2019年高考数学押题卷及答案(共五套)

合集下载

2019年高等学校招生全国统一考试押题卷理科数学试卷(一)及解析

2019年高等学校招生全国统一考试押题卷理科数学试卷(一)及解析

绝密 ★ 启用前2019年普通高等学校招生全国统一考试押题卷理科数学(一)本试题卷共14页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4 C .()3,2- D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .2.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店班级 姓名 准考证号 考场号 座位号添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516D .3132【答案】C 【解析】1i =, (1)21,2x x i =-=,(2)()221143,3x x x i =--=-=, (3)()243187,4x x x i =--=-=, (4)()28711615,5x x x i =--=-=, 所以输出16150x -=,得1516x =,故选C . 4.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日共织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第十日所织尺数为( ) A .9 B .10 C .11 D .12【答案】B【解析】设第一天织布1a 尺,从第二天起每天比第一天多织d 尺,由已知得:1111721284715a d a d a d a d +=⎧⎨+++++=⎩,解得11a =,1d =,∴第十日所织尺数为101910a a d =+=,故选B .5.已知0.41.9a =,0.4log 1.9b =, 1.90.4c =,则( )A .a b c >>B .b c a >>C .a c b >>D .c a b >>【答案】C【解析】0.401.9 1.91a =>=,0.40.4log 1.91log 0b =<=, 1.9000.40.41c <=<=,a c b ∴>>,故选C .6.已知函部分图像如图所示,则函数()()cos g x A x ωϕ=+图像的一个对称中心可能为( )A .()2,0-B .()1,0C .()10,0D .()14,0【答案】C【解析】由题意得A =()26282ωωππ=⨯+⇒=,把点(2,-代入方程可得34ϕπ=-()g x 的一个对称中心为()10,0,故选C .7.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113fx x b x a c a c x =+++-+无极值点,则角B 的最大值是( )A B C D 【答案】C【解析】函数()()3222113f x x b x a c a c x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=-()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦C .8.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B,当P ,A ,B 不共线时,PAB △面积的最大值是( ) A.BC.3D.3【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=选A .10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()ABC.19D【答案】B【解析】如图所示,1S=正,23924Sπ⎛⎫=π=⎪⎝⎭圆则油(油滴的大小忽略不计)B.11()()()1g x f x k x=-+在(],1-∞恰有两个不同的零点,则实数k的取值范围是()A.[)1,3B.(]1,3C.[)2,3D.()3,+∞【答案】A【解析】函数()()()1g x f x k x=-+在(],1-∞恰有两个不同的零点,等价于()y f x=与()1y k x=+()1y k x=+的图象是过定点()1,0-斜率为k的直线,当直线()1y k x=+经过点()1,2时,直线与()y f x=的图象恰有两个交点,此时,1k=,当直线经过点()0,3时直线与()y f x=的图象恰有三个交点,直线在旋转过程中与()y f x=的图象恰有两个交点,斜率在[)1,3内变化,所以实数k的取值范围是[)1,3.12.已知椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,O 为原点,点P 是抛物线准线上一动点,点A 4AF =,则PA PO +的最小值为( )A .B .C .D .【答案】A【解析】椭圆2215y x +=,2514c ∴=-=,即2c =,则椭圆的焦点为()0,2±,不妨取焦点()0,2,抛物线2x ay =44a y ⎛⎫= ⎪⎝⎭,∴抛物线的焦点坐标为0,4a ⎛⎫⎪⎝⎭,椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,24a∴=,即8a =,则抛物线方程为28x y =,准线方程为2y =-,4AF =,由抛物线的定义得:A ∴到准线的距离为4,24y +=,即A 点的纵坐标2y =,又点A 在抛物线上,4x ∴=±,不妨取点A 坐标()4,2A ,A 关于准线的对称点的坐标为()4,6B -PA PO PB PO OB +=+≥,即O ,P ,B 三点共线时,有最小值,最小值为OB ====,故选A .第Ⅱ卷本卷包括必考题和选考题两部分。

2019高考数学押题卷及答案解析

2019高考数学押题卷及答案解析

山东省2019年高考数学押题试卷考试范围:学科内综合,第二轮复习用卷。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分,考试时间120分钟。

参考公式:锥体的体积公式:V=3Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ):如果事件A 、B 独立,那么P (AB )=P (A )·P (B )。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈-<≤-=N x x M x,2110log 11的真子集的个数是 ( )A .902B .9022-C .9121-D .1290-2.已知点A (2,3),B (5,4),C (7,10),若AP →=AB →+λAC →(λ∈R ),则当点P 在第三象限时,λ的取值范围是 ( ) A .(-1,0) B .(-1,+∞) C .(0,1) D .(-∞,-1)3.设a 、b 、c 、d ∈R ,若a +b ic +d i为实数,则 ( )A .bc +ad ≠0B .bc -ad ≠0C .bc -ad =0D .bc +ad =04.等比数列{}n a 前项的积为n T ,若156a a a 是一个确定的常数,那么数列789,,T T T ,10T 中也是常数的项是 ( ) A .7TB .8TC .9TD .10T5.(理)已知(2x 2 - x p )6的展开式中常数项为2027,那么正数p 的值是 ( )A .1B .2C .3D .4(文)如果函数f(x)=⎩⎨⎧>-≤1111x x 则不等式()0xf x ≤的解集为 ( ) A .[]1,1-B .[]()1,01,-+∞C .()()1,,1+∞-∞-D .()()0,1,1-∞-6.已知函数()()1x xf x k a a -=--()0,1a a >≠为奇函数,且为增函数, 则函数x y a k =+的图象为( )7.抛物线y x C 2:2=的焦点为F ,过C 上一点),1(0y P 的切线l 与y 轴交于A ,则AF =( ) A .1B .12C .2D .148.如果执行右面的程序框图,输出的A 为 ( ) A .2047 B .2049 C .1023 D .10259.已知函数f(x)=)(23R c b a cx bx x ∈++、、的图象如图所示,则下列关于b 、c符号判断正确的是()A .b<0 c<0 B .b>0 c<0 C .b<0 c>0 D .b>0 c>010.(理)如图在正方体ABCD —A 1B 1C 1D 1中,点E 1,F 1分别是线段A 1B 1,A 1C 1的中点,则直线BE 1与AF 1所成角的余弦值是 ( )A .3010 B .12 C .3015 D .1510(文)一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由这样的正方体组成的个数为 ( )A .12个B .13个C .14个D .18个11.已知抛物线22y px =(0)p >与双曲线22221x y a b-=(0,0)a b >>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为( ) A1B1C.2D.2+12.(理)已知函数1()lg ()2x f x x =-有两个零点21,x x ,则有 ( ) A .021<x x B .121=x x C .121>x x D .1021<<x x (文)已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则如结论中错误的是 ( ) A .0<a<1 B .b>1 C .ab=1 D .2a b +≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分。

【新课标Ⅲ卷】2019届高考数学(理)押题预测卷(含答案解析)

【新课标Ⅲ卷】2019届高考数学(理)押题预测卷(含答案解析)

2019年高考押题预测卷01【新课标Ⅲ卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.己知集合{|1}A x x =≤-,{|0}B x x =>,则()A B =R ðA .(1,)-+∞B .(,0]-∞C .[1,0)-D .(1,0]-2.已知i 为虚数单位,z 是z 的共轭复数,若复数1i1iz +=-,则z z ⋅= A .1-B .iC .1D .43.已知tan 3α=,则cos(2)2απ+= A .45-B .35-C .35D .454.已知双曲线221y x m-=,则实数m 的取值范围为A .1(,)2+∞B .[1,)+∞C .(1,)+∞D .(2,)+∞5.若2(2nx的展开式的所有二项式系数之和为32,则展开式中的常数项为 A .10-B .5-C .5D .106.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为A .23岁B .32岁C .35岁D .38岁7.已知某几何体的俯视图是如图所示的边长为1的正方形,正视图与侧视图都是边长为1的正三角形,则此几何体的体积为A.6B .13C.3D.28.函数ln ||()x f x x=的大致图象为A B C D9.若x ,y 满足约束条件212x y x y y +≥⎧⎪-≤⎨⎪≤⎩,则12x y +的最小值为A .12-B .1C .74D .410.已知直线l 与圆22:4O x y +=相切于点(3,1)-,点P 在圆22:40M x x y -+=上,则点P 到直线l 的距离的最小值为 A .1BCD .211.在三棱锥D ABC -中,AC BC BD AD ====,且线段AB 的中点O 恰好是三棱锥D ABC -的外接球的球心.若三棱锥D ABC -D ABC -的外接球的表面积为 A .64πB .16πC .8πD .4π12.已知对任意的[1,e]x ∈,总存在唯一的[1,1]y ∈-,使得2ln e 0yx y a +-=成立,其中e 为自然对数的底数,则实数a 的取值范围为 A .[1,e]B .1(1,e 1)e++C .1(,1e]e+D . 1(1,e]e+第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量(1,2)=a ,(3,)t =b ,若()+⊥a b a ,则t =________________.14.已知函数()(1)e xf x ax =+在点(0,(0))f 处的切线经过点(1,)1-,则实数a =________________.15.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆C 外一点P 满足212PF F F ⊥,且212||||PF F F =,线段1PF ,2PF 分别交椭圆C 于点A ,B ,若1||||P A A F =,则22||||BF PF =________________. 16.已知数列{}n a 满足11a =,*1()2nn n a a n a +=∈+N ,数列{}n b 是单调递增数列,且1b λ=-,1n b +=*(2)(1)()n nn a n a λ+-∈N ,则实数λ的取值范围为________________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知2222sin sin sin b c a C Abc B+--=. (Ⅰ)求角B 的大小;(Ⅱ)若ABC △ABC △周长的最小值. 18.(本小题满分12分)为响应低碳绿色出行,某市推出“新能源分时租赁汽车”,其中一款新能源分时租赁汽车每次租车收费的标准由以下两部分组成:①根据行驶里程按1元/公里计费;②当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费(租车时间不足1分钟按1分钟计算).已知张先生从家到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间20[],60t ∈(单位:分钟).由于堵车、红绿灯等因素,每次路上租车时间t 是一个变量,现统计了张先生50次路上租车的时间,整理后得到下表:(Ⅰ)求张先生一次租车费用y (元)与租车时间t (分钟)的函数关系式;(Ⅱ)公司规定员工上下班可以免费乘坐公司班车,若不乘坐公司班车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司班车还是选择新能源分时租赁汽车? (Ⅲ)若张先生一次租车时间不超过40分钟为“路段畅通”,将频率视为概率,设ξ表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求ξ的分布列与数学期望.19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面A B C D 是直角梯形,90BAD CDA ∠=∠=︒,PA ⊥平面ABCD ,1PA AD DC ===,2AB =. (Ⅰ)证明:平面PBC ⊥平面PAC ;(Ⅱ)若(21)PQ PB =-,求二面角P AC Q --的大小. 20.(本小题满分12分)已知点M ,N 在抛物线2:2(0)C y px p =>上,线段MN 的中点的纵坐标为4,直线MN 的斜率为12. (Ⅰ)求抛物线C 的方程;(Ⅱ)已知点(1,2)P ,A ,B 为抛物线C (原点除外)上不同的两点,直线PA ,PB 的斜率分别为1k ,2k ,且12112k k -=,记抛物线C 在点A ,B 处的切线交于点S ,若线段AB 的中点的纵坐标为8,求点S 的坐标.21.(本小题满分12分)已知函数()e ()xf x ax a =-∈R 的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线的斜率为2-.(Ⅰ)求a 的值及函数()f x 的单调区间;(Ⅱ)设2()31g x x x =-+,证明:当0x >时,()()f x g x >恒成立.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C 的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩,其中α为参数,在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点P 的极坐标为(,)4π,直线l 的极坐标方程为sin ()04ρθπ-+=. (Ⅰ)求曲线C 的普通方程与直线l 的直角坐标方程;(Ⅱ)若Q 是曲线C 上的动点,M 为线段PQ 的中点,求点M 到直线l 的距离的最大值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()|1|||f x x x m =++-.(Ⅰ)若不等式()3f x ≥对任意的x ∈R 恒成立,求实数m 的取值范围;(Ⅱ)若关于x 的不等式2()2f m m x x -≥-的解集非空,求实数m 的取值范围.。

2019年高考押题卷文科数学(二)含答案解析

2019年高考押题卷文科数学(二)含答案解析

文 科 数 学(二)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61 6.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( )A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e x f x x x =-,关于()f x 的性质,有以下四个推断: ①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数;③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( ) A .()0,2B .()1,6C.(D .()0,612.已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是( ) A .HF //BE B.2BM =C .∠MBND .△MBN第Ⅱ卷本卷包括必考题和选考题两部分。

2019年最新(统考)全国卷高考押题卷文科数学(2)及答案解析

2019年最新(统考)全国卷高考押题卷文科数学(2)及答案解析
3.为了得到函数 的图像,可将函数 的图像()
A.向右平移 个单位长度B.向右平移 个单位长度
C.向左平移 个单位长度D.向左平移 个单位长度
4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是()
A. , B.1, C.1, D. ,
10.已知函数 ,关于 的性质,有以下四个推断:
① 的定义域是 ;
②函数 是区间 上的增函数;
③ 是奇函数;
④函数 在 上取得最小值.
其中推断正确的个数是()
A.0B.1C.2D.3
11.已知椭圆的标准方程为 , 为椭圆的左右焦点,O为原点,P是椭圆在第一象限的点,则 的取值范围()
A. B. C. D.
5.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V,求其直径d,公式为 .如果球的半径为 ,根据“开立圆术”的方法求球的体积为()
A. B. C. D.
6.若变量 满足不等式组 ,则 的整数解 的棱长为1,E为棱 的中点,F为棱 上的点,且满足 ,点F、B、E、G、H为面MBN过三点B、E、F的截面与正方体 在棱上的交点,则下列说法错误的是()
A.HF//BE
B.
C.∠MBN的余弦值为
D.△MBN的面积是
第Ⅱ卷
本卷包括必考题和选考题两部分。第13~21题为必考题,每个试题考生都必须作答。第22~23题为选考题,考生根据要求作答。
2.【答案】D
【解析】设复数 , ,因为 ,所以 ,所以 ,所以可得 ,解得 ,所以 ,所以复数z在复平面内对应点 在虚轴上.故选D.

天津市2019年高考数学压轴卷文含解析

天津市2019年高考数学压轴卷文含解析

天津市2019年高考数学压轴卷 文(含解析)一、选择题(共8题,每题5分,共40分)1.()Z M 表示集合M 中整数元素的个数,设集合{}18A x x =-<<,{}5217B x x =<<,则()Z A B =( ) A .3B .4C .5D .62.i 为虚数单位,若复数()()1i 1i m ++是纯虚数,则实数m =( ) A .1-B .0C .1D .0或13.阅读如图的框图,运行相应的程序,若输入n 的值为6,则输出S 的值为A.73 B. 94 C. 76 D. 98 4.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为()1,3,则a 的取值范围为( )A .()1,1-B .()0,1C .()(),11,-∞+∞ D .(]1,0-5.已知向量2=a ,1=b ,()22⋅-=a a b ,则a 与b 的夹角为( ) A .30︒B .60︒C .90︒D .150︒6.已知棱长为1的正方体被两个平行平面截去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积为( )A .23B.3CD.7.已知π1cos 25α⎛⎫-= ⎪⎝⎭,则cos2α=( )A .725B .725-C .2325D .2325-8.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b C a =,12n n T c c c =+++,()n ∈*N ,则当2019n T <时,n 的最大值是( )A .9B .10C .11D .12二、填空题:本大题共有6小题,每小题5分,共30分.9.已知两点)2,2(),2,0(-N M 以线段MN 为直径的圆的方程为________________.10.已知函数()cos 22π2πy x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π6x =对称,则ϕ等于_____.11.已知长方体的长、宽、高分别为2,1,2,则该长方体外接球的表面积为__________. 12.在直角坐标系xoy 中,直线l 的参数方程为32545x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=.直线l 截圆C 的弦长等于圆Ca 的值 .13.已知F 为双曲线()2222:10,0x y C a b a b-=>>的左焦点,直线l 经过点F ,若点(),0A a ,()0,B b 关于直线l 对称,则双曲线C 的离心率为__________.14.函数()()ln 2e 4e x a a x f x x x --=-+++,其中e 为自然对数的底数,若存在实数0x 使()03f x =成立,则实数a 的值为三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15) (本小题满分13分)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且B A c b 2,1,3=== (Ⅰ)求a 的值; (Ⅱ)求)62cos(π+A 的值.16(本小题满分13分)某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据()()12,,,,6i i x y i =如下表所示(1)试根据4月2日、3日、4日的三组数据,求y 关于x 的线性回归方程ˆˆˆybx a =+,并预测4月6日的产品销售量m ;(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件B 的概率. 参考公式:ˆˆˆybx a =+, 其中()()1122211(ˆ)n niii i i i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-, 17.(本小题满分13分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2AB BC CD DA ====,1PA =,120BAD ∠=︒,E 为BC 的中点.(1)求证:AE ⊥平面PAD ;(2)若F 为CD 的中点,求点D 到平面PEF 的距离. 18.(本小题满分13分)已知抛物线C 的方程()220y px p =>,焦点为F ,已知点P 在C 上,且点P 到点F 的距离比它到y 轴的距离大1. (1)试求出抛物线C 的方程;(2)若抛物线C 上存在两动点M ,N (M ,N 在对称轴两侧),满足OM ON ⊥(O 为坐标原点),过点F 作直线交C 于A ,B 两点,若AB MN ∥,线段MN 上是否存在定点E ,使得4EM EN AB⋅=恒成立?若存在,请求出E 的坐标,若不存在,请说明理由.19.(本小题满分14分)数列{}n a 是等比数列,公比大于0,前n 项和nS ()n N *∈,{}nb 是等差数列,已知112a =,32114a a =+,3461a b b =+,45712a b b =+.(Ⅰ)求数列{}n a ,{}n b 的通项公式n a ,n b ; (Ⅱ)设{}n S 的前n 项和为n T ()n N *∈,(i )求n T ; (ii )证明:()21121311<⋅-∑=+++++ni i i i i i b b b b T .20.(本小题满分14分)已知函数()()22e ,0xx f x x m m m=+-∈≠R ,(1)求函数()f x 的单调区间和()f x 的极值;(2)对于任意的[]1,1a ∈-,[]1,1b ∈-,都有()()e f a f b -≤,求实数m 的取值范围. 1【答案】C【解析】∵()1,8A =-,517,22B ⎛⎫= ⎪⎝⎭,∴5,82AB ⎛⎫= ⎪⎝⎭,∴()5Z AB =.故选C .2【答案】C【解析】∵()()()()1i 1i 11i m m m ++=-++是纯虚数,∴1010m m -=⎧⎨+≠⎩,即1m =,故选C .3【答案】A【解析】由题意,模拟执行程序,可得:,,满足条件,,满足条件,, 满足条件,,不满足条件,退出循环,输出S 的值为.故选:A . 4【答案】A【解析】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则1a -<,此时a 的范围为(]1,0-,当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A . 5【答案】B【解析】∵()222422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b . 设a 与b 的夹角为θ,则1cos 2θ⋅==a b a b , 又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒. 6【答案】B【解析】由三视图可得,该几何体为如图所示的正方体1111ABCD A B C D -截去三棱锥1D ACD -和三棱锥111B A B C -后的剩余部分.其表面为六个腰长为1的等边三角形,所以其表面积为22161232⨯⨯+=+B .所以其表面积为22161232⨯⨯+=+B .7【答案】C【解析】由π1cos 25α⎛⎫-= ⎪⎝⎭,得1s i n 5α=,又由2123cos212sin 122525αα=-=-⨯=.故选C .8.【答案】A 【解析】{}n a 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b 是以1为首项,2为公比的等比数列,12n n b -∴=,112121242n n n n b b b T c c c a a a a a a a -∴=+++=+++=++++()()()()()1121122124122121242n n n --=⨯-+⨯-+⨯-++⨯-=++++-11222212nn n n +-=⨯-=---,2019n T <,1222019n n +∴--<,解得9n ≤.则当2019n T <时,n 的最大值是9,故选A . 9【答案】【解析】由题得圆心的坐标为(1,0),|MN|=所以圆的半径为所以圆的方程为.故答案为:10【答案】π3-【解析】函数()cos 22π2πy x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π6x =对称,2π6πk ϕ∴⨯+=,因为π22πϕ-<<,求得3πϕ=-,故答案为π3-. 11【答案】【解析】由题意,长方体的长宽高分别为,所以其对角线长为,求得球的半径为,利用球的表面积公式,即可求解. 【详解】由题意,长方体的长宽高分别为,所以其对角线长为,设长方体的外接球的半径为,则,即,所以球的表面积为.12【答案】32a =或3211. 【解析】 圆C 的极坐标方程转化成直角坐标方程为:22224a a x y ⎛⎫+-= ⎪⎝⎭,直线l 截圆C 的弦长等于圆C 的半径长的倍,∴3812522aa d -==⋅,整理得23165a a -=,利用平方法解得32a =或3211131【解析】因为F 为双曲线()2222:10,0x y C a b a b-=>>的左焦点,所以(),0F c -,又点(),0A a ,()0,B b 关于直线l 对称,00AB b bk a a-==--, 所以可得直线l 的方程为()ay x c b=+, 又A ,B 中点在直线l 上,所以22b a a c b ⎛⎫=+ ⎪⎝⎭,整理得222b a ac =+,又222b c a =-,所以22220c ac a --=,故2220e e --=,解得1e =1e >,所以1e =+故答案为1e =+ 14【答案】ln21--【解析】由()()ln 2e 4e x a a x f x x x --=-+++,可令()()ln 2g x x x =-+, ()11122x g x x x +'=-=++,故()()l n 2g x x x =-+在()2,1--上是减函数,()1,-+∞上是增函数,故当1x =-时,()g x 有最小值()11g -=-,而e 4e 4x a a x --≥+,(当且仅当e 4e x a a x --=,即ln2x a =+时成立), 故()3f x ≥(当且仅当等号同时成立时,等式成立), 故ln21x a =+=-,即ln21a =--.15(Ⅰ) 解:由B A 2=,知B B B A cos sin 22sin sin ==,由正、余弦定理得acb c a b a 22222-+⋅=.因为1,3==c b ,所以122=a ,则32=a .(Ⅱ) 解:由余弦定理得31612192cos 222-=-+=-+=bc a c b A . x§]由于π<<A 0,所以322911cos 1sin 2=-=-=A A故7sin 2cos29A A ==- 1837246sin2sin 6cos2cos )62cos(-=-=+πππA A A16【答案】(1)41;(2)23.【解析】(1)由题设可得111012113x ++==,322935323y ++==, 则()()()()()31322221ˆ0013133011iii ii x x y y bx x ==--⨯+-⨯-+⨯===++-∑∑.所以32ˆ11ˆ31ay bx =-=-⨯=-, 则回归直线方程为ˆ31yx =-,故314141m =⨯-=.(2)从6天中随机取2天的所有可能结果为:{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}16,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}26,A A ,{}34,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A 共15种,其中相邻两天的结果为{}12,A A ,{}23,A A ,{}34,A A ,{}45,A A ,{}56,A A 共5种, 所以选取的两组数据恰好是不相邻两天的事件B 的概率()521153P B =-=.17【答案】(1)详见解析;(2 【解析】(1)如图,连接AC .由条件知四边形ABCD 为菱形,且120BAD ∠=︒, ∴60BAC ∠=︒,∴ABC △为正三角形. ∵E 为BC 的中点,∴AE BC ⊥. 又∵AD BC ∥,∴AE AD ⊥.又∵PA ⊥底面ABCD ,AE ⊂底面ABCD ,∴PA AE ⊥. ∵PAAD A =,∴AE ⊥平面PAD .(2)设AC 交EF 于点G ,连接PG ,DE ,则G 为EF 的中点.易知AE AF =,则Rt Rt PAE PAF ≅△△,∴PE PF =,∴PG EF ⊥. 连接BD ,∵2AB BC CD DA ====,1PA =,∴BD ==3342AG AC ==,∴12EF BD =PG ==∴12PEF S EF PG =⋅=△.1111sin1202442DEF CDE BCD S S S BC CD ===⨯⨯⨯︒=△△△设点D 到平面PEF 的距离为h ,又PA ⊥底面ABCD , 由P DEF D PEF V V --=,得11133h =,解得h =故点D 到平面PEF18【答案】(1)24y x =;(2)存在,E 的坐标为()4,0.【解析】(1)因为P 到点F 的距离比它到y 轴的距离大1,由题意和抛物线定义12p=, 所以抛物线C 的方程为24y x =. (2)由题意0MN k ≠,设211,4y M y ⎛⎫ ⎪ ⎪⎝⎭,()22221,4y N y y y ⎛⎫> ⎪ ⎪⎝⎭,由O M O N ⊥,得1216y y =-,直线124:MN k y y =+, 2111244y y y x y y ⎛⎫-=- ⎪ ⎪+⎝⎭,整理可得()1244y x y y =-+, 直线:AB ①若斜率存在,设斜率为k ,()1y k x =-,与C 联立得2440ky y k --=,2141AB k ⎛⎫==+ ⎪⎝⎭, 若点E 存在,设点E 坐标为()00,x y ,01EM EN y y ⋅=-()2120120211y y y y y y k ⎛⎫⎡⎤=+--++ ⎪⎣⎦⎝⎭200241116y y k k ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,4EM EN AB⋅=时,2041616y y k-+=, 解得00y =或04y k=(不是定点,舍去) 则点E 为()4,0经检验,此点满足24y x <,所以在线段MN 上, ②若斜率不存在,则4AB =,4416EM EN ⋅=⨯=,此时点()4,0E 满足题意,综合上述,定点E 为()4,0.19【答案】(Ⅰ)12n n a =,1n b n =-(Ⅱ)(i )112n n T n =-+ 【解析】(Ⅰ)解:设数列{}n a 的公比为q (0q >)121112114a a qa q ⎧=⎪⎪⎨⎪=+⎪⎩,21120q q --=,=-1q (舍)或=2q ,12n n a = 设数列{}nb 的公差为d111182(4)1116316b d b d⎧=⎪+⎪⎨⎪=⎪+⎩ 114431616b d b d +=⎧⎨+=⎩ 101b d =⎧⎨=⎩ ,1n b n =-. (Ⅱ)解:112212(1)1112n n n S -==-- 211111(111)()(1)122222n n n n T n n =+++-+++=--=-+ 111132112()(2)()(2)(1)(1)2i i i i i i i i i i T b b i b b i i i i ++++++++-⋅+-⋅+==⋅⋅+⋅+⋅1112(1)2i i i i +=-⋅+⋅ 1132231112()111111()()()122222322(1)2n i i i n n i i i T b b b b n n ++++=++-⋅=-+-++-⋅⋅⋅⋅⋅⋅+⋅∑ 11112(1)22n n +=-<+⋅ 20【答案】(1)见解析;(2)2,,⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭. 【解析】(1)∵()22e 1x f x x m =+-',()22e x f x m''=+,其中()f x ''是()f x '的导函数. 显然,()0f x ''>,因此()f x '单调递增,而()00f '=,所以()f x '在(),0-∞上为负数,在()0,+∞上为正数,因此()f x 在(),0-∞上单调递减,在()0,+∞上单调递增,当0x =时,()f x 取得极小值为()01f =,无极大值.∴()f x 的极小值为1,无极大值.单增区间为()0,+∞,单减区间为(),0-∞.(2)依题意,只需()()max min e f x f x -≤,由(1)知,()f x 在[]1,0-上递减,在[]0,1上递增,∴()f x 在[]1,1-上的最小值为()01f =,最大值为()1f 和()1f -中的较大者,而()()22111111e 11e 20e e f f m m ⎛⎫⎛⎫--=+--++=--> ⎪ ⎪⎝⎭⎝⎭, 因此()()11f f >-,∴()f x 在[]1,1-上的最大值为21e 1m +-,所以21e 11e m +--≤,解得m ≥或m ≤∴实数m 的取值范围是2,,22⎛⎡⎫-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭.。

2019年全国普通高等院校统一招生考试数学试卷(终极押题江苏卷)+word版含解析

2019年全国普通高等院校统一招生考试数学试卷(终极押题江苏卷)+word版含解析

数学I注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合,,则_________________【答案】【解析】,本题正确结果:2.已知复数满足,则________.【答案】【解析】解:因为所以所以.3.甲、乙两位同学的5次考试成绩如茎叶图所示,则成绩较稳定的那位学生成绩的方差为______.【答案】2【解析】由茎叶图可得:甲的平均成绩为,所以方差为;乙的平均成绩为,所以方差为;因此,所以甲稳定,方差为2.故答案为24.执行如下的程序框图,最后输出结果为k=10,那么判断框应该填入的判断是,则实数的取值范围是______.【答案】(36,45]【解析】由题意,模拟程序的运行,根据循环结构的程序框图的计算公式,可得当时,求得,而当时,求得,要使的输出的结果为,判断框应该填入的判断是时,则.5.函数的定义域为______.【答案】【解析】要使原函数有意义,则:;;原函数的定义域为:.故答案为:.6.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止.已知铜钱是直径为3的圆,中间有边长为1的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则油正好落入孔中的概率是________.【答案】【解析】由题意可知铜钱所在圆的半径为,所以其面积为,又由中间边长为的正方形,则正方形的面积为,由几何概型的概率公式可得概率为.7.函数的最小正周期为,则函数在内的值域为______.【答案】【解析】函数的最小正周期为,∴,,则在内,,,故答案为:.8.已知点是双曲线的右焦点,过原点且倾斜角为的直线与的左、右两支分别交于,两点,且,则的离心率为__________..【答案】【解析】解:设F'为双曲线的左焦点,连接AF',BF',由•0,可得AF⊥BF,可得四边形AFBF'为矩形,又∠BOF=,∴∠BF'F=∵F'F=2c,∴BF=c,BF'=由双曲线定义可知:BF'- BF=2a即∴e=故答案为:9.函数满足,且在区间(-2,2]上,,则的值为_________【答案】1【解析】因为,所以函数的最小正周期为,所以,又在区间(-2,2]上,,所以,所以.故答案为110.如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.【答案】【解析】设,,当时,取得最大值,此时为中点,经过点,且,,所以可求,,因此易求,,,,又∵,∴.11.已知,,若成立,则实数t的取值范围是______.【答案】【解析】解:根据题意,,则,则函数为偶函数,当时,,其导数,则函数在为增函数,则,解可得:,即t的取值范围为;故答案为:12.过点作圆()的切线,切点分别为、,则的最小值为________【答案】【解析】圆C:(xm)2+(y﹣m+1)2=1的圆心坐标为(m,m﹣1),半径为1,∴PC,PA=PB,cos∠APC,∴cos∠APB=2()2﹣1=1,∴•(PC2﹣1)×(1)=﹣3+PC23+23+2,当且仅当PC时取等号,∴的最小值为23.故答案为:23.13.已知在中,角所对的边分别为.为上一点且则的最小值为__________ . 【答案】【解析】,,,又,故即,所以.又,当且仅当,时等号成立,故的最小值为,填.14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44二、解答题(本大题共6小题,计90分.解析应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内)15.如图所示,在直三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB⊂平面ABB1 A1,DE⊄平面ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1 = B1,所以A1B1⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C = B1,A1B1,B1C ⊂平面A1B1C,所以BC1⊥平面A1B1C.16.已知,为钝角且,.求的值;求的值.【答案】(1)-2;(2)【解析】(1)由题意,因为,为钝角,所以,所以,所以.(2)因为,为钝角,且,.,,,,,..17.某公司拟购买一块地皮建休闲公园,如图,从公园入口沿,方向修建两条小路,休息亭与入口的距离为米(其中为正常数),过修建一条笔直的鹅卵石健身步行带,步行带交两条小路于、处,已知,.(1)设米,米,求关于的函数关系式及定义域;(2)试确定,的位置,使三条路围成的三角形地皮购价最低.【答案】(1),定义域为 (2)见解析【解析】(1)法一:由得,且由题可知所以得即所以由得定义域为法二:由得,设中,由正弦定理所以同理可得由即整理得,由得定义域为(2)设三条路围成地皮购价为元,地皮购价为元/平方米,则(为常数),所以要使最小,只要使最小由题可知定义域为令则当且仅当即时取等号所以,当时,最小,所以最小,此时y=答:当点距离点米,F距离点米远时,三条路围成地皮购价最低18.椭圆的左、右焦点分别为,右顶点为A,上顶点为B,且满足向量.(1)若,求椭圆的标准方程;(2)设为椭圆上异于顶点的点,以线段PB为直径的圆经过F1,问是否存在过F2的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.【答案】(1);(2)存在满足条件的直线,斜率.【解析】(1)易知,因为,所以为等腰直角三角形,所以b=c,由可知,故椭圆的标准方程为:;(2)由已知得,设椭圆的标准方程为,的坐标为,因为,所以,由题意得,所以,又因为在椭圆上,所以,由以上两式可得,因为不是椭圆的顶点,所以,故,设圆心为,则,圆的半径假设存在过的直线满足题设条件,并设该直线的方程为,由相切可知,所以,即,解得故存在满足条件的直线.19.已知函数,其中为自然对数的底数,.(1)讨论函数的单调性,并写出相应的单调区间;(2)已知,,若对任意都成立,求的最大值;(3)设,若存在,使得成立,求的取值范围.【答案】(1) 见解析(2) (3)或.【解析】(1)由,知.若,则恒成立,所以在上单调递增;若,令,得,当时,,当时,,所以在上单调递减;在上单调递增.综上,增区间是,无减区间,增区间是,减区间是(2)由(1)知,当时,.因为对任意都成立,所以,所以.设,(),由,令,得,当时,,所以在上单调递增;当时,,所以在上单调递减,所以在处取最大值,且最大值为.所以,当且仅当,时,取得最大值为.(3)设,即题设等价于函数有零点时的的取值范围.① 当时,由,,所以有零点.② 当时,若,由,得;若,设h(x)=故h(x)单增,所以h(x)> h(0)=0,所以无零点.③ 当时,,又存在,,所以有零点.综上,的取值范围是或.20.设各项均为正数的数列的前项和为,且,(,),数列满足().(1)求数列、的通项公式;(2)设,是的前项和,求正整数,使得对任意的,均有;(3)设,且,其中(,),求集合中所有元素的和. 【答案】(1),;(2);(3)见解析.【解析】(1)①a1=1,a n2=S n+S n﹣1(n∈N*,n≥2),∴S n+1+S n,相减可得: a n+1+a n,化为:(a n+1+a n)(a n+1﹣a n﹣1)=0,∵a n+1+a n>0,∴a n+1﹣a n=1,又S2+S1,可得a2﹣2=0,a2>0,解得:a2=2,∴a2﹣a1=1,∴数列{a n}设等差数列,a n=1+n﹣1=n.②数列{b n}满足(n∈N*).n≥2时,b1b2•…b n﹣1,∴.(2)c n,∴T n(1).T n+1﹣T n().n≤3时,T n+1≥T n.n≥4时,T n+1≤T n.当m=4时,使得对任意的n∈N*,均有T m≥T n.(3)x=k1b1+k2b2+…+k n b n,且x>0,其中k1,k2,…,k n∈{﹣1,1}(n∈N*,n≥2),①要使x>0,则必须k n=1.其它k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.证明:若k n=﹣1,则x=k1•2+k2•22+…+k n﹣1•2n﹣1﹣k n•2n≤2+22+……+2n﹣1﹣2n2n=﹣2<0,此时x恒为负数,不成立.∴k n=1.此时:x≥﹣2﹣22﹣……﹣2n﹣1+2n2n=2>0,故k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.②其它k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),可任取1,﹣1.此时集合内的元素x共有2n﹣1个互不相同的正数.证明:k1,k2,…,k n﹣1∈{﹣1,1}(n∈N*,n≥2),利用乘法原理可得:表示x的式子共有2n﹣1个.下面证明这2n﹣1个式子所表示的x互不相等,具体如下:证明:假如这2n﹣1个式子所表示的x存在相等的数,x1=2n+k n﹣1•2n﹣1+……+k2•22+k1•2=x2=2n•2n﹣1•22•2.k i,∈{﹣1,1}(i∈N*,n﹣1≥i≥2),即满足k i∈{﹣1,1}(i∈N*,n﹣1≥i≥2)的第一组系数的下标数为m.则•2m•2m﹣1+()•2m﹣2+……+()•2,而|•2m﹣1+()•2m﹣2+……+()•2|≤2•2m﹣1+2•2m﹣2+……+2×2=2m+1﹣4<|•2m|<2m+1.因此,假设不成立,即这2n﹣1个式子所表示的x互不相等.③这2n﹣1个x互不相等的正数x(每个均含k n b n=2n).又k i=1或﹣1(i=1,2,……,n﹣1)等可能出现,因此所有k i b i(i=1,2,……,n﹣1)部分的和为0.故集合B中所有元素的和为所有k n b n=2n的和,即2n•2n﹣1=22n﹣1.数学Ⅱ(附加题)21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内........作答.解析应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]如图,四边形是圆的内接四边形,,的延长线交的延长线于点.求证:平分.【答案】见解析【解析】借助题设条件设法证明:证明:因为四边形是圆的内接四边形,所以. 因为,所以.又,,所以,即平分.B.[选修4-2:矩阵与变换]已知矩阵,10=12N⎡⎤⎢⎥⎢⎥⎣⎦,且,求矩阵.【答案】【解析】由题意,,则.因为10=12N⎡⎤⎢⎥⎢⎥⎣⎦,则.所以矩阵.C.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系中(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合),圆C的方程为,求直线l被圆C截得的弦长.【答案】【解析】将直线l的参数方程为化为方程:圆的方程为化为直角坐标系方程:,即,,其圆心,半径为∴圆心C到直线l的距离为∴直线l被圆C截得的弦长为.D.[选修4-5:不等式选讲]设均为正数,且,求证:.【答案】见解析【解析】先将式子进行巧妙变形,再借助基本不等式进行推证:证明:因为均为正数,且,所以,(当且仅当时等号成立)所以.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.如图,在边长为8的菱形中,,将沿折起,使点到达的位置,且二面角为.(1)求异面直线与所成角的大小;(2)若点为中点,求直线与平面所成角的正弦值.【答案】(1)见解析(2)【解析】(1)连接AC,交BD于点O,连接OA1,因为四边形ABCD为菱形,所以AC⊥BD,从而OA1⊥BD,OC⊥BD,又因为OA1∩OC=O,所以BD⊥平面A1OC,因为A1C 平面A1OC,所以BD⊥A1C,所以异面直线A1C与BD所成角的大小为90°.(2)由(1)可知,∠A1OC即为二面角A1-BD-C的平面角,所以∠A1OC=60°.以O为坐标原点,,为x,y轴正方向,建立空间直角坐标系O-xyz,则B(4,0,0),D(-4,0,0),C(0,4,0),A1(0,2,6),E(0,3,3).所以=(-4,3,3),=(4,2,6),=(4,4,0).设平面A1DC的法向量为=(x,y,z),则即取x=3,则=(3,-,-1),设直线BE与平面A1DC所成角为sin=,所以直线BE与平面A1DC所成角的正弦值为.23.在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为,命中一次记3分,没有命中得0分;在B点命中的概率为,命中一次记2分,没有命中得0分,用随机变量表示该选手一次投篮测试的累计得分,如果的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3次. (1)若该选手选择方案甲,求测试结束后所得分的分布列和数学期望.(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.【答案】(1)数学期望为3.05,分布列见解析(2)选择方案甲【解析】(1)在A点投篮命中记作,不中记作;在B点投篮命中记作,不中记作,其中,的所有可能取值为,则,,,.的分布列为:,,,.所以,所以,的数学期望为.(2)选手选择方案甲通过测试的概率为,选手选择方案乙通过测试的概率为,因为,所以该选手应选择方案甲通过测试的概率更大.。

2019年高考数学(理)原创终极押题卷(新课标Ⅰ卷)(参考答案)

2019年高考数学(理)原创终极押题卷(新课标Ⅰ卷)(参考答案)

秘密★启用前2019年普通高等学校统一招生考试终极押题卷(全国新课标Ⅰ)理科数学参考答案第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分) 13. 1 14.2 15. 13x x ⎧⎫>-⎨⎬⎩⎭16.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。

) (一)必考题:共60分。

17.(本小题满分12分)已知数列{}n a 是等差数列,23a =,56a =,数列{}n b 的前n 项和为n S ,且22n n b S -=. (Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)记21n n n n n a c a a b ++=⋅⋅,若数列{}n c 的前n 项和为n T ,证明:12n T <.【答案】:见解析【解析】:(1)由已知得11346a d a d +=⎧⎨+=⎩,解得12,1a d ==,所以1n a n =+…………………………2分当1n =时,1122b b -=,12b ∴= (1)…………………………………………3分 1122222n n n n b S n b S ---=⎧⎨≥-=⎩当时,,当2n ≥时,12n n b b -= (2)………………………5分由(1),(2)得2n n b =…………………………………………………………………………6分(Ⅱ)由(Ⅰ)知,所以32(1)(2)n n n c n n +=⋅+⋅+……………………………………………………8分1112(1)2(2)n n nc n n -⇒=-⋅+⋅+……………………………………………………………10分 01122311111111111()()()()2223232424252(1)2(2)22(2)n nn n n T T n n n -⇒=-+-+-+⋅⋅⋅-⇒=-⋅⋅⋅⋅⋅⋅⋅+⋅+⋅+……………………………………………………………………………………………………11分12n T ⇒<…………………………………………………………………………………………12分 【点评】:本题主要考查等差数列、等比数列概念、通项公式、判定,一般数列的前n 项和nS 与n a 的关系等基础知识.同时考查裂项相消法求数列的前n 项和的探究方法及整体思想,运算求解能力等. 18.(本小题满分12分)正方体1111ABCD A B C D -的棱长为1,E 是边11D C 的中点,点F 在正方体内部或正方体的面上,且满足://EF 面11A BC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学押题卷及答案(共五套)2019年高考数学押题卷及答案(一)一.填空题(每题5分,共70分) 1. 复数(2)i i +的虚部是2.如{}23,2a a a ∈-,则实数a 的值等于3. 若函数1(),10()44,01xx x f x x ⎧-≤<⎪=⎨⎪≤≤⎩,则4(log 3)f = 4.等比数列}{n a 中,n S 表示前n 顶和,324321,21a S a S =+=+,则公比q 为 5.在集合{}1,2,3中先后随机地取两个数,若把这两个数按照取的先后顺序组成一个二位数,则“个位数与十位数不相同”的概率是 .6.设,αβ为互不重合的平面,m ,n 为互不重合的直线,给出下列四个命题: ①若,,m n m n αα⊥⊂⊥则;②若,,m n m αα⊂⊂∥,n β∥β,则α∥β; ③若,,,,m n n m n αβαβαβ⊥=⊂⊥⊥则;④若,,//,//m m n n ααββ⊥⊥则,其中所有正确命题的序号是 . 7.已知0>xy ,则|21||21|xy y x +++的最小值为 8.已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则给出如下四个判断:正确的有①()()76f f > ②()()96f f > ③()()97f f > ④()()107f f > 9.已知角A 、B 、C 是ABC 的内角,,,a b c 分别是其对边长,向量2(23sin,cos ),22A Am =,(cos,2)2An =-,m n ⊥,且2,a =3cos 3B =则b = 10.直线1x y a b +=通过点(cos ,sin )M αα,则2211a b+的取值范围为 11.已知()sin()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=__________.12. 在区间[],1t t +上满足不等式3311x x -+≥的解有且只有一个,则实数t ∈13. 在△ABC 中,1tan,0,()022C AH BC AB CA CB =⋅=⋅+=,H 在BC 边上,则过点B 以A 、H 为两焦点的双曲线的离心率为14. 已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若47a =,则m 所有可能的取值为二.解答题(请给出完整的推理和运算过程,否则不得分)15.(14分)设函数2()2(03)f x x x a x =-++≤≤的最大值为m ,最小值为n , 其中0,a a R ≠∈.(1)求m 、n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xoy 中的原点o 重合,始边与x 轴的正半轴重合,终边经过点(1,3)A m n -+.求tan()3πβ+的值.16. (14分)在直角梯形PBCD 中,,2,42D C BC CD PD π∠=∠====,A 为PD 的中点,如下左图。

将PAB 沿AB 折到SAB 的位置,使SB BC ⊥,点E 在SD 上,且13SE SD =,,M N 分别是线段,AB BC 的中点,如右图.(1)求证:SA ⊥平面ABCD ; (2)求证:平面AEC ∥平面SMN .17. (14分)如图,在一条笔直的高速公路MN 的同旁有两个城镇A B 、,它们与MN 的距离分别是km a 与8km(8)a >,A B 、在MN 上的射影P Q 、之间距离为12km ,现计划修普通公路把这两个城镇与高速公路相连接,若普通公路造价为50万元/km ;而每个与高速公路连接的立交出入口修建费用为200万元.设计部门提交了以下三种修路方案:方案①:两城镇各修一条普通公路到高速公路,并各修一个立交出入口;方案②:两城镇各修一条普通公路到高速公路上某一点K ,并 在K 点修一个公共立交出入口;方案③:从A 修一条普通公路到B ,再从B 修一条普通公路到 高速公路,也只修一个立交出入口.请你为这两个城镇选择一个省钱的修路方案.18. (16分)已知椭圆22221(0)x y a b a b+=>>和圆222:O x y b +=O :,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)(ⅰ)若圆O 过椭圆的两个焦点,求椭圆的离心率e 的值; (ⅱ)若椭圆上存在点P ,使得090APB ∠=,求椭圆离心率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点,M N ,问当点P在椭圆上运动时,2222a b ON OM +是否为定值?请证明你的结论.19. (16分)对于数列}{n a ,定义数列}{1n n a a -+为}{n a 的“差数列”.(I )若}{n a 的“差数列”是一个公差不为零的等差数列,试写出}{n a 的一个通项公式;(II )若,21=a }{n a 的“差数列”的通项为n 2,求数列}{n a 的前n 项和n S ; (III )对于(II )中的数列}{n a ,若数列}{n b 满足8*1212(),n n n a b b n N +=-⋅∈且47b =-,求:①数列}{n b 的通项公式;②当数列}{n b 前n 项的积最大时n 的值.20. (16分)已知函数()f x 的图像在[a,b]上连续不断,定义:1()min{()/}([,])f x f t a t x x a b =≤≤∈,2()max{()/}([,])f x f t a t x x a b =≤≤∈,其中min{()/)f x x D ∈表示函数)(x f 在D 上的最小值,max{()/)f x x D ∈表示函数)(x f 在D 上的最大值,若存在最小正整数k ,使得21()()()f x f x k x a -≤-对任意的[,]x a b ∈成立,则称函数)(x f 为[,]a b 上的“k 阶收缩函数”(1)若()cos ,[0,]f x x x π=∈,试写出1()f x ,2()f x 的表达式;(2)已知函数2(),[1,4],f x x x =∈-试判断)(x f 是否为[-1,4]上的“k 阶收缩函数”,如果是,求出对应的k ,如果不是,请说明理由;(3)已知0b >,函数32()3,f x x x =-+是[0,b]上的2阶收缩函数,求b 的取值范围附加题解答应写出文字说明,证明过程或演算步骤.21.(选修4—2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2.求矩阵A ,并写出A 的逆矩阵.22.(选修4—4:坐标系与参数方程)已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线的参数方程为12312x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(为参数),求直线被曲线C 截得的线段长度.23.某中学选派40名同学参加青年志愿者服务队(简称“青志队”),他们参加活动的次数统计如表所示.(Ⅰ)从“青志队”中任意选3名学生,求这3名同学中至少有2名同学参加活动次数恰好相等的概率;(Ⅱ)从“青志队”中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望ξE .24.用,,,a b c d 四个不同字母组成一个含1n +*)(N n ∈个字母的字符串,要求由a 开始,相邻两个字母不同. 例如1n =时,排出的字符串是,,ab ac ad ;2n =时排出的字符串是,,,,,,,,aba abc abd aca acb acd ada adb adc ,……, 如图所示.记这含1+n 个字母的所有字符串中,排在最后一个的字母仍是a 的字符串的种数为n a .(1)试用数学归纳法证明:*33(1)(N ,1)4n nn a n n +-=∈≥;(2)现从,,,a b c d 四个字母组成的含*1(N ,2)n n n +∈≥个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是a 的概率为P ,求证:2193P ≤≤.活动次数 2 3 参加人数5 1520参考答案一.填空题(每题5分,共70分) 1.2 2.-1 3. 3 4.3 5.236.①③ 7.22 8..④ 9.32410.[)1,+∞11. 14312. (0,31)t ∈- 13. 512+ 14. 56和9二.解答题(请给出完整的推理和运算过程,否则不得分)15. 解(1) 由题可得()()211f x x a =--++而03x ≤≤......3分 所以,()()11,33m f a n f a ==+==-.................6分 (2)角β终边经过点(),A a a ,则tan 1aaβ==..........10分 所以,tan tan133tan 233131tan tan 3πβπβπβ++⎛⎫+===-- ⎪-⎝⎭-........14分16. (14分)(1)证明:由题意可知,ABCD PD BA ,⊥为正方形, 所以在图中,2,=⊥SA AB SA , 四边形ABCD 是边长为2的正方形, 因为BC SB ⊥,AB ⊥BC ,所以BC ⊥平面SAB , ………………………………3分又⊂SA 平面SAB ,所以BC ⊥SA ,又SA ⊥AB ,所以SA ⊥平面ABCD ,………………………………6分(2)证明:连接BD ,设,BDMN G BDAC O ==, 连接,SG EO ,正方形ABCD 中,因为,M N 分别是线段,AB BC 的中点,所以//MN AC , 且2DO OG =,……………………9分 又SD SE 31=,所以:2DE SE =,所以//EO SG所以平面//SMN 平面EAC 。

……………………………12分17. (14分)解:方案①:共修(8)km a +普通公路和两个立交出入口, 所需资金为150(8)40050(16)A a a =++=+万元; 方案②:取B 关于MN 的对称点'B ,连'AB 与MN 交于K , 在K 修一个出入口,则路程最短,共需资金:222250(8)1220050[(8)1444]A a a =+++=+++万元;方案③:连接AB 沿ABQ 修路,在Q 修一个出入口,共需资金:222350[(8)128]20050[(8)14412]A a a =-+++=-++万元由于8a >,比较大小有123A A A >>,(12分)故选择方案(3). 18. (16分)解:(1)(ⅰ)∵ 圆O 过椭圆的焦点,圆O : 222x y b +=,∴ b c =,∴ 2222b a c c =-=, 222a c =,∴22e =. (ⅱ)由90APB ∠=及圆的性质,可得2OP b =,∴2222,OP b a =≤∴222a c ≤∴212e ≥,212e ≤<.(2)设0()()()001122,,,,,P x y A x y B x y ,则011011y y xx x y -=--, 整理得220011x x y y x y +=+22211x y b += ∴PA 方程为:21010x x y y b +=, PB 方程为:22020x x y y b +=.从而直线AB 的方程为:200x x y y b +=.令0x =,得2b ON y y ==,令0y =,得2b OM x x ==,∴2222222220022442a y b x a b a b a ON OM b b b ++===,∴2222a b ON OM +为定值,定值是22a b.19. (16分)(1)解:如.2n a n =(答案不惟一,结果应为C Bn An a n ++=2的形式,其中0≠A )(2)解:依题意 ,3,2,1,21==-+n a a n n n所以11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----.22222321n n n n =++++=--- 从面{}n a 是公比数为2的等比数列,所以.2221)21(21-=--=+n n n S(3)①解:由88111212212n n n n n n a b b a b b +--=-⋅=-⋅及,两式相除得111,2n n b b +-= 所以数列{}{}n n b b 212,-分别是公比为21的等比数列由.14724-=-=b b 得 令.23221,161211⋅=⋅-==b b b a n n 得由所以数列{}n b 的通项为⎪⎪⎩⎪⎪⎨⎧≥⋅-≥⋅⋅=--),2()21(14),1()21(2312216是偶数且是奇数且n n n n b nn n ②记数列{}n b 前n 项的积为T n . 令8111,21()1,2n n n b b -+<-⋅<得即811(),13.221n n -<≥解得 所以当n 是奇数时,,1||,1||,1||,,1||,1||1615141312114321<<>>>b b b b b b b b b b 从而.|||||,|||||14121242 >><<T T T T T当n 是偶数时,,1||,1||,1||,,1||,1||1716151413125432<<>>>b b b b b b b b b b 从而.|||||,|||||15131331 T T T T T ><< 注意到121313*********,0,3,T T T b T T T >>==>且 所以当数列{}n b 前n 项的积T n 最大时.13=n20. 解:(1)由题意可得:1()cos ,[0,]f x x x π=∈,2()1,[0,]f x x π=∈。

相关文档
最新文档