高一数学基本不等式2
高一数学必修一第二章第二课基本不等式

高一数学必修一第二章第二课基本不等式摘要:一、基本不等式的概念与性质1.基本不等式的定义2.基本不等式的性质二、基本不等式的证明方法1.作差法2.替换法3.柯西-施瓦茨不等式三、基本不等式的应用1.求最值问题2.证明其他不等式四、练习与解答1.例题解析2.巩固练习正文:一、基本不等式的概念与性质在高中数学必修一第二章第二课中,我们学习了一个非常基础且重要的不等式——基本不等式。
基本不等式是指对于任意的实数a和b,都有a^2 + b^2 >= 2ab。
这个不等式在很多数学问题中都有广泛的应用,因此我们需要熟练掌握它的性质和证明方法。
二、基本不等式的证明方法1.作差法作差法是证明基本不等式最常用的方法。
具体操作如下:我们将a^2 + b^2 - 2ab分解因式,得到(a - b)^2。
因为一个数的平方一定大于等于0,所以(a - b)^2 >= 0,即a^2 + b^2 >= 2ab。
2.替换法替换法是将基本不等式中的a和b替换成其他表达式,从而简化证明过程。
常用的替换方法有柯西-施瓦茨替换和排序替换。
3.柯西-施瓦茨不等式柯西-施瓦茨不等式是基本不等式的一个推广,它是指对于任意的实数a1, a2, ..., an和b1, b2, ..., bn,都有(a1^2 + a2^2 + ...+ an^2)(b1^2 + b2^2 + ...+ bn^2) >= (a1b1 + a2b2 + ...+ anbn)^2。
这个不等式在求解某些问题时,可以提供更强的工具。
三、基本不等式的应用1.求最值问题基本不等式可以用来求解一些最值问题,如求函数的最值、求解不等式的最值等。
2.证明其他不等式基本不等式是许多其他不等式的基础,如柯西不等式、排序不等式等。
通过基本不等式,我们可以证明这些不等式,从而进一步解决实际问题。
四、练习与解答1.例题解析我们来看一道例题:已知a + b = 2,求a^2 + b^2的最小值。
2.2 基本不等式(第二课时)高一数学课件(人教A版2019必修第一册)

解: ∵ >-1,∴ + >0.
当且仅当2( + ) =
即= −
+
∴ 函数 f(x) 的最小值是 −
取“=”号.
概念讲解
例2. 若 < <
,求函数 = ( − ) 的最大值.
分析: + ( − ) 不是 常数.而 + ( − ) = 为常数
人教A版2019必修第一册
第 2 章 一元二次函数(第二课时)
教学目标
1.熟练掌握基本不等式的应用条件,能够利用基本不等式求最值.
2.掌握常见的利用基本不等式求最值的题型
3.能够运用基本不等式解决生活中的应用问题.
01
温故知新
情景导入
1.基本不等式的两种常用变形形式
2
02
类型一:配凑法
概念讲解
例1. 求函数() = +
+
(x> -1) 的最小值.
解: ∵ >-1,∴ + >0.
当且仅当 + =
即=0
+
取“=”号.
∴当 =0 时, 函数 f(x) 的最小值是 1
概念讲解
练习. 求函数() = +
+
(x> -1) 的最小值.
解: ∵ < <
配凑系数
,∴ − > .
∴ = ( − ) =
=
当且仅当 = ( − ),即 =
时,取“=”号.
∴ = ( − ) 的最大值为
【课件】基本不等式(第二课时)2023-2024学年高一数学(人教A版2019必修第一册)

出发使用基本不等式,求得最值.
练一练
2+1
已知a>1,b>0,则
+2a的最小值为
(−1)
提示:
目标式局部:b2+1≥2b,
所以
2+1
2
+2a≥
(−1)
−1
+2(a-1)+2≥…
.
用基本不等式求最值
( )
例3. 已知 x>0, y>0 ,x+y+2=xy,则xy的
条
件
最
值
之
最小值为
.
2
+2
+
2 (−2)2 (−1)2
=
+
+1
4 1
=(m+n)+( + )-6(以下逆代)
用基本不等式求最值
( )
七
条
件
最
值
之
等
价
变
形
1
例6.已知x>0,y>0,且
+2
+
1 1
= ,求xy的最小值.
+2 3
1
解:由等式
+2
1
3
变形得xy=x+y+8
+
1
+2
=
所以xy≥2 +8 解得xy最小值为16
( )
一
直
接
求
最
值
例1. 已知 x>0,
则y= 2
的最大值
+2+4
1
2.2基本不等式课件高一上学期数学人教A版2

拓展-基本不等式的灵活运用
拓展-基本不等式的灵活运用
解析 正数x,y满足x+y=1,即有(x+2)+(y+1)=4,
则x+4 2+y+1 1=14[(x+2)+(y+1)]x+4 2+y+1 1
=145+xy+ +21+4(xy++21)≥145+2 xy+ +21·4(xy++21)=14×(5+4)=94,
当且仅当 x=2y=23时,取得最小值94.
拓展-基本不等式的灵活运用
变式 (1)已知 2a+b=1,a>0,b>0,则1a+1b的最小值是( )
A.2 2
B.3-2 2
C.3+2 2
D.3+ 2
(2)已知 a,b,c 都是正数,且 a+2b+c=1,则1a+1b+1c的最小值是( )
A.3+2 2
B.3-2 2
C.6-4 2
D.6+4 2
基本不等式
基本不等式(均值不等式):
a b ab (a 0,b 0) 2
算术 平均值
几何 平均值
(当且仅当a=b时,等号成立)
基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.
基本不等式的证明
分析法
基本不等式的证明
思考:我们是否还可以用其他方法证明基本不等式?
证明:a b a(b a 0,b 0)(当且仅当a=b时,等号成立)
(3)解 ∵0<x<m,∴x>0,m-x>0.∴x(m-x)≤x+m2 -x2=m42. 当且仅当 x=m-x 时,即 x=m2 时,x(m-x)(0<x<m)取最大值m42.
人教版高中数学A版必修一2.2 基本不等式课件

一二
课前篇 自主预习
2.填空
我们称不等式 ������������ ≤ ������+2������为基本不等式,其中 a>0,b>0,当且仅当 a=b 时,等号成立.
∴xy≤4,当且仅当 x=y=2 时,等号成立, ∴xy 的最大值为 4.
答案:(1)4 (2)4
课前篇 自主预习
探究一
探究二
探究三 随堂演练
基本不等式的理解
例1下列命题正确的是( )
A.若 x≠0,则 x+4������≥4
B.若 a,b∈R,且 ab>0,则������������ + ������������≥2
课堂篇 探究学习
探究一
探究二
探究三 随堂演练
变式训练2(1)已知a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd.
(2)已知 a>0,b>0,且 a+b=2,求证:1������ + 1������≥2. 证明(1)因为 a,b,c,d 都是正数,所以
ab+cd≥2 ������������������������,ac+bd≥2 ������������������������,
C.
������2 + 2 +
1 的最小值为
������2+2
2
基本不等式(2)

3.4.1基本不等式(2)一、学习目标1.通过本节学习,掌握最值原理,并且能用最值原理解决相关问题;2.通过小组活动培养学生观察、探究的能力,并能体会出证明不等式的基本思想方法.二、教学重点、难点: 利用基本不等式求解最值.三、课前自学问题1:将 36拆成两个正数之积,使和最小,怎样拆?问题2:将8 拆成两个正数之和,使积最大,怎样拆?分组活动: 分组尝试把问题1,2一般化.已知y x ,都是正数,①如果积xy 是定值p ,那么当 时,和y x +有最小值 ; ②如果和y x +是定值s ,那么当 时,积xy 有最大值 .四、问题探究例1 求函数)0(16>+=x x x y 的最小值.变式1:求函数),2(,216+∞-∈++=x x x y 的最小值;变式2:求函数xx y 16+=的值域;变式3:求函数16322++=x x y 的最小值;变式4:已知0>x ,求函数44)(2+=x x x f 的值域.(若0<x 呢?)例2:若0>a ,0>b ,且6=+b a ,求ab 2的最大值.变式:若0>a ,0>b ,且63=+b a ,求ab 2的最大值.五、反馈小结书99练习4,5课后作业:1.已知0x >,求423x x--的最大值,并求相应的x 值.2.已知02x <<,求函数()f x =x 值.3.求下列函数的最值: 的最小值求已知y x xx y ,0,9)1(2>+=.的最大值求已知y x x x y ,2,421)2(-<++=.(3)的最小值求求函数y x x x y .0,422<+=.(4) 求函数)0(4≠+=x xx y 的值域.4.已知1,1>>y x ,且4lg lg =+y x .⑴求y x lg lg ⋅的最大值;⑵求)lg(y x +的最小值; ⑶求yx 11+的最小值.5.已知,20520,0=+>>y x y x ,且 求y x lg lg +的最大值.6.正数b a ,满足3++=b a ab ,求ab 的最小值.。
高一数学复习考点知识与题型专题讲解2---基本不等式与二次不等式

高一数学复习考点知识与题型专题讲解专题02基本不等式与二次不等式【专题综述与核心素养要求】与“集合”“常用逻辑用语”一样,“相等关系与不等关系”和“从函数观点看一元二次方程和一元二次不等式”的内容也是《课程标准(2017年版)》规定的高中数学课程的预备知识.它们的作用都是为高中数学课程做好学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.为什么“相等关系与不等关系”和“从函数观点看一元二次方程和一元二次不等式”的内容能发挥这样重要的作用?它们为高中数学课程的学习做了哪些方面的准备呢?首先,相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础,而方程和不等式都是重要的数学工具,在解决问题中有广泛的应用,因此对方程和不等式内容的学习,主要是为高中数学课程提供工具方面的准备.其次,函数是贯穿高中数学课程的最重要的概念和思想方法,用函数的观点看方程和不等式是要向学生渗透一种重要的思想方法——如何从函数的观点理解其他数学对象,进而把握不同数学对象的共性和相互关系.而这种思想方法对学生高中阶段的数学学习是非常重要的.最后,从学习方法来看,本章要在回顾、梳理等式内容的基础上,提炼等式中蕴含的思想方法,以及用一次函数的观点看一次方程、不等式的思想方法,再把这些思想方法迁移到对不等式内容的学习中.这种“回顾、梳理—提炼—迁移”的学习方法将适用于高中许多内容的学习.【重要知识点与题型快速预览】【知识点精解精析】别名性质内容注意性质1 对称性可逆性质2 传递性同向性质3 可加性可逆性质3的推移项法则可逆论性质4 可乘性的符号性质5 同向可加性同向性质6 同向同正可乘性同向,同正性质7 可乘方性同正性质8 可开方性(1)三个“二次”之间的关系由一元二次不等式的一般形式知,任何一个一元二次不等式整理成一边形式为或,而且我们已经知道对于一元二次方程(,其中),它的解按照可分为三种情况.相应地,二次函数的图象与轴的位置关系也分为三种情况,因此,对应的一元二次不等式(或)的解集我们也分三种情况进行讨论.二次函数的图象一元二次方程的根有两不同实根有两个相等的实根无实根一元二次不等式的解集的解集或的解集时解集的结构可记为:的解集为“大于大根或小于小根”;的解集为“大于小根且小于大根”.(2)解一元二次不等式的一般步骤①对不等式变形,使一端为零且二次项系数大于零;②计算判别式;③当时,求出相应的一元二次方程的根;④根据二次函数图象写出一元二次不等式的解集.(1)重要不等式,当且仅当时,等号成立.(2)基本不等式如果,那么,当且仅当时,等号成立.其中,叫做正数的算术平均数,叫做正数的几何平均数.因此,基本不等式可以叙述为:两个正数的算术平均数不小于它们的几何平均数.温馨提示①基本不等式成立的条件是.②从不等式成立的条件来看,要求,而对没有要求.例如,当,时,成立,但显然不成立. ③事实上,当时,我们分别用代替重要不等式中的,可得,变形可得.④基本不等式可变形为等.⑤由基本不等式,我们可以得到一个常用结论:.【必知必会题型深度讲解】解一元二次不等式的一般步骤如下: (1)化成标准式或.(2)计算对应方程根的判别式. (3)求出对应方程的解.(4)画出相应二次函数的图象.(5)由图象写出不等式的解集.【典型例题1】解下列不等式:(1)260x x -->; (2)2251010x x -+>; (3)2210x x -++<.【典型例题2】解下列不等式:(1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1; (3)x 2-2x +3>0.【典型例题3】已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)解不等式()2220xa x a +-->;(2)b 为何值时,230ax bx ++≥的解集为R ?在解含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数; (2)关于不等式对应的方程的根的讨论:两根(),无根(); (3)关于不等式对应的方程根的大小的讨论:.【典型例题1】求关于x 的不等式2(1)0x a x a +--<的解集,其中a 是常数.【典型例题2】解关于x 的不等式:()210x x a a --->.【典型例题3】解下列含参数的不等式:(1)2220x ax a --<; (2)()2110axa x -++≤;(3)230x mx m --≤.(1)含参数的不等式的恒成立问题通过分离参数,把参数的范围问题转化为函数的最值问题.在的最大值与最小值存在的条件下,恒成立;恒成立.(2)一元二次不等式的恒成立问题 ①对任意实数均成立对任意实数均成立②若(或)在时恒成立,可利用单调性或分离参数法等求解.【典型例题1】当[]13x ∈,时,一元二次不等式2280x x a -+-≤恒成立,求实数a 的取值范围.【典型例题2】已知不等式2210ax ax ++>在x ∈R 时恒成立,求实数a 的取值范围.【典型例题3】要使函数()124xx f x a=++·在(]1x ∈-∞,时()0f x >恒成立,求a 的取值范围. (1)比较两个实数与的大小,作差法需归结为判断它们的差的符号,因此,因式分解时越彻底越好,若用配方法化成和的形式,则各项符号需相同.(2)用作商法比较大小时,被除数与除数同号,否则不等号方向由可能弄错. (3)比较两个数或代数式(均大于零)的大小,也可化为比较两个数平方的大小.(4)在比较两个数的大小时,若作差后不易变形,则可与中间量(如0或1等)进行比较,再由不等式的传递性得到两数的大小关系.(5)在比较两个数的大小时,若差式中变量较多,不易变形,则应考虑消元,减少式中变量,以利于判断,差式的符号.【典型例题1】比较下面两组数的大小:(1)3274;(2710314【典型例题2】已知0a >,0b >,试比较11a b M a b =+++与11b aN a b=+++的大小. 【典型例题3】比较下列各组中两个代数式的大小:(1)231x x -+与221x x +-; (2)当0a >,0b >且ab 时,a b a b 与b a a b .(1)对于条件不等式的证明,充分利用条件是关键,要注意“1”的整体代换及几个“=”必须保证同时成立.(2)证明不等式时要注意灵活变形,可以多次利用基本不等式的变形形式.【典型例题1】已知,,a b c 都是正实数,求证:a b cab bc ca ++++.【典型例题2】已知a ,b ,c 是不全相等的正数,求证:()()()2222226a b c b c a c a b abc +++++>. 【典型例题3】已知0,0,0a b c >>>,求证:32c a b a b b c a c +++++. (1)利用基本不等式求最值的条件利用基本不等式求最值,必须同时满足以下三个条件,一正、二正、三相等. 即:①都是正数. ②积(或和)为定值(有时需通过“配凑、拆分”找出定值).③与必须能够相等(等号能够取到).特别地,当式子中等号不成立时,不能应用基本不等式,而应改用函数的单调性求最值. (2)构造定值条件的常用技巧①加项变换;②拆项变换;③统一换元;④平方后利用基本不等式. (2)基本不等式与最值 设是正数,①若(和为定值),则当时,积取得最大值; ②若(积为定值),则当时,和取得最小值.【典型例题1】是否存在正实数a 和b ,同时满足下列条件:①10a b +=;②1a bx y+=(x >0,y >0)且x y +的最小值为18,若存在,求出a ,b 的值;若不存在,说明理由.【典型例题2】求下列函数的最大值和最小值:(1)13y x x =-+;(2)2,[1,4]y x x x=+∈;(3)4,[2,8]y x x x=-∈; (4)1121,,212y x x x ⎛⎫=-+∈-∞- ⎪+⎝⎭. 【典型例题3】已知函数22()x x af x x-+=. (1)当4a =时,求函数()f x 在(0,)x ∈+∞上的最小值;(2)若对任意的(0,),()0x f x ∈+∞>恒成立.试求实数a 的取值范围; (3)若0a >时,求函数()f x 在[2,)+∞上的最小值.应用基本不等式解决实际问题的步骤: (1)仔细阅读题目,透彻理解提议;(2)分析实际问题中的数量关系,引入未知数,并用它表示其他的变量,把要求最值的变量表示为关于未知数的函数;(3)应用基本不等式求出函数的最值; (4)还原实际问题,作答.对于实际问题一定要注意变量的取值范围.【典型例题1】为迎北京冬奥会,某校要设计如图所示的一张矩形宣传广告牌,该广告牌含有大小相等的左、中、右三个矩形栏目,这三个矩形栏目的面积之和为26000cm ,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm ,怎样确定广告矩形栏目长与宽的尺寸(单位:cm ),使整个矩形广告牌面积最小?【典型例题2】如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米?【典型例题3】某小区要建一个八边形的休闲区,如图所示,它的主要造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为2200m 的十字形区域.计划在正方形MNPQ 上建一个花坛,造价为4200元/2m ,在四个相同的矩形(图中阴影部分)上铺设花岗岩地面,造价为210元/2m ,再在四个等腰直角三角形上铺设草坪,造价为80元/2m .求当AD 的长度为多少时,建设这个休闲区的总价最低.。
基本不等式(第2课时)讲义-高一上学期数学人教A版

思考:
两个正数的积为定值,它们的和一定有最小值吗?
【例题练习】
题型一:含一个变量的代数式的最值
例1.(1)对于代数式 ;①当 时,求其最小值;②当 时,求其最大值.
(2)已知 ,求 的最小值.
(3)已知 ,求 的最大值.
(4)已知 ,求 的最大值.
(5)已知 ,求 的最小值.
总结:利用基本不等式求最值的关键是获得定值条件.解题时应对照已知条件和欲求的式子,运用适当的“拆项、添项、配凑、变形”等方法创设使用基本不等式的条件,具体可以归纳为:一不正,用其相反数,改变不等号方向;二不定,应凑出定和或定积;三不等,一般需用其他方法,如尝试利用函数的单调性.
练习:
1.设 ,则 的最大值是( )
B. C.
2.设 ,求 的最小值.
3.设 ,求 的最大值.
题型二:含两个变量的代数式的最值例2 (1)已知 ,且 ,求 Nhomakorabea最大值.
(2)已知 ,且 ,求 的最小值.
(3)若正数 满足 ,则 的最小值是( )
A. B. C.5
总结:
(1)拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:
2.已知 均为正数,且 ,则 的最小值为.
3.若 是正数,则 的最小值是( )
A.3 B. D.
4.已知 ,则 的最小值为.
【课后巩固】
,则函数 ( )
A.有最大值4 C.有最大值—2
,且 ,则 的最大值为( ).
A.80 C.81
在 处取得最小值,则 等于( )
B.72 C.4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一次是到渔场的第二天,肖队长带领我们几个人去县城拉砖,为知青盖房子。去时顺风顺水,我们坐在船舱里,肖队长站在船头,撑着竹篙沿着河道滑行。一起插队的知青郭小飞觉得好玩,想试 试身手。他接过肖队长手里的竹篙,立在船头,左摇右晃,连站都站不稳,险些栽入水里。好不容易站稳了,他东一下,西一下,毫无目的地了好一阵子。
第二次轮到我,闹了一个大笑话。那日,知青们正在河岸上盖房子,渔场的周书记要去对面的另一个生产队开会,让我送他过河。去时,周队长撑着竹篙两三下就过去了。待他下船后,我撑着船往 回走,到了河当中,水深流急,我心慌脚不稳,一个趔趄一撒手,虽然人没有掉进水里,竹篙却下水了。无奈,我立即跳进水里捞竹篙,将竹篙扔进船里后,又游泳推着船回到岸上。
划船容易学,人站在船尾部的舱里,手摇双浆,利用水对浆的作用力,推着船向前滑行。只要掌握了摇浆的力度,控制船行驶的方向,直走、转弯、调头,不出半天便运用自如了。玩球网
撑船则不然,人站立于船头,手持6米竹篙,大头朝下插入湖底,用力推着船朝前走。这套动作有两个窍门,一是要掌握平稳,双脚要像钉子一样牢牢地“钉”在船头;二是手掌与竹篙的配合要默 契,船前行的速度、方向全在撑船的那一刻。技术含量虽不高,但也有一定的难度。