理想气体的热力学过程共23页

合集下载

理想气体的绝热过程

理想气体的绝热过程

理想气体准静态卡诺循环由两个等温过 程和两个绝热过程组成。
AB过程:
Q1

m M
RT1 ln
V2 V1
CD过程:
Q2

m M
RT2
ln
V3 V4
BC和DA过程:
P
A
Q1 T1 B
D Q2 T2
C
Q0
V1 V4 V2 V3 V
W 1 Q2
Q1
Q1
1 T2 ln V3 V4
PV
两边积分: ln P ln V C
ln PV C
PV C1 PV m RT
M
消去P: 消去V:
TV 1 C2 P 1T C3
等容
=0 dV=0 dA=0
等 压 dP=0
等 温 dT=0 dE=0
绝 热 dQ=0
PV图
Q(方程) 能量转换(Q)

TA TB
TC
1 TC (1 TA TB )
TB TA
TB TA
1 TC (TB TA ) 1 TC
TB (TB TA )
TB
例题、计算奥托机的循环效率。c d, eb为 等容过程; bc,de为绝热过程。
解:
P
Q1

m M
CV
(Td
Tc
)
吸热
d
m
V
TB VB
TC VC
绝热:
TAVA 1 TDVD 1 TBVB 1 TCVC 1
TA (VA ) 1 TD (VD ) 1
TB VB
TC VC
消去V得:
TD

TA TB

《热力学》理想气体的热力过程

《热力学》理想气体的热力过程

p2 p1
v1 v2
n
T2 T1
v1 v2
n1
T2 T1
p2 p1
(n1) / n
n lnp2 lnp1 lnv2 ln v1
(2)利用已知或可求的与n有关的能量求解
2020年10月20日
第四章 理想气体的热力过程
28
例4-3(p80) 有一台空气压缩机,压缩前空气的温度为27 ℃、 压力为0.1 MPa,气缸的容积为5 000 cm3;压缩后空气的温度升 高到213 ℃。压缩过程消耗的功为1.166 kJ。试求压缩过程的多变 指数n。
15
(2)图表法 由
ds
cp0
dT T
Rg
dp p
对可逆绝热过程可得
ln
p2 p1
1 Rg
T2
T1
c
p
0
dT T
A:利用热力性质表中的标准状态熵
ln
p2 p1
1 Rg
T1
T0
c
p
0
dT T
c T2
T0
p0
dT T
1 Rg
s0 T2
s0 T1
T2 工质的热力性质表中还提供了u与h的数值。
2020年10月20日
第四章 理想气体的热力过程
19
例4-2 (p76) 一台燃气轮机装置,从大气吸入温度为17 ℃、压 力为0.1 MPa的空气,然后在压气机中进行绝热压缩,使空气 的压力提高到0.9MPa。试求压气机消耗的轴功:(1)按定值比 热容计算;(2)按空气热力性质表计算。
思路:
定值比热容
2020年10月20日
第四章 理想气体的热力过程
14
变比热容分析

热力学中的理想气体循环过程

热力学中的理想气体循环过程

热力学中的理想气体循环过程热力学中的理想气体循环过程是指理想气体在进行一系列压力、体积、温度变化的过程中所形成的循环。

这一过程在工程领域中有着广泛的应用,例如内燃机、制冷空调系统等。

本文将介绍热力学中的理想气体循环过程的基本概念、类型及其应用。

1. 理想气体循环过程的基本概念理想气体循环过程是指理想气体在经历一系列变化后,回到起始状态的过程。

理想气体循环过程可分为四个阶段,即吸热、绝热膨胀、放热和绝热压缩。

2. 理想气体循环过程的类型常见的理想气体循环过程包括卡诺循环、布雷顿循环和奥托循环等。

2.1 卡诺循环卡诺循环是理想气体循环过程中效率最高的循环过程。

它由两个绝热过程和两个等温过程组成。

在卡诺循环中,气体从高温热源吸收热量,经过绝热膨胀降温,然后放热给低温热源,在经过绝热压缩升温后回到高温热源。

2.2 布雷顿循环布雷顿循环是蒸汽机常用的循环过程。

它由一个等压加热、一个绝热膨胀、一个等压放热和一个绝热压缩组成。

在布雷顿循环中,气体在等压加热过程中吸收热量,然后经过绝热膨胀、等压放热和绝热压缩,回到初始状态。

2.3 奥托循环奥托循环是内燃机常用的循环过程,也被用于汽油发动机。

它由一个绝热压缩、一个等容加热、一个绝热膨胀和一个等容放热组成。

在奥托循环中,气体在绝热压缩过程中升温,然后通过等容加热,绝热膨胀和等容放热返回初始状态。

3. 理想气体循环过程的应用理想气体循环过程在工程领域中有着广泛的应用。

以下是几个常见应用的例子:3.1 内燃机奥托循环被广泛应用于内燃机中,包括汽油发动机和柴油发动机。

在内燃机中,奥托循环是发动机的工作循环,通过气体的压力和体积变化实现功的转换。

3.2 制冷空调系统制冷空调系统中的制冷循环使用了理想气体循环过程。

在制冷循环中,工质(例如制冷剂)经历蒸发、压缩、冷凝、膨胀等过程,在不同的状况下实现能量的转移,从而实现空调制冷的效果。

3.3 太阳能发电系统太阳能发电系统中的热力循环通常采用卡诺循环。

工程热力学第四章理想气体热力过程

工程热力学第四章理想气体热力过程
详细描述
03
CHAPTER
等容过程
等容过程是指气体在变化的整个过程中,其容积保持不变的过程。
定义
特点
适用场景
气体在等容过程中,气体温度和压力会发生变化,但容积保持不变。
等容过程常用于高压、高温或低温等极端条件下的气体处理。
03
02
01
等容过程定义
在等容过程中,气体吸收的热量等于气体所做的功和气体温度升高所吸收的热量之和。
多变过程的具体形式取决于气体所经历的压力和温度的变化规律。
多变过程定义热力学第一定律 Nhomakorabea热力学第二定律
理想气体状态方程
热效率
多变过程的热力学计算
01
02
03
04
能量守恒定律,用于计算多变过程中气体吸收或释放的热量。
熵增原理,用于分析多变过程中气体熵的变化。
描述气体压力、体积和温度之间的关系,可用于多变过程的计算。
衡量多变过程能量转换效率的指标,通过比较输入和输出的热量来计算。
提高热效率的方法
优化多变过程参数,如压力和温度的变化规律,以减少不可逆损失和提高能量转换效率。
热效率与熵增的关系
根据熵增原理,不可逆过程会导致熵的增加,从而降低热效率。因此,减少不可逆损失是提高多变过程热效率的关键。
热效率计算公式
$eta = frac{Q_{out}}{Q_{in}}$,其中$Q_{out}$为输出热量,$Q_{in}$为输入热量。
计算公式
通过优化气体的初态和终态,以及选择合适的加热和冷却方式,可以提高等容过程的热效率。同时,也可以通过改进设备结构和操作方式来提高热效率。
提高热效率的方法
等容过程的热效率
04
CHAPTER

热力学理想气体状态方程与热力学过程

热力学理想气体状态方程与热力学过程

热力学理想气体状态方程与热力学过程热力学是研究物质的能量转化和能量交换规律的学科。

理想气体是热力学中常用的模型,它的状态方程和热力学过程是热力学理论的基础。

本文将深入探讨热力学理想气体状态方程和热力学过程,并解释它们的概念和关系。

一、理想气体状态方程理想气体状态方程描述了理想气体在不同条件下的状态。

理想气体状态方程的公式为:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的物质量(摩尔数),R为气体常数,T表示气体的温度。

这个方程是根据实验结果和理论推导得出的,它表明在给定的条件下,理想气体的压强、体积和温度是互相关联的。

通过这个方程,我们可以计算理想气体在不同状态下的其他物理量,如摩尔质量、摩尔体积等。

二、热力学过程热力学过程是指气体在不同条件下发生的能量转化和能量交换过程。

常见的热力学过程包括等温过程、绝热过程、等容过程和等压过程。

1. 等温过程等温过程是指气体在恒定温度下发生的过程。

在等温过程中,气体的温度保持恒定,根据理想气体状态方程,可得:P1V1 = P2V2其中,P1和V1分别表示气体初始时的压强和体积,P2和V2分别表示气体最终时的压强和体积。

2. 绝热过程绝热过程是指气体在无热量交换的条件下发生的过程。

在绝热过程中,气体的内能发生变化,但温度不一定保持恒定。

根据绝热条件和理想气体状态方程,可以得到:P1V1^γ = P2V2^γ其中,γ为气体的绝热指数,对于单原子理想气体,γ=5/3;对于双原子理想气体,γ=7/5。

3. 等容过程等容过程是指气体在恒定体积下发生的过程。

在等容过程中,气体的体积保持恒定,根据理想气体状态方程,可得:P1/T1 = P2/T2其中,T1和T2分别表示气体初始时和最终时的温度。

4. 等压过程等压过程是指气体在恒定压强下发生的过程。

在等压过程中,气体的压强保持恒定,根据理想气体状态方程,可得:V1/T1 = V2/T2其中,T1和T2分别表示气体初始时和最终时的温度。

第三章理想气体的性质与热力过程

第三章理想气体的性质与热力过程
2
3-1 理想气体及其状态方程
一、实际气体与理想气体 1. 理想气体: 是一种假象的气体模型,气体分子是
一些弹性的、不占体积的质点,分子之间没有 相互作用力。
2. 实际气体: 实际气体是真实气体,在工程使用范
围内离液态较近,分子间作用力及分子本身体 积不可忽略,热力性质复杂,工程计算主要靠 图表。如:电厂中的水蒸气、制冷机中的氟里 昂蒸汽、氨蒸汽等。
k cp cv
定容加热与定压加热
15
K为比热容比( 绝热指数)
对于同一物质,比热容是常数?
T 1K
(1)定容比热容
c
(2)定压比热容
q
dT
s
16
三、利用比热容计算热量的方法

实验和理论证明,不同气体的比热容要随温度的变化 而变化,一般情况下,气体的比热容随温度的升高而 升高,表达为多项式形式:
第三章 理想气体的性质
1
本章基本要求
1.掌握理想气体的概念及理想气体状态方程的各种 表达形式,并能熟练运用; 2.理解理想气体比热容的概念及影响因素,掌握理 想气体比热容的分类;能够熟练利用平均比热容 表或定值比热容进行热量的计算; 3.掌握理想气体的热力学能及焓的特点,能够进行 理想气体的热力学能、焓及熵变化量的计算; 4.掌握理想气体的四个基本热力过程(即定容、定 压、定温及绝热过程)的状态参数和能量交换特 点及基本计算,以及上述过程在p-v 图和T-s图上 的表示;
R 8314 Rg 或 R MRg M M
Rm=8314[J/kmol.K],与气体种类和状态无关, 而Rg与气体种类有关,与状态无关。
M 为气体的摩尔质量,单位为(kg/kmol)

例:空气的气体常数为

09-3 理想气体的热力学过程

09-3 理想气体的热力学过程

1878年 小部分未烧毁的手稿发表
2016/11/1
Sadi Carnot 1796 - 1832
22
物理化学II
热力学第一定律和热化学
理想气体的热力学过程
卡诺热机:1824 年
理想的假想热机
工作物质:理想气体
高温热源T1 Q1
卡诺 热机
Q1(正) W(负) Q2 (负)
理想情况:
Q1 W
理想气体的热力学过程
卡诺循环(Carnot cycle)
过程2:绝热可逆膨胀由 p2V2Th 到 p3V3Tc (B C)
Q2 0
W2 U2 CV ,m dT
Th Tc
所作功如BC曲线 下面积的负值:
物理化学II
26
热力学第一定律和ot cycle)
理想气体内能和焓都仅仅是温度
的单变量函数
物理化学II
5
热力学第一定律和热化学
理想气体的热力学过程
焦耳实验推论二:
理想气体恒温可逆膨胀,U = Q + W = 0
V2 p1 Q W nRT ln nRT ln V1 p2
焦耳实验推论三:
V 因 (U/V)T =0, C p CV p ( ) p CV nR T
W Qh Qc (Qc 0) Qh Qh
高温热源T1
卡诺 热机

V2 nR(Th Tc ) ln( ) Th Tc Tc V1 1 V2 Th Th nRTh ln( ) V1
i i
平动能
i ,t
2 h n nz ( 2 2) 8m a b c
2
2 x 2
n2 y

理想气体的热力性质及其热力过程

理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第三节 理想气体的热力学能与焓 理想气体的状态方程及比热容确定后,利用热力学第一定律就可方便地求得理想气体的热力学能和焓的计算式。
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-3 例7-3图
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-7 绝热过程在p-v、T-s图上的表示
Cycle Diagram
Text
Text
Text
Text
Text
Cycle name
Add Your Text
Diagram
Your Slogan here
第七章 理想气体的热力性质及其热力过程
二、四个基本热力过程分析 1.定容过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-4 定容过程在p-v、T-s图上的表示
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
2.定压过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
热工设备中实际进行的热力过程均是多变过程,且通常要比理论的多变过程更为复杂。例如,制冷压缩机气缸中制冷剂蒸汽的压缩过程,在整个过程中指数n是变化的。压缩开始时,工质温度低于缸壁温度,工质是吸热的,随着对工质不断地压缩,温度升高,高于缸壁温度后开始放热,瞬时多变指数约从1.4左右变化到1.0左右。制冷压缩机压缩过程的多变指数大小还与制冷剂的种类、制冷剂蒸汽与气缸壁的热交换情况、活塞与气缸壁的密封情况等因素有关。通常,制冷压缩机压缩多变指数要小于活塞式空气压缩机压缩多变指数。对多变指数n是变化的实际过程,热工计算中为简便起见常常这样处理:若n的变化范围不大,则用一个不变的平均多变指数近似地代替实际变化的n;如果n的变化较大,可将实际过程分段,每段近似为n值不变,各力性质及其热力过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理想气体的热力学过程
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔Байду номын сангаас
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
相关文档
最新文档