SVPWM的原理及法则推导
SVPWM的原理和法则推导和控制算法详细讲解

SVPWM的原理和法则推导和控制算法详细讲解SVPWM(Space Vector Pulse Width Modulation)是一种三相不对称多电平PWM调制技术。
其原理是将三相电压转换为空间矢量信号,通过调制的方式控制逆变器输出电压,以实现对三相电机的控制。
下面将详细介绍SVPWM的原理、法则推导以及控制算法。
一、原理:SVPWM的原理在于将三相电压分解为两相,即垂直于矢量且相互垂直的两个分量,直流坐标分量和交流坐标分量。
其中,直流坐标分量用于产生直流电压,交流坐标分量用于产生交流电压。
通过对直流和交流坐标的调制,可以生成所需的输出电压。
二、法则推导:1.将三相电压写成直流坐标系下的矢量形式:V_dc = V_d - 0.5 * V_a - 0.5 * V_bV_ac = sqrt(3) * (0.5 * V_a - 0.5 * V_b)2. 空间矢量信号通过电源电压和载波进行调制来生成输出电压。
其中,电源电压表示为空间矢量V。
根据配比原则,V_dc和V_ac分别表示空间矢量V沿直流和交流坐标的分量。
V = V_dc + V_ac3.根据法则推导,导出SVPWM的输出电压:V_u = 1/3 * (2 * V_dc + V_ac)V_v = 1/3 * (-V_dc + V_ac)V_w = 1/3 * (-V_dc - V_ac)三、控制算法:1. 设定目标矢量Vs,将其转换为直流坐标系分量V_dc和交流坐标系分量V_ac。
2.计算空间矢量的模长:V_m = sqrt(V_dc^2 + V_ac^2)3.计算空间矢量与各相电压矢量之间的夹角θ:θ = arctan(V_ac / V_dc)4.计算换向周期T和换相周期T1:T=(2*π*N)/ω_eT1=T/6其中,N为极对数,ω_e为电机的角速度。
5.根据目标矢量和夹角θ,确定目标矢量对应的扇区。
6.根据目标矢量和目标矢量对应的扇区,计算SVPWM的换相角度β和占空比:β=(2*π*N*θ)/3D_u = (V_m * cos(β) / V_dc) + 0.5D_v = (V_m * cos(β - (2 * π / 3)) / V_dc) + 0.5D_w=1-D_u-D_v以上步骤即为SVPWM的控制算法。
SVPWM的原理及法则推导和控制算法详解

一直以来对SVPWM 原理和实现方法困惑颇多,无奈现有资料或是模糊不清,或是错误百出。
经查阅众多书籍论文,长期积累总结,去伪存真,总算对其略窥门径。
未敢私藏,故公之于众。
其中难免有误,请大家指正,谢谢!1 空间电压矢量调制 SVPWM 技术SVPWM 是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽 可能接近于理想的正弦波形。
空间电压矢量PWM 与传统的正弦PWM 不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。
SVPWM 技术与SPWM 相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。
下面将对该算法进行详细分析阐述。
1.1 SVPWM 基本原理SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。
在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。
两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。
逆变电路如图 2-8 示。
设直流母线侧电压为Udc ,逆变器输出的三相相电压为UA 、UB 、UC ,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量 UA(t)、UB(t)、UC(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。
假设Um 为相电压有效值,f 为电源频率,则有:⎪⎩⎪⎨⎧+=-==)3/2cos()()3/2cos()()cos()(πθπθθm Cm B m A U t U U t U U t U (2-27) 其中,ft πθ2=,则三相电压空间矢量相加的合成空间矢量 U(t)就可以表示为:θππj m j C j B A e U e t U e t U t U t U 23)()()()(3/43/2=++= (2-28)可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的1.5倍,Um 为相电压峰值,且以角频率ω=2πf 按逆时针方向匀速旋转的空间矢量,而空间矢量 U(t)在三相坐标轴(a ,b ,c )上的投影就是对称的三相正弦量。
SVPWM的原理与法则推导和控制算法详解

SVPWM的原理与法则推导和控制算法详解SVPWM(Space Vector Pulse Width Modulation)是一种常用于电力电子系统中的调制技术,用于控制交流电机的转速和输出电压。
它通过在电机相电流中施加适当的电压向量来控制电机的输出。
SVPWM的原理基于矢量变换理论和电压空间矢量的概念。
在SVPWM中,通过合理地选择电机相电流的方向和幅值,可以实现各种输出电压波形。
具体来说,SVPWM通过将输入直流电压转化为三相交流电压,然后按照一定的时序开关三相电压源,最终实现对电机的控制。
对于输入直流电压Vin和电机的相电流ia,ib和ic,SVPWM的推导可以分为以下几个步骤:1.将三相电流转换为两相电流:α = ia - ib / √3β = (2*ic - ia - ib) / √6其中,α和β分别表示两个正交轴向的电流分量。
2.计算电机相电流的矢量和以及矢量角度:i=√(α^2+β^2)θ = arctan(β/α)其中,i表示电流的矢量和,θ表示电流矢量的角度。
3.通过计算矢量角度来确定电压空间矢量的方向:根据电流矢量角度的范围,将电流矢量所在的区域划分为6个扇区(S1-S6),每个扇区对应一个电压空间矢量的方向。
4.计算电压空间矢量的幅值:根据电流矢量的大小,计算得出在相应扇区内的电压空间矢量的幅值。
5.根据电压空间矢量的方向和幅值,计算各相电压的占空比:根据电压空间矢量的方向和幅值,可以得出控制电机的各相电压的占空比。
1.读取电机的输入参数,包括电流、速度和位置信号。
2.根据输入参数计算出电机相电流的矢量和和矢量角度。
3.根据矢量角度确定电压空间矢量的方向。
4.根据矢量角度和矢量幅值计算电压空间矢量的幅值。
5.根据电压空间矢量的方向和幅值,计算出各相电压的占空比。
6.将占空比参考信号与电机的PWM生成模块相结合,通过逆变器将控制信号转化为交流电压,并驱动电机运行。
7.循环执行以上步骤,并实时调整占空比,以实现对电机速度和输出电压的精确控制。
svpwm的原理及法则推导和控制算法详解

svpwm的原理及法则推导和控制算法详解SVPWM是一种空间矢量脉宽调制技术,常应用于交流电机的无传感器矢量控制方案中。
SVPWM的原理及法则推导涉及到三相交流电机理论、空间矢量分析以及脉宽调制等内容。
下面将对SVPWM的原理、法则推导和控制算法进行详解。
1.SVPWM原理SVPWM的原理是基于交流电机的三相正弦波电流与空间矢量之间的转换关系。
交流电机的电流空间矢量可以表示为一个复数形式,即电流空间矢量(ia, ib, ic) = ia + jib。
空间矢量在空间中对应一个电机角度θ。
SVPWM的目标是控制交流电机的三相正弦波电流,使其与预期空间矢量一致,从而控制电机输出力矩和转速。
SVPWM首先对预期空间矢量进行空间矢量分解,将其分解为两个基本矢量Va和Vb。
然后根据电机角度θ和两个基本矢量的大小比例,计算出三相正弦波电流的幅值和相位。
2.SVPWM法则推导SVPWM的法则推导是为了实现精确控制电机的输出力矩和转速。
在法则推导中,首先需要建立电流与电压之间的关系,然后计算出三相正弦波电流的幅值和相位。
最后根据幅值和相位生成PWM波形,控制交流电机的动作。
具体推导过程如下:-步骤1:计算Va和Vb的大小比例,根据预期空间矢量和电机角度θ,可以通过三角函数计算出Va和Vb的幅值。
-步骤2:计算Vc,由于交流电机为三相对称系统,Vc的幅值等于Va和Vb的和,相位等于Va相位加120度。
-步骤3:计算三相正弦波电流的幅值和相位,幅值可以通过输入电压和阻抗模型计算得到。
-步骤4:根据幅值和相位生成PWM波形。
3.SVPWM控制算法SVPWM控制算法实现了对交流电机输出力矩和转速的精确控制。
- 步骤1:通过位置传感器或者传感器less技术获取电机角度θ。
-步骤2:根据预期输出力矩和转速,计算出预期空间矢量。
-步骤3:根据电机角度θ和预期空间矢量,计算出Va和Vb的幅值。
-步骤4:根据Va和Vb的大小比例和Vc的相位,生成PWM波形。
SVPWM的原理及法则推导和控制算法详解

SVPWM的原理及法则推导和控制算法详解Space Vector Pulse Width Modulation(SVPWM)是一种用于交流电机驱动的调制技术。
它的原理是将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。
SVPWM利用矢量图法将三相交流电源的空间矢量变换为两相旋转矢量,从而实现对交流电机驱动电压的控制。
1.假设存在一个以0为中心的静止坐标系,其中电源相电压为Va,Vb,Vc。
我们可以将这三个电压写成以时间为函数的形式,即Va(t),Vb(t),Vc(t)。
2.将Va,Vb,Vc投影到α-β坐标系,得到α轴上的电压Vaα(t),Vbα(t),Vcα(t)和β轴上的电压Vaβ(t),Vbβ(t),Vcβ(t)。
3. 将α-β坐标系反转回静止坐标系,得到参考电压Va_ref(t), Vb_ref(t), Vc_ref(t)。
4.将参考电压投影到空间矢量图上,从而得到交流电机的输入矢量。
5.根据参考电压和输入矢量之间的关系,推导出控制算法。
1.基于所需输出电压的矢量长度和角度,计算矢量图中的两个矢量的占空比,分别为d1和d22.根据矢量长度和角度,计算三个相电压的占空比,分别为d_a,d_b,d_c。
3.根据SVPWM的特性,当d1,d2为0时,输出电压为0;当d1,d2相等时,输出电压处于峰值;当d1和d2不相等时,输出电压的大小和方向都有所改变。
因此,通过改变d1和d2的数值,可以改变输出电压的大小和方向。
4.根据d_a,d_b,d_c和d1,d2的数值,计算出PWM控制信号。
5.将PWM控制信号施加到交流电机驱动电路中,从而实现对输出电压的控制。
总结起来,SVPWM通过将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。
通过合理推导和计算,可以得到控制算法,从而实现对输出电压的精确控制。
SVPWM是一种高效且精确的交流电机驱动技术,被广泛应用于工业控制中。
SVPWM的原理及法则推导和控制算法详解

空间电压矢量调制 SVPWM 技术SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。
空间电压矢量PWM 与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。
SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。
下面将对该算法进行详细分析阐述。
1.1 SVPWM基本原理SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。
在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。
两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。
逆变电路如图 1-1 示。
设直流母线侧电压为U dc,逆变器输出的三相相电压为U A、U B、U C,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量 U A(t)、U B(t)、U C(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。
假设U m 为相电压有效值,f 为电源频率,则有:()cos()()cos(2/3)()cos(2/3)A mB m Cm U t U U t U U t U θθπθπ=⎧⎪=-⎨⎪=+⎩ (1-1)其中,2ft θπ=,则三相电压空间矢量相加的合成空间矢量U(t)就可以表示为:2/34/33()()()()2j j j A B C m U t U t U t e U t e U e ππθ=++=(1-2) 可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的1.5倍,U m 为相电压峰值,且以角频率ω=2πf 按逆时针方向匀速旋转的空间矢量,而空间矢量 U(t)在三相坐标轴(a ,b ,c)上的投影就是对称的三相正弦量。
SVPWM的原理及法则推导和控制算法详解

S V P W M的原理及法则推导和控制算法详解Last revision date: 13 December 2020.1 空间电压矢量调制 SVPWM 技术SVPWM 是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽 可能接近于理想的正弦波形。
空间电压矢量PWM 与传统的正弦PWM 不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。
SVPWM 技术与SPWM 相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。
下面将对该算法进行详细分析阐述。
SPWM 通过控制开关器件的关断得到正弦的输入电压;SVPWM 的控制目标在于如何获得一个圆形的旋转磁场。
之所以成为矢量控制,是因为通过SVPWM 对晶闸管导通的控制可以得到一系列大小和方向可变的空间电压矢量,通过对空间电压矢量进行控制,从而得到圆形旋转磁场。
1.1 SVPWM 基本原理SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。
在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。
两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。
逆变电路如图 2-8 示。
设直流母线侧电压为Udc ,逆变器输出的三相相电压为UA 、UB 、UC ,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量 UA(t)、UB(t)、UC(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。
SVPWM的原理及法则推导和控制算法详解

SVPWM的原理及法则推导和控制算法详解SVPWM全称为Space Vector Pulse Width Modulation,是一种用于交流电驱动的脉宽调制技术。
它通过对电压波形进行合适的调制,实现对交流电驱动变频器输出电压的精确控制。
以下是SVPWM的原理及法则推导和控制算法的详解。
1.原始正弦信号:首先,将三相交流电压信号转化为矢量信号表示。
当输入的三相正弦信号为:$$v_a=v_m\sin(\Omega t)$$$$v_b=v_m\sin(\Omega t - \frac{2\pi}{3})$$$$v_c=v_m\sin(\Omega t + \frac{2\pi}{3})$$其中,$v_m$为幅值,$\Omega$为频率,t为时间。
2.空间矢量表示:将交流信号的三相信号进行矩阵变换,转化为空间矢量表示,例如:$$V_s=\frac{2}{3}\begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & \sqrt{3}/2 & -\sqrt{3}/2\end{pmatrix}\begin{pmatrix} v_a\\ v_b\\ v_c \end{pmatrix}$$其中,$V_s$表示空间矢量表示。
3.空间矢量模量:空间矢量模量的大小表示输出电压的幅值,可以通过以下公式计算:$$V=\sqrt{V_s^2}=\sqrt{V_a^2 + V_b^2 + V_c^2}$$4.空间矢量相位:空间矢量相位表示输出电压的相位位置,可以通过以下公式计算:$$\theta=\tan^{-1}(\frac{V_b}{V_a})$$5.确定电压矢量分量:根据设定的输出电压幅值和相位,可以计算出两个主要输出电压分量$V_d$和$V_q$,分别代表感应电机电流的直流成分和交流成分。
6.电压矢量分解:通过将输出电压分解为两个主要分量$V_d$和$V_q$,可以表示为:$$V_d=V_s\cos(\theta - \gamma)$$$$V_q=V_s\sin(\theta - \gamma)$$其中,$V_s$为空间矢量模量,$\theta$为空间矢量相位,$\gamma$为极坐标相角,用来调整电压波形的对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T 0
U ref d t
Tx 0
U xdt
Tx T y
Tx
U ydt
T
Tx T y
* U0 dt
(1-5)
或者等效成下式:
U ref * T U x * Tx U y * T y U 0 * T0
(1-6)
其中,Uref 为期望电压矢量;T 为采样周期;Tx、Ty、T0 分别为 对应两个非零电压矢量 Ux、Uy 和零电压矢量 U0 在一个采样周期的 作用时间;其中 U0 包括了 U0 和 U7 两个零矢量。式(1-6)的意义是, 矢量 Uref 在 T 时间内所产生的积分效果值和 Ux、Uy、U0 分别在时 间 Tx、Ty、T0 内产生的积分效果相加总和值相同。 由于三相正弦波电压在电压空间向量中合成一个等效的旋转电 压,其旋转速度是输入电源角频率,等效旋转电压的轨迹将是如图
第 4 页 共 19 页
1-3 所示的圆形。所以要产生三相正弦波电压,可以利用以上电压向 量合成的技术,在电压空间向量上,将设定的电压向量由 U4(100)位 置开始,每一次增加一个小增量,每一个小增量设定电压向量可以用 该区中相邻的两个基本非零向量与零电压向量予以合成, 如此所得到 的设定电压向量就等效于一个在电压空间向量平面上平滑旋转的电 压空间向量,从而达到电压空间向量脉宽调制的目的。
表 1-2 UREF 所在的位置和开关切换顺序对照序 UREF 所在的位置 开关切换顺序 三相波形图
Ⅰ区(0°≤θ≤60°)
…0-4-6-7-7-6-4-0…
Ⅱ区(60°≤θ≤120°)
…0-2-6-7-7-6-2-0…
Ⅲ区(120°≤θ≤180°)
…0-2-3-7-7-3-2-0…
第 7 页 共 19 页
1.1 SVPWM 基本原理
SVPWM 的理论基础是平均值等效原理, 即在一个开关周期内通 过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某 个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻 的非零矢量和零矢量在时间上的不同组合来得到。 两个矢量的作用时 间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时 间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态 所产生的实际磁通去逼近理想磁通圆, 并由两者的比较结果来决定逆 变器的开关状态,从而形成 PWM 波形。逆变电路如图 1-1 示。 设直流母线侧电压为 Udc,逆变器输出的三相相电压为 UA、UB、 UC,其分别加在空间上互差 120°的三相平面静止坐标系上,可以定 义三个电压空间矢量 UA(t)、UB(t)、UC(t),它们的方向始终在各相的 轴线上,而大小则随时间按正弦规律做变化,时间相位互差 120°。
第 2 页 共 19 页
U2(010)、 U3(011)、 U4(100)、 U5(101)、 U6(110)、 和两个零矢量 U0(000)、 U7(111) , 下 面 以 其 中 一 种 开 关 组 合 为 例 分 析 , 假 设
S x ( x a, b, c) (100) , 此 时
Ⅰ区(0°≤θ≤60°)
…4-6-7-7-6-4…
Ⅱ区(60°≤θ≤120°)
…2-6-7-7-6-2…
Ⅲ区(120°≤θ≤180°)
…2-3-7-7-3-2…
Ⅳ区(180°≤θ≤240°)
…1-3-7-7-3-1…
Ⅴ区(240°≤θ≤300°)
…1-5-7-7-5-1…
第 9 页 共 19 页
Ts 0 1 1 1 1 0
就可以表示为:
U ( t ) U A ( t ) U B ( t ) e j 2 /3 U C ( t ) e j 4 /3
3 U m e j 2
(1-2)
可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的 1.5 倍, 且以角频率ω=2πf 按逆时针方向匀速旋转的空间 Um 为相电压峰值, 矢量,而空间矢量 U(t)在三相坐标轴(a,b,c)上的投影就是对称的 三相正弦量。
d 2 / R 2 f / f S 2 TS / T
(1-7)
如 今假设欲合成的电压向量 Uref 在第Ⅰ区中第一个增量的位置, 图 1-4 所示,欲用 U4、U6、U0 及 U7 合成,用平均值等效可得:
U ref TS U 4 T4 U 6 T6
(1-8)
Ⅳ区(180°≤θ≤240°)
…0-1-3-7-7-3-1-0…
Ⅴ区(240°≤θ≤300°)
…0-1-5-7-7-5-1-0…
Ⅵ区(300°≤θ≤360°)
…0-4-5-7-7-5-4-0…
以第Ⅰ扇区为例, 其所产生的三相波调制波形在时间 TS 时段中 如图所示,图中电压向量出现的先后顺序为 U0、U4、U6、U7、U6、 U0, 各电压向量的三相波形则与表 1-2 中的开关表示符号相对应。 U4、 再下一个 TS 时段,Uref 的角度增加一个 d ,利用式(1-9)可以重新 计算新的 T0、T4、T6 及 T7 值,得到新的合成三相类似新的三相波 形;这样每一个载波周期 TS 就会合成一个新的矢量,随着θ的逐渐 增大,Uref 将依序进入第Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ区。在电压向量旋 转一周期后,就会产生 R 个合成矢量。
图 1-4
电压空间向量在第Ⅰ区的合成与分解
在两相静止参考坐标系(α,β)中, 令 Uref 和 U4 间的夹角是θ, 由正弦定理
第 5 页 共 19 页
可得:
T6 T4 U U U | | cos | | | | cos 4 6 ref Ts Ts 3 | U | sin T6 | U | sin 6 ref Ts 3
第 3 页 共 19 页
1 1
0 1
1 1
U5 U7
Udc 0
0 0
Udc 0
1 U dc 3
2 U dc 3
1 U dc 3
0
0
0
图 1-3 给出了八个基本电压空间矢量的大小和位置
其中非零矢量的幅值相同(模长为 2Udc/3),相邻的矢量间隔 60°,而 两个零矢量幅值为零,位于中心。在每一个扇区,选择相邻的两个电 压矢量以及零矢量, 按照伏秒平衡的原则来合成每个扇区内的任意电 压矢量,即:
轴
(1-9)
轴
因为 |U4|=|U6|=2Udc/3 ,所以可以得到各矢量的状态保持时间为:
T4 mTS sin( ) 3 T6 mTS sin
式中 m 为 SVPWM 调制系数, m 制波基波峰值/载波基波峰值) 而零电压向量所分配的时间为: T7=T0=(TS-T4-T6)/2 或 T7=(TS-T4-T6)
1.2.2 5 段式 SVPWM
对 7 段而言,发波对称,谐波含量较小,但是每个开关周期有 6 次开关切换,为了进一步减少开关次数,采用每相开关在每个扇区状 态维持不变的序列安排,使得每个开关周期只有 3 次开关切换,但是 会增大谐波含量。具体序列安排见下表。
第 8 页 共 19 页
表 1-3 UREF 所在的位置和开关切换顺序对照序 UREF 所在的位置 开关切换顺序 三相波形图
假设 Um 为相电压有效值,f 为电源频率,则有:
U A ( t ) U m cos( ) U B ( t ) U m cos( 2 / 3) U (t ) U cos( 2 / 3) m C
(1-1)
2 ft , 则三相电压空间矢量相加的合成空间矢量 U(t) 其中,
第 6 页 共 19 页
1.2.1 7 段式 SVPWM
我们以减少开关次数为目标, 将基本矢量作用顺序的分配原则选 定为:在每次开关状态转换时,只改变其中一相的开关状态。并且对 零矢量在时间上进行了平均分配,以使产生的 PWM 对称,从而有 效地降低 PWM 的谐波分量。当 U4(100)切换至 U0(000)时,只需改 变 A 相上下一对切换开关,若由 U4(100)切换至 U7(111)则需改变 B、C 相上下两对切换开关,增加了一倍的切换损失。因此要改变电 压 向 量 U4(100) 、 U2(010) 、 U1(001) 的大小,需配合零电压向量 U0(000),而要改变 U6(110)、U3(011)、U5(100), 需配合零电压向量 U7(111)。这样通过在不同区间内安排不同的开关切换顺序, 就可以 获得对称的输出波形,其它各扇区的开关切换顺序如表 1-2 所示。
表 1-1
Sa 0 1 1 0 0 0 Sb 0 0 1 1 1 0 Sc 0 0 0 0 1 1
开关状态与相6 U2 U3 U1 0 Udc Udc 0 0 0 Ubc 0 0 Udc Udc Udc 0 Uca 0 0 0 Udc Udc Udc UaN 0
1.2 SVPWM 法则推导
三相电压给定所合成的电压向量旋转角速度为 2 f ,旋转 一 周 所 需 的 时 间 为 T 1 / f ; 若 载 波 频 率 是 fS , 则 频 率 比 为
R f S / f 。这样将电压旋转平面等 切 割 成 R 个 小 增 量 ,
亦 即 设 定 电 压 向 量 每 次 增 量 的 角 度 是 :
图 1-2 矢量 U4(100)
U ab U dc ,U bc 0,U ca U dc U aN U bN U dc ,U aN U cN U d c U U U 0 bN cN aN
(1-4)
求解上述方程可得:UaN=2Ud/3、UbN=-Ud/3、UcN=-Ud /3。同理可 计算出其它各种组合下的空间电压矢量,列表如下:
2 U dc 3
1 U dc 3
矢量符号
相电压
UbN 0
1 U dc 3