲要和实施计划, 编写成技术设计是建网的技术依据。
/celiang2007
测量实验室 制作
A、 选取网中一点坐标值并加以固定,并 给以适当的权。 B、 选网中若干(直至全部点)的坐标值 并给以适当的权。 前两种称最小约束平差法,后两种称约束 平差法。一般只有对于一个大范围的GPS 网,而且要求精确地位于WGS-84协议坐标 系时,或者具有一组分布适宜、高精度的 已知点时,为改变GPS 网的定向和尺度, 才采用约束平差法。
≤10
≤10 ≤10 ≤10 ≤15
≤2
≤5 ≤10 ≤10 ≤20
/celiang2007
测量实验室 制作
四、 网形设计 1、 图形设计 网的图形设计,主要取决于用户的要求,经费、时间和人力物力的消 耗以及所需设备的类型、数量和后勤保证条件等,也都与网的设计有 关。 *图形设计的原则 A、 GPS 观测网一般采用独立观测边构成的闭合图形,如三角形、 多边形或附路线。 B、 GPS 网为测量控制网,其相邻点间基线向量的精度,应分布均匀。 C、 GPS 网点应尽量与水准点重合。重合点一般不应少于3个。 D、 GPS 网点应尽量于水准点重合,而非重合点一般应根据要求用 水准测量方法进行联测. E、 为了便于GPS 网的观测和水准联测,GPS 网应尽量布设在视野 开阔、交通便利的地方 F、 为了便于经典大地测量法联测或扩展,可GPS 点附近布设一通视 良好的方位点,以建立联测方向。
/celiang2007
测量实验室 制作
2001国家规范规定的精度等级
级别 AA A B C D E a(mm) b(ppm) ≤3 ≤0.01 ≤5 ≤0.1 ≤8 ≤1 ≤10 ≤5 ≤10 ≤10 ≤10 ≤20
97城市规程规定的精度等级
等级 D(km) MD/D 二等 9 1/120000 三等 5 1/80000 四等 2 1/45000 一级 1 1/20000 二级 <1 1/10000 a(mm) b(ppm)