二阶电路的动态响应实验报告

合集下载

邓 仿真实验2二阶电路响应的三种

邓 仿真实验2二阶电路响应的三种

四、对比分析与结论
1、分析实验: 本实验这要是观察三种阻态下的波形, 由于引入了可变电阻使电路的转换非常方便。 在 进行波形分析时,由于测的是电感的电压和电流,所以主要从电路的电流变化来看,我们很 容易就能理解电感的充放电过程。 2、实验总结: 通过本次实验的学习, 我熟悉了二阶电路微分方程的列写及求解过程, 了解了 RLC 二阶 电路的响应及电路的过阻尼、 临界阻尼和欠阻尼状态, 更熟练地利用仿真软件分析电路的动 态变化。 在实验中我先是用的并联电路但由于公示用错改用了串联电路, 终于得到正确的波 形,在这个实验上也花费了很多的时间。由此也学会,具体题目具体分析,不要一味的套用 公式。
用二阶线性常微分方程描述的电路称为二阶电路, 二阶电路中至少含有两个不同类型的 储能元件。 二阶电路微分方程式一共含有两个二次微分的方程。 分析二阶电路的方法是建立 二阶微分方程,并利用初始条件求解得到电路的响应。在解二阶方程式时,我们通常是先解 齐次方程。 齐次方程的通解一般分为三种情况: (RLC 串联时) 1、S1 ≠ S2 为两个不等的实根: f = A 1 eS 1 t + A 2 eS 2 t 此时,R > 2
L C
=2
10 −3 1000×10 −12
= 2kΩ
1)欠阻尼状态(R=400Ω ,C=1000pF,L=1mH) 如图所示,为欠阻尼状态时的二阶电路图,以及其在方波激励下的波形。 本次实验的测量值为:电感点电流(蓝色)以及电感电压(红色) 。
单个波形放大为:
由波形图可知在欠阻尼的情况下 (方波激励) , 电感两端电压和电流都是振荡的减小的。
二、二阶电路响应的三种(欠阻尼、过阻尼及临界阻尼)状
态轨迹及其特点
一、仿真实验目的

二阶电路的动态响应实验报告

二阶电路的动态响应实验报告

实验二二阶电路的动态响应
1.一、实验目的:
2.学习用实验的方法来研究二阶动态电路的响应。

3.研究电路元件参数对二阶电路动态响应的影响。

4.研究欠阻尼时, 元件参数对α和固有频率的影响。

5.研究RLC串联电路所对应的二阶微分方程的解与元件参数的关系。

二、实验设备与器件
1.低频信号发生器
2.交流毫伏表
3.双踪示波器
4.万用表
5.可变电阻
电阻、电感、电容(电阻100Ω,电感10mH、4.7mH, 电容47nF), 可变电阻(680Ω)。

三、实验内容
1.按图6.8所示电路接线(R1=100ΩL=10mH C=47nF)
调节可变电阻器R2之值, 观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临界阻尼, 最后过渡到欠阻尼的变化过渡过程, 分别定性地描绘、记录响应的典型变化波形。

临界阻尼图过阻尼图欠阻尼图。

实验二阶动态电路响应测试

实验二阶动态电路响应测试
实验五、二阶动态电路的响应测试
一、实验目的 1. 测试二阶动态电路的零状态响应和零输入响应,
了解电路元件参数对响应的影响。 2.观察、分析二阶电路响应的三种状态轨迹及其
特点, 以加深对二阶电路响应的认识与理解。
二、原理说明
一个二阶电路在方波正、负阶跃信号的激励下, 可获得零状态与零输入响应,其响应的变化轨 迹决定于电路的固有频率。
1. 调节可变电阻器R2之值, 观察二阶电路的零输入响应和 零状态响应由过阻尼过渡到临界阻尼,最后过渡到欠阻 尼的变化过渡过程,分别定性地描绘、记录响应的典型 变化波形。
2.调节R2使示波器荧光屏上呈现稳定的欠阻尼响应波形, 定量测定此时电路的衰减常数α和振荡频率ωd。
3.改变一组电路参数,如增、减L或C之值,重复步骤2 的测量,并作记录。随后仔细观察,改变电路参数时, ωd与α的变化趋势,并作记录。
三、实验设备

序号
名称
1 函数信号发生器
型号与规格 数量 备注 1
2 双踪示波器
1 自备
3 动态实验电路板
1 DGJ-03
四、实验内容
动态电路实验板与实验十二相同,如图5-2所示。 利用动态电路板中的元件与开关的配合作用, 组成如图5-1所示的GCL并联电路。
R1
激励
L
C
R2
响应
图5-2
令R1=10KΩ,L=4.7mH,C=1000PF,R2为10KΩ可调电阻。 令脉冲信号发生器的输出为Um=1.5V,f=1KHz的方波脉冲, 通过同轴电缆接至图中的激励端,同时用同轴电缆将激励 端和响应输出接至双踪示波器的YA和YB两个输入口。
根据二阶电路实验电路元件的参数, 计算出

一个二阶电路在方波正、负阶跃信号的激励下,

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

二阶电路响应实验报告

二阶电路响应实验报告

二阶电路响应实验报告二阶电路响应实验报告引言:二阶电路是电路理论中的重要内容之一,它由两个储能元件(电感和电容)和一个耗能元件(电阻)组成。

在实际应用中,二阶电路广泛用于滤波器、振荡器等电子设备中。

本次实验旨在通过对二阶电路的响应特性进行实验研究,深入理解二阶电路的工作原理和特性。

实验目的:1. 了解二阶电路的基本结构和工作原理;2. 掌握二阶电路的频率响应特性;3. 通过实验数据分析,验证理论模型的准确性。

实验器材和仪器:1. 信号发生器;2. 双踪示波器;3. 电压表;4. 电流表;5. 二阶电路实验箱。

实验步骤:1. 搭建二阶低通滤波器电路,并连接信号发生器和示波器;2. 调节信号发生器的频率,记录输入信号和输出信号的幅值;3. 改变输入信号频率,重复步骤2,记录数据;4. 换用高通滤波器电路,重复步骤2和3。

实验结果与分析:在实验中,我们记录了不同频率下输入信号和输出信号的幅值,并绘制了频率响应曲线。

通过观察和分析实验数据,我们得出以下结论:1. 低通滤波器的频率响应特性:在低频段,输出信号的幅值随频率的增加而增加,但增长速率逐渐减慢;在高频段,输出信号的幅值随频率的增加而迅速下降。

这表明低通滤波器对低频信号有较好的传递性能,但对高频信号有较强的衰减能力。

2. 高通滤波器的频率响应特性:与低通滤波器相反,高通滤波器在低频段对信号的传递能力较差,输出信号的幅值较小;而在高频段,输出信号的幅值随频率的增加而增加,但增长速率逐渐减慢。

这说明高通滤波器对高频信号有较好的传递性能,但对低频信号有较强的衰减能力。

3. 实验数据与理论模型的比较:将实验数据与理论模型进行比较,发现它们之间存在一定的偏差。

这可能是由于实验中存在的误差,例如电路元件的参数与理论值之间的差异,以及仪器的测量误差等。

然而,总体上实验数据与理论模型仍然具有较好的一致性,验证了理论模型的准确性。

结论:通过本次实验,我们深入了解了二阶电路的工作原理和频率响应特性。

实验十四二阶动态电路响应及其测试

实验十四二阶动态电路响应及其测试

实验十四二阶动态电路响应及其测试1实验目的1.学会用示波器观测二阶电路的响应曲线,加深对二阶电路的认识。

2.了解电路元件的参数对响应的影响。

3.学会用实验的方法测量二阶电路的衰减系数和振荡频率。

2实验器材1.QY-DT01电源控制屏2.QY-DG02仪器仪表模块I3.函数信号发生器4.QY-DG05通用电路实验模块5.示波器3实验原理1.原理图图1二阶动态电路响应测试原理图二阶电路由二阶微分方程描述,本实验中的二阶电路由电阻、电容、电感元件串联而成,由于电容和电感为动态元件,所以当激励信号发生突变时,电路会经历一个过渡过程,当R、L、C的参数值不同时,过渡过程也不完全相同,在本实验中,我们只以u C的波形作为二阶电路的响应来进行研究。

根据R 、L 、C 取值不同,电路的过渡过程会出现三种情况:当C L R 2>时,电路工作于过阻尼状态;当C L R 2<时,电路工作于欠阻尼状态;当CLR 2=时,电路工作于临界阻尼状态。

当为该电路施加一个脉冲激励时,即能观察到电容电压的波形变化曲线,即电路的零状态响应和零输入响应。

2.预习内容衰减系数的计算公式:LR 2=δ 振荡频率的计算公式:LC10=ω电路的三种过渡情况:(1) 当CLR 2>,即0ωδ>时,响应为非振荡性质,称为过阻尼状态,波形如图16-2所示;图2过阻尼响应曲线(2) 当C LR 2=,即0ωδ=时,响应仍属于非振荡性质,称为临界阻尼状态,临界阻尼响应曲线与过阻尼相同;(3) 当C LR 2<,即0ωδ<时,响应为振荡性质,称为欠阻尼状态,欠阻尼响应曲线如图3所示。

图3欠阻尼响应曲线当R=0时,称为无阻尼状态。

振荡频率和衰减系数的测量方法:调节电路中元件参数,使其工作于欠阻尼振荡状态,用示波器观察电容电压u C 的波形如图4所示:图4欠阻尼响应曲线T10=ω , m m u u T 21ln 1=δ (T=t 2-t 1)4 实验内容在RLC 的串联和并联实验中,我们研究的是二阶电路的稳态响应,但由于电路中存在电容和电感这些动态元件,使得电路从上电开始带进入稳态之间会经历一个过渡过程。

二阶电路地动态响应实验报告材料

二阶电路地动态响应实验报告材料

实验二:二阶电路的动态响应学号:0928402012 姓名:王畑夕 成绩:一、 实验原理及思路图6.1 RLC 串联二阶电路用二阶微分方程描述的动态电路称为二阶电路。

图6.1所示的线性RLC 串联电路是一个典型的二阶电路。

可以用下述二阶线性常系数微分方程来描述:s 2U 2=++c c c u dt du RC dtu d LC (6-1) 初始值为CI C i dtt du U u L t c c 000)0()()0(===-=--求解该微分方程,可以得到电容上的电压u c (t )。

再根据:dtdu ct i cc =)( 可求得i c (t ),即回路电流i L (t )。

式(6-1)的特征方程为:01p p 2=++RC LC 特征值为:20222,11)2(2p ωαα-±-=-±-=LCL R L R (6-2)定义:衰减系数(阻尼系数)LR 2=α 自由振荡角频率(固有频率)LC10=ω 由式6-2 可知,RLC 串联电路的响应类型与元件参数有关。

1.零输入响应动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。

电路如图6.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。

(1) CL R 2>,响应是非振荡性的,称为过阻尼情况。

电路响应为:)()()()()(212112012120t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--=响应曲线如图6.3所示。

可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的过渡过程。

整个放电过程中电流为正值, 且当2112lnP P P P t m -=时,电流有极大值。

(2)CL R 2=,响应临界振荡,称为临界阻尼情况。

电路响应为tt c te LUt i e t U t u ααα--=+=00)()1()( t ≥0响应曲线如图6.4所示。

一阶、二阶电路的动态响应

一阶、二阶电路的动态响应

一阶电路和二阶电路的动态响应学号:1028401083 姓名:赵静怡一、实验目的1、掌握用Multisim研究一阶电路的动态响应特性测试方法2、掌握用Multisim软件绘制电路原理图3、掌握用Multisim软件进行瞬态分析4、深刻理解和掌握零输入响应、零状态响应和完全响应5、深刻理解欠阻尼、临界、过阻尼的意义6、研究电路元件参数对二阶电路动态响应的影响二、实验原理⑴一阶电路含有一个独立储能元件,可以用一阶微分方程来描述的电路,称为一阶电路。

一阶RC电路零输入响应:当U s=0时,电容的初始电压U c(0+)=U0时,电路的响应称为零输入响应。

RCt c U t u -=0)((t>=0)零状态响应:当电容电压的初始值U c (0+)=0时,而输入为阶跃电压u s =U S u(t)时,电路的响应称为零状态响应。

)()1()(t u eU t u RCts c --=⑵二阶电路用二阶微分方程描述的动态电路称为二阶电路。

RLC 串联二阶电路如上图就是一个典型的二阶电路,可以用下述二阶线性常系数微分方程来描述:s c cc U u dt du RC dtu d LC =++22 衰减系数(阻尼系数)LR2=α 自由振荡角频率(固有频率)LCw o 1=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=<=>,称为无阻尼情况,响应是等幅振荡性的0伟欠阻尼情况,响应是振荡性的,陈2临界阻尼情况,响应临界振荡,称为2为过阻尼情况响应是非振荡性的,称,2RCLR CLR CLR三、实验内容:1.用Multisim研究一阶电路的动态响应(1)实验电路(a) (b) (c)(2)初始条件如图所示,t=0电路闭合,分别仿真出电容上电压(从零时刻开始)的波形,说明各属于什么响应?三种情况下分别测量电容电压达到3v所用的时间。

①图(a)为零状态相应,电容上电压的波形如下图:由上图可知,电容电压达到3v所用的时间约为91.6146μm②图(b)为零输入相应,电容上电压的波形如下图:由上图可知,电容电压达到3v所用的时间为51.1196μm ③图(c)为全响应,电容上电压的波形如下图:由上图可知,电容电压达到3v 所用的时间为40.6082μm(3)写出三种情况下电容电压随时间的函数表达式,并分别计算出电容电压为3V 时的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二二阶电路的动态响应
一、实验目的:
1.学习用实验的方法来研究二阶动态电路的响应。

2.研究电路元件参数对二阶电路动态响应的影响。

3.研究欠阻尼时,元件参数对α和固有频率的影响。

4.研究RLC串联电路所对应的二阶微分方程的解与元件参数的关系。

二、实验设备与器件
1.低频信号发生器
2.交流毫伏表
3.双踪示波器
4.万用表
5.可变电阻
6.电阻、电感、电容(电阻100Ω,电感10mH、4.7mH, 电容47n F),可变电阻(680Ω)。

三、实验内容
1.按图6.8所示电路接线(R1=100ΩL=10mH C=47nF)
2.调节可变电阻器R2之值,观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临
界阻尼,最后过渡到欠阻尼的变化过渡过程,分别定性地描绘、记录响应的典型变化波形。

临界阻尼图
过阻尼图
欠阻尼图。

相关文档
最新文档