工程热力学第一章 基本概念 热力系统
合集下载
工程热力学-01 基本概念及定义

平衡状态1
p1 v1
p
p2
2
压容图 p-v图
平衡状态2
p1
1
p2 v2
O
v2
v1
v
12
1-4 状态方程式
在平衡状态下,由气态物质组成的系统,只要知道两个独立的 状态参数,系统的状态就完全确定,即所有的状态参数的数值随之 确定。这说明状态参数间存在某种确定的函数关系,状态参数之间 存在着确定的函数关系,这种函数关系就称为热力学函数。
(2)当系统处于热力学平衡状态时,只要没有外界的影响, 系统的状态就不会发生变化。
(3)整个系统可用一组具有确定数值的温度、压力及其他参
? 数来描述其状态。
10
经验表明,确定热力学系统所处平衡状态所需的独立状 态参数的数目,就等于系统和外界间进行能量传递方式的数 目。对于工程上常见的气态物质组成的系统,系统和外界间传递 的能量只限于热量和系统容积变化所作的功两种形式,因此只需 要两个独立的状态参数即可描述一个平衡状态。
3、平衡状态、稳定状态、均匀状态
(1)关于稳定状态与平衡状态
稳定状态时,状态参数虽不随时间改 变,但它是依靠外界影响来维持的。而平 衡状态是不受外界影响时,参数不随时间 变化的状态。
85℃ 20℃
90℃
15℃
铜棒
平衡必稳定,稳定未必平衡。
(2)关于均匀状态与平衡 水
质统称为外界。 通常选取工质作为热力学系统,把高温热源、低温热源
等其他物体取作外界。
3、边界 ——热力学系统和外界之间的分界面称为边界。
边界可以是固定的,也可以是移动的; 边界可以是实际的,也可以是假想的。
3
二、热力学系统的分类 依据——有无物质或能量的交换
工程热力学第一章

(3)好处:用系统的参数来计算;可以作 好处:用系统的参数来计算; 为实际过程中能量转换效果比较的标准和极 限;可把实际过程当作可逆过程进行分析计 然后再用经验系数加以修正。 算,然后再用经验系数加以修正。 (4)热量和功量 热量和功量都是过程量, 热量和功量都是过程量,它们的大小不仅与 过程的初终状态有关, 过程的初终状态有关,而且与过程的性质有 关。 可逆过程的功量: 可逆过程的功量: w = ∫ pdv 可逆过程的热量: 可逆过程的热量: q = ∫ Tds
C B A
课后题1 课后题1-5;1-6;1-9
(c)系统内部状态参数不随时间而变化 (d)系统内部状态不发生改变 2.均质等截面杆的两端的温度由分别维持 2.均质等截面杆的两端的温度由分别维持 t1 t2的两热源保持 t1 t2 不变,取此杆为系统, 不变,取此杆为系统, 则系统处于( 则系统处于(B)。 平衡状态, (a)平衡状态,因其各截面温度不随时间改 变 非平衡状态, (b)非平衡状态,因其各截面温度不等 平衡状态, (c)平衡状态,因其各截面温度不随时间改 变,且流入系统的热量等于流出系统的热量 非平衡状态, (d)非平衡状态,因其处于重力场
4.基本状态参数:温度、压力、 4.基本状态参数:温度、压力、比体积 基本状态参数 温度: (1)温度:是热平衡的惟一判据
t = T − 273.15
(2)压力Βιβλιοθήκη p = B + pg
p = B−H
(3)比体积 二、平衡状态、状态公理及状态方程 平衡状态、 1.定义 是指在没有外界作用的情况下, 定义: 1.定义:是指在没有外界作用的情况下, 系统的宏观性质不随时间变化的状态。 系统的宏观性质不随时间变化的状态。 2.实现平衡的条件: 2.实现平衡的条件:系统内部及系统与外界 实现平衡的条件 之间各种不平衡势差消失
1.2工程热力学基础知识

热力学相关的能量的总和. 热力学相关的能量的总和.
真空
真空
p1 V1
p2 V2
绝热系A
绝热系A
上面图示中的闭口绝热系A 上面图示中的闭口绝热系A中的黄色方块是一团 气体,它从状态1变化到状态2 气体,它从状态1变化到状态2,很显然,按照理 想气体状态方程进行分析,由于气体膨胀对外做 功,我们会得到u 功,我们会得到u1<u2的结论,但是根据能量守恒 定律,工质与外界无能量交换,因此工质的能量 总和应当不变,再经过进一步分析,我们会得到 u1+p1V1=u2+p2V2 即H1=H2的结论.
二,热力学第一定律及其应用
热力学第一定律其实就是能量守恒定律在热力学 领域中的应用,由于热力学领域总是把某一系统 作为研究对象,所以强调的是系统和外部环境的 总的能量守恒. 在对单一热力系统进行分析的时候,系统本身能 量变化 ,系统与外界的功交换 量变化E,系统与外界的功交换W,系统与外 界的热交换 界的热交换Q,还有涉及物质进出系统带来和带 出的能量 出的能量e之间满足下列关系:
(五)热力过程
热力过程: 热力过程:系统从一个状态变化到另外一个状态 的时候经历的所有的中间状态的集合称为热力过 程,简称过程.如果系统经历一系列过程最终又 回到初始状态,则说这些过程构成一个热力循环 回到初始状态,则说这些过程构成一个热力循环. 热力循环. 准静态过程:在一个热力过程中,初始状态和最 准静态过程:在一个热力过程中,初始状态和最 终状态都是平衡态,从初始状态变化到最终状态 说明了原有平衡被打破,然后经历一些列变化最 说明了原有平衡被打破,然后经历一些列变化最 后形成了新的平衡.这个变化不会是一瞬间完成 后形成了新的平衡.这个变化不会是一瞬间完成 的,因此意味着在这两个状态之间,系统经历了 一些列连续的,依次相差为无穷小的平衡状态, 一些列连续的,依次相差为无穷小的平衡状态, 这个过程称为准静态过程.例如系统原来的状态 用参数表示为(A,B,C,D,E,F),最终状态表示为 用参数表示为(A,B,C,D,E,F),最终状态表示为 (A',B',C',D',E',F'),如果该过程是准静态过程, ,B',C',D',E',F' 那么6 那么6个参数的变化全部是连续的,如果表示在状 态参数坐标图上,有关6 态参数坐标图上,有关6个参数的曲线全部应当是 连续的.
工程热力学(基本概念)

国际实用温标的固定点
平衡状态
平衡氢三相点 平衡氢沸点 氖沸点 氧三相点 氧冷凝点
国际实用温标指定
值
T,K
t,℃
13.81 -259.34
20.28 -252.87
20.102 -246.048
54.361 -218.789
90.183 -182.962
平衡状态
水三相点 水沸点
锌凝固点 银凝固点 金凝固点
一、热力过程
定义:热力系从一个状态向另一个状态变化时所经 历的全部状态的总和。
二、准平衡(准静态)过程
准平衡过程的实现
工程热力学 Thermodynamics
二、准平衡(准静态)过程
定义:由一系列平衡态组成的热力过程 实现条件:破坏平衡态存在的不平衡势差(温差、
力差、化学势差)应为无限小。 即Δp→0 ΔT→0 (Δμ→0)
工程热力学 Thermodynamics
三、可逆过程
力学例子:
定义: 当系统完成某一热力过程后,如果有可能使系统再
沿相同的路径逆行而恢复到原来状态,并使相互中所涉 及到的外界亦恢复到原来状态,而不留下任何变化,则 这一过程称为可逆过程。
实现条件:准平衡过程加无耗散效应的热力过程 才是可逆过程。
工程热力学 Thermodynamics
用来实现能量相互转换的媒介物质称为工质。
理想气体
工 质
实际气体
蒸气
工程热力学 Thermodynamics
二、平衡状态
(一)热力状态:热力系在某一瞬间所呈现的宏观
物理状况。(简称状态)
(二)平衡状态 1、定义:一个热力系统,如果在不受外界影响的条件下,
系统的状态能够始终保持不变,则系统的这种状态称为平衡 状态。
工程热力学 第一章基本概念

简单可压缩系统
压缩功 膨胀功
简单可压缩系统的独立变量数
只交换热量和一种准静态的容积变化功
简单可压缩系统:N = n + 1 = 2
The state of a simple compressible system is completely specified by two independent properties
强度参数:与物质的量无关的参数
如压力 p、温度T
强度参数与广延参数
广延参数:与物质的量有关的参数可加性
如 质量m、容积 V、内能 U、焓 H、熵S
比参数:
V v m 比容
U u m 比内能
H h m 比焓
S s m 比熵
单位:/kg /kmol 具有强度参数的性质
强度参数变化量与路径无关,只与 初终态有关。 数学上:
2 2 2
点函数、态函数
1
point function
a b
2
dz dz dz z2 z1
1 1, a 1,b
dz 0
例:温度变化 山高度变化
状态参数的微分特征 dz是全微分 设 z =z (x , y)
O
5 t[ C ] (t[ F ] 32) 9
O
t[ F ] t[ R] 459.67
Temperature Measurement Devices
日常:水银温度计,酒精温度计, thermometer
工业:热电偶 Thermocouple 热电阻 Resistance temperature detector 辐射温度计Radiation thermometer
1、定义:
在不受外界影响的条件下(重力场除 外),如果系统的状态参数不随时间变化, 则该系统处于平衡状态。
《工程热力学》第一章 基本概念

9
1.3.1、基本术语-状态、状态参数
1、状态:工质在热力变化过程中某一瞬间所呈现的宏观 物理状况称状态
2、状态参数:表示状态特征的物理量称为状态参数
状态与状态参数是一一对应的
3、状态参数特点
数学特征为点函数: 微元变化的微增量具全微分性质
4、热力学基本状态参数为三个:比容、压力、 温度
10
1.3.2、基本状态参数--比容及密度
C 1 2 B B A
16
1-4
平衡状态、状态方程式、坐标图
1.4.1 平衡状态与非平衡态 平衡状态:系统在不受外界影响的条件下, 如果宏观热力性质不随时间而变化,系统 内、外同时建立了热平衡、力平衡(及 化学平衡),此时系统所处状态为平衡态 非平衡态: 系统与外界,系统内部各部分间 存在能量传递及相对位移,状态将随时间 变化,称系统处于非平衡态
受逐渐变化的压力作用下的活塞的移动过程 发生系统状态变化 (力作用)(NEXT)
受变化的恒温热源缓慢加热的活塞系统发生 系统状态变化(热的作用) (NEXT)
26
P3 P2
P1
工质 工 质
工质
受逐渐变化压力作用下的活塞移动过程发生系 统状态变化(P、V、T变化) (力作用)
27
工质
工质
工质
热源T
31
1-6
过程功与热量
1.6.1 功的定义: 1、功的力学定义: 将物体间通过力的作用而传递的能量称为功并 定义:功等于力F与物体在力作用方向上的位移X 的乘积(点积) dW = F ·dX 2、功的热力学定义: 热力学系统和外界通过边界而传递的能量, 其效果可表现为举起重物
区别:功与系统动能、重力位能等“储存能”变化传递 的机械能的本质区别
新版工程热力学大总结_第五版-新版.pdf

可逆过程 :当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为
可逆过程。
膨胀功 :由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称
容积功。
热量 :通过热力系边界所传递的除功之外的能量。
热力循环 :工质从某一初态开始,经历一系列状态变化, 最后又回复到初始状态的全部过程称为热
1K( 1℃)所吸收或放出的热量,称为该物
体的定容比热。
定压比热 :在定压情况下,单位物量的物体,温度变化
1K( 1℃)所吸收或放出的热量,称为该物
体的定压比热。
定压质量比热 :在定压过程中,单位质量的物体,当其温度变化
1K (1℃)时,物体和外界交换的
5
热量,称为该物体的定压质量比热。
定压容积比热 :在定压过程中,单位容积的物体,当其温度变化
热力循环 :
qw
或 u 0 , du 0
循环热效率 : t w0 q1 q2 1 q2
q1
q1
q1
式中
q1—工质从热源吸热; q2—工质向冷源放热; w 0—循环所作的净功。
制冷系数 :
q2
q2
1
w0 q1 q2
式中
q1—工质向热源放出热量; q2—工质从冷源吸取热量;
w 0—循环所作的净功。
3
供热系数:
第一章 基 本 概 念
1.基本概念
热力系统 :用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,
称为热力系
统,简称系统。
边界 :分隔系统与外界的分界面,称为边界。
外界 :边界以外与系统相互作用的物体,称为外界或环境。
闭口系统 :没有物质穿过边界的系统称为闭口系统,也称控制质量。
工程热力学基本概念

= 收获/代价
炉
热效率: t
w net q1
顺 时 针
汽轮机
发电机 凝 汽 器
逆向循环 又称制冷循环或热泵循环
高温热源
或 制 Q1
逆 时
热冷 泵机
W
针
Q2
低温热源
制冷循环的经济性用制冷系数衡量:
2
1
1,a,2
1,b,2
b
2
状态参数的变化只与初终态相关,
1 dxx2 x1 与路径无关。
状态参数都有以上特性。
状态参数的循环 dx 0 积分等于零。
反之,有以上特性之一, 即为状态参数。
1-3 平衡状态、状态方程式、坐标图
一、平衡状态
热力系在没有外界作用的情况下〔重力场除 外〕,宏观性质不随时间变化的状态。
热力过程:工质由一个状态变化到另一状态所经历 的全部状态的总和。
实际过程由一系列非 平衡状态组成
例:
非平衡状态
无法简单描述
平衡状态
宏观静止
能量不能转换
“平衡〞意味着宏观静止, 引入 理想模型:
“过程〞意味着变化,意味着
准平衡过程
平衡被破坏。二者如何统一?
一、准平衡过程 热力系从一个平衡态连续经历一系列
系统与外界 通过边界进 展相互作用
热力系的选取主要决定于研究任务 。
选取热力系时注意:
❖热力系可以很大,但不能大到无限。
❖热力系可以很小,但不能小到只包含少量分子, 以致不能遵守统计平均规律。
❖ 边界可以是实际存在的, 也可以是假想的。
❖ 边界可以是固定的, 也可以是变动的。
系统与外界通过边界进展相互作用。
平衡的中间态过渡到另一个平衡态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.功和功率的单位:
J
或 kJ
J/s W kJ/s kW
附: 1kWh 3600kJ
31
6.讨论 有用功(useful work)概念
Wu W Wl Wp
其中:
pb
f
W—膨胀功(compression/expansion work); Wl—摩擦耗功; Wp_排斥大气功。
例A7001331
1.功的力学定义 2.功的热力学定义:通过边界传递的能量其全部 效果可表现为举起重物。 3.可逆过程功的计算
W δW
1
2
pAdx pdV
1 1
2
2
▲功是过程量 ▲功可以用p-v图上过程线 与v轴包围的面积表示
30
4.功的符号约定: 系统对外作功为“+”
外界对系统作功为“-”
分 类
共同本质:由媒介物通过吸热—膨胀作功—排热
2
二、工质(working substance; working medium)
定义:实现热能和机械能相互转化的媒介物质。
对工质的要求:
1)膨胀性 2)流动性 物质三态中 气态最适宜。
3)热容量
4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取
pA F cos pb A ( f 0)
准静态过程,可逆
28
讨论: 1.可逆=准静态+没有耗散效应
2.准静态着眼于系统内部平衡,可逆着眼于
系统内部及系统与外界作用的总效果
3.一切实际过程不可逆
4.内部可逆过程的概念
5.可逆过程可用状态参数图上实线表示
29
1-6 功和热量
一、功(work)的定义和可逆过程的功
32
用外部参数计算不可逆过程的功
W
2
1
pdV
?
33
W p 0 AH p 0 V
三、热量(heat)
1.定义:仅仅由于温差而 通过边界传递的能量。 2.符号约定:系统吸热“+”; 放热“-” 3.单位: J kJ 4.计算式及状态参数图 (T-s图上)表示
Q TdS
p,V , T ,U , H , S
14
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
dx 0
1b 2
dx dx
1a 2
3.状态参数分类 广延量(extensive property) 强度量(intensive property ) 又:广延量的比性质具有强度量特性,如比体积
温度的定义: (zeroth law of thermodynamics) 热力学温标和国际摄氏温标 (thermodynamics scale; Kelvin scale;absolute temperature scale and internal Celsius temperature scale)
p pb pe ( p pb )
p pb pv ( p pb )
18
常用压力单位:
N 1Pa 1 2 1MPa 1106 Pa m 1bar 1105 Pa 1atm 101325Pa 760mmHg 1mmHg 133.32Pa 1mmH 2O 9.80665Pa
1
2
(可逆过程)
δQ TdS
热量是过程量
35
四、热量与功的异同:
1.均为通过边界传递的能量; 2.均为过程量; 3.功传递由压力差推动,比体积变化是作功标志; 热量传递由温差推动,比熵变化是传热的标志; 4.功是物系间通过宏观运动发生相互作用传递的能量; 热是物系间通过紊乱的微粒运动发生相互作用而传递的 能量。 功 热
定义:从燃料燃烧中获得热能并利用热能得到动力 的整套设备。 气体动力装置(combustion gas power plant) 内燃机(internal combustion gas engine) 燃气轮机装置(gas turbine power plant) 喷气发动机(jet power plant) …… 蒸气动力装置 (steam power plant)
例A4001441 例A4002771
1kPa 1103 Pa
19
六、比体积和密度
比体积(specific volume)
V v m
单位质量工质的体积
m3 /kg
kg/m3
密度(density)
m V
单位体积工质的质量
两者关系:
v
1
20
1-4 平衡状态
一、平衡状态(thermodynamic equilibrium state)
24
O
v1
v O
s O
四、状态方程式 定义:对于简单可压缩系统,描述平衡基本状 态参数间关系式 状态方程 f p, v, T 0
1.理想气体状态方程 (ideal-gas equation; Clapeyron’s equation)
pv RgT
pV mRgT
pV nRT
T K
5
二、系统及边界示例
• 汽车发动机
6
• 汽缸-活塞装置(闭口系例)
7
• 移动和虚构边界
8
注意:
1)系统与外界的人为性 2)外界与环境介质 3)边界可以是: a)刚性的或可变形的或有弹性的 b)固定的或可移动的 c)实际的或虚拟的
9
三、热力系分类
1. 按系统与外界质量交换 闭口系(closed system) (控制质量CM) —没有质量越过边界 开口系(open system) (控制体积CV) —通过边界与外界有质量交换
1.定义:一个热力系统,如果不受外界影响的条件下,系统的 状态能够始终保持 不变。 •热平衡(ห้องสมุดไป่ตู้hermal equilibrium) : 在无外界作用的条件下,系统内部、系统与外界 处处温 度相等。 •力平衡(mechanical equilibrium): 在无外界作用的条件下,系统内部、系统与外 界处处压力相等。 • 热力平衡的充要条件(△P=0、 △T=0) —系统同时达到热平衡和力平衡。 (此系统必须是简单可压缩系统)
一般地讲:输入净功; 在状态参数图逆时针运行; 吸热小于放热。
40
五、循环经济性指标:
收益 代价
动力循环: 热效率(thermal efficiency) 逆向循环: 制冷系数(coefficient of performance for the refrigeration cycle) 供暖系数(coefficient of performance for the heat-pump cycle)
一、准静态过程(quasi-static process; quasi-equilibrium process)
定义:偏离平衡态无穷小,随时 恢复平衡的状态变化过程。 进行条件: 破坏平衡的势—
p, T 无穷小
过程进行无限缓慢 工质有恢复平衡的能力 准静态过程可在状态参数图上用连续实线表示
26
二、可逆过程( reversible process)
注意: 1)闭口系与系统内质量不变的区别;
11
四、热力系示例
1.刚性绝热气缸-活塞系统,B侧设有电热丝 红线内 ——闭口绝热系 黄线内不包含电热丝 ——闭口系 黄线内包含电热丝 ——闭口绝热系 兰线内 ——孤立系
12
2.刚性绝热喷管
取红线为系统— 取喷管为系统—
闭口系 开口系绝热系?
13
1-3 工质的热力学状态和基本状态参数
3
三、热源(heat source; heat reservoir)
定义:与外界仅有热量的交换,且有限热量的交换不引起
系统温度变化的热力系统。
• 高温热源—热源 ( heat source ) 低温热源—冷源(heat sink) • 恒温热源(constant heat reservoir) 变温热源
一、热力学状态和状态参数
热力学状态简称状态(state of thermodynamic system) —热力系在某一瞬间所呈现的宏观物理状况 状态参数(state properties) —描述系统状态的宏观物理量
二、状态参数的特性和分类
1.状态参数是宏观量,是大量粒子的统计平均效 应,只有平 衡态才有状参,系统有多个状态参数,如
4
一、定义
1-2 热力系统(热力系、系统、体系) 外界和边界
• 系统(thermodynamic system, system) 人为分割出来,作为热力学 研究对象的有限物质系统。 • 外界(surrounding ): 与体系发生质、能交换的物系。 • 边界(boundary):
系统与外界的分界面(线)。
wnet t 1 q1
q2 or 1 wnet
q1 1 wnet
'
41
下一章
10
2. 按能量交换 绝热系(adiabatic system)— 与外界无热量交换; 孤立系(isolated system)— 与外界无任何形式的质能交换。 简单可压缩系(simple compressible system) —由可压缩物质组成,无化学反应、与外界有交 换容积变化功的有限物质系统。
v
V m
工程热力学约定用小写字母表示单位质量参数。
15
三、系统状态相同的充分必要条件 系统两个状态相同的充要条件: 所有状态参数一一对应相等 简单可压缩系两状态相同的充要条件: 两个独立的状态参数对应相等
16
四、温度和温标(temperature and temperature scale)
J
或 kJ
J/s W kJ/s kW
附: 1kWh 3600kJ
31
6.讨论 有用功(useful work)概念
Wu W Wl Wp
其中:
pb
f
W—膨胀功(compression/expansion work); Wl—摩擦耗功; Wp_排斥大气功。
例A7001331
1.功的力学定义 2.功的热力学定义:通过边界传递的能量其全部 效果可表现为举起重物。 3.可逆过程功的计算
W δW
1
2
pAdx pdV
1 1
2
2
▲功是过程量 ▲功可以用p-v图上过程线 与v轴包围的面积表示
30
4.功的符号约定: 系统对外作功为“+”
外界对系统作功为“-”
分 类
共同本质:由媒介物通过吸热—膨胀作功—排热
2
二、工质(working substance; working medium)
定义:实现热能和机械能相互转化的媒介物质。
对工质的要求:
1)膨胀性 2)流动性 物质三态中 气态最适宜。
3)热容量
4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取
pA F cos pb A ( f 0)
准静态过程,可逆
28
讨论: 1.可逆=准静态+没有耗散效应
2.准静态着眼于系统内部平衡,可逆着眼于
系统内部及系统与外界作用的总效果
3.一切实际过程不可逆
4.内部可逆过程的概念
5.可逆过程可用状态参数图上实线表示
29
1-6 功和热量
一、功(work)的定义和可逆过程的功
32
用外部参数计算不可逆过程的功
W
2
1
pdV
?
33
W p 0 AH p 0 V
三、热量(heat)
1.定义:仅仅由于温差而 通过边界传递的能量。 2.符号约定:系统吸热“+”; 放热“-” 3.单位: J kJ 4.计算式及状态参数图 (T-s图上)表示
Q TdS
p,V , T ,U , H , S
14
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
dx 0
1b 2
dx dx
1a 2
3.状态参数分类 广延量(extensive property) 强度量(intensive property ) 又:广延量的比性质具有强度量特性,如比体积
温度的定义: (zeroth law of thermodynamics) 热力学温标和国际摄氏温标 (thermodynamics scale; Kelvin scale;absolute temperature scale and internal Celsius temperature scale)
p pb pe ( p pb )
p pb pv ( p pb )
18
常用压力单位:
N 1Pa 1 2 1MPa 1106 Pa m 1bar 1105 Pa 1atm 101325Pa 760mmHg 1mmHg 133.32Pa 1mmH 2O 9.80665Pa
1
2
(可逆过程)
δQ TdS
热量是过程量
35
四、热量与功的异同:
1.均为通过边界传递的能量; 2.均为过程量; 3.功传递由压力差推动,比体积变化是作功标志; 热量传递由温差推动,比熵变化是传热的标志; 4.功是物系间通过宏观运动发生相互作用传递的能量; 热是物系间通过紊乱的微粒运动发生相互作用而传递的 能量。 功 热
定义:从燃料燃烧中获得热能并利用热能得到动力 的整套设备。 气体动力装置(combustion gas power plant) 内燃机(internal combustion gas engine) 燃气轮机装置(gas turbine power plant) 喷气发动机(jet power plant) …… 蒸气动力装置 (steam power plant)
例A4001441 例A4002771
1kPa 1103 Pa
19
六、比体积和密度
比体积(specific volume)
V v m
单位质量工质的体积
m3 /kg
kg/m3
密度(density)
m V
单位体积工质的质量
两者关系:
v
1
20
1-4 平衡状态
一、平衡状态(thermodynamic equilibrium state)
24
O
v1
v O
s O
四、状态方程式 定义:对于简单可压缩系统,描述平衡基本状 态参数间关系式 状态方程 f p, v, T 0
1.理想气体状态方程 (ideal-gas equation; Clapeyron’s equation)
pv RgT
pV mRgT
pV nRT
T K
5
二、系统及边界示例
• 汽车发动机
6
• 汽缸-活塞装置(闭口系例)
7
• 移动和虚构边界
8
注意:
1)系统与外界的人为性 2)外界与环境介质 3)边界可以是: a)刚性的或可变形的或有弹性的 b)固定的或可移动的 c)实际的或虚拟的
9
三、热力系分类
1. 按系统与外界质量交换 闭口系(closed system) (控制质量CM) —没有质量越过边界 开口系(open system) (控制体积CV) —通过边界与外界有质量交换
1.定义:一个热力系统,如果不受外界影响的条件下,系统的 状态能够始终保持 不变。 •热平衡(ห้องสมุดไป่ตู้hermal equilibrium) : 在无外界作用的条件下,系统内部、系统与外界 处处温 度相等。 •力平衡(mechanical equilibrium): 在无外界作用的条件下,系统内部、系统与外 界处处压力相等。 • 热力平衡的充要条件(△P=0、 △T=0) —系统同时达到热平衡和力平衡。 (此系统必须是简单可压缩系统)
一般地讲:输入净功; 在状态参数图逆时针运行; 吸热小于放热。
40
五、循环经济性指标:
收益 代价
动力循环: 热效率(thermal efficiency) 逆向循环: 制冷系数(coefficient of performance for the refrigeration cycle) 供暖系数(coefficient of performance for the heat-pump cycle)
一、准静态过程(quasi-static process; quasi-equilibrium process)
定义:偏离平衡态无穷小,随时 恢复平衡的状态变化过程。 进行条件: 破坏平衡的势—
p, T 无穷小
过程进行无限缓慢 工质有恢复平衡的能力 准静态过程可在状态参数图上用连续实线表示
26
二、可逆过程( reversible process)
注意: 1)闭口系与系统内质量不变的区别;
11
四、热力系示例
1.刚性绝热气缸-活塞系统,B侧设有电热丝 红线内 ——闭口绝热系 黄线内不包含电热丝 ——闭口系 黄线内包含电热丝 ——闭口绝热系 兰线内 ——孤立系
12
2.刚性绝热喷管
取红线为系统— 取喷管为系统—
闭口系 开口系绝热系?
13
1-3 工质的热力学状态和基本状态参数
3
三、热源(heat source; heat reservoir)
定义:与外界仅有热量的交换,且有限热量的交换不引起
系统温度变化的热力系统。
• 高温热源—热源 ( heat source ) 低温热源—冷源(heat sink) • 恒温热源(constant heat reservoir) 变温热源
一、热力学状态和状态参数
热力学状态简称状态(state of thermodynamic system) —热力系在某一瞬间所呈现的宏观物理状况 状态参数(state properties) —描述系统状态的宏观物理量
二、状态参数的特性和分类
1.状态参数是宏观量,是大量粒子的统计平均效 应,只有平 衡态才有状参,系统有多个状态参数,如
4
一、定义
1-2 热力系统(热力系、系统、体系) 外界和边界
• 系统(thermodynamic system, system) 人为分割出来,作为热力学 研究对象的有限物质系统。 • 外界(surrounding ): 与体系发生质、能交换的物系。 • 边界(boundary):
系统与外界的分界面(线)。
wnet t 1 q1
q2 or 1 wnet
q1 1 wnet
'
41
下一章
10
2. 按能量交换 绝热系(adiabatic system)— 与外界无热量交换; 孤立系(isolated system)— 与外界无任何形式的质能交换。 简单可压缩系(simple compressible system) —由可压缩物质组成,无化学反应、与外界有交 换容积变化功的有限物质系统。
v
V m
工程热力学约定用小写字母表示单位质量参数。
15
三、系统状态相同的充分必要条件 系统两个状态相同的充要条件: 所有状态参数一一对应相等 简单可压缩系两状态相同的充要条件: 两个独立的状态参数对应相等
16
四、温度和温标(temperature and temperature scale)