热交换器温度控制系统课程设计报告书

热交换器温度控制系统课程设计报告书
热交换器温度控制系统课程设计报告书

热交换器温度控制系统

一.控制系统组成

由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。

图1换热器出口温度控制系统流程图

控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。

二、设计控制系统选取方案

根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。

换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。

图2换热器的温度控制系统工艺流程图

引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有:

(1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。

(2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

和阀门的开度等因素的影响。冷流体的温度与大气温度和换热器回流水的流量等因素有关。

(3)加热炉的启停机的影响。

(4)室内温度与管路内气体变化和阀门开度的影响。

首先考虑采用单回路控制系统。方块图如下图3所示:

图3单回路控制系统原理图

从图3所示的控制系统中可以看出,从冷流体管路阀门或离心泵转速变化到热流体出口温度改变,在这中间要相继通过冷流体流量变化,换热器热交换速率变化,热流体出口温度变化等一系列过程,因此整个控制通道的容量滞后大、时间常数大、这就导致控制系统的控制作用不及时、最大偏差大、过度时间长、抗干扰能力差、控制精度降低。而工艺上对出口温度要求比较严格,一般希望波动范围不超过+-(1%~2%)。根据大量的工程实践经验和实验的结果证明,采用图3所示单回路控制系统是达不到要求的,必须寻求其他控制方案。

分析各种影响热器出口温度的因素,除了热流体的流量和温度外,冷流体的流量、阀门的开度等因素和进入系统的位置,首先影响冷流体的流量,而后经过换热器从而影响影响热流体的出口温度。如果以冷流体流量为被控变量,输送冷流体的离心泵转速为操纵变量,够成单回路控制系统,则该控制系统的通道的容量滞后大大减少,对来自离心泵的转速、阀门开度变化等干扰能及时克服,减少他们对热流体出口温度的影响。但是很显然,热流体的流量和温度的变化没有包含在内,同时系统也没有对热流体出口温度构成闭环控制,因此,仍然不能保证出口温度稳定在设定值上,还需进行改造。

为了解决上述滞后时间和控制要求之间的矛盾,保持热流体的出口温度稳定,可以根据管路冷流量的变化,先调节离心泵的转速,然后再根据热流体出口温度与设定值之间的偏差,根据合适的控制算法,进一步调节流体的流量,以保持出口温度的稳定,这样组成流体出口温度调节器和流体流量调节器串联起来的串级控制系统。其方块图如下图4所示:

图4串级控制系统原理图

根据图4可以看出来自冷流体流量方面的干扰因素包括在副回路内,因此可以大大减少这些扰动因素对于热流体出口温度的影响。对于热流体流量和温度方面的干扰,采用串级控制系统也可以得到改善,具体控制效果明显改善。

综上所述,我们可以对串级控制系统方案的基本参数进行确定:

主回路:热流体出口温度——冷流体流量控制回路

副回路:冷流体流量——离心泵转速控制回路

主变量:换热器出口温度

副变量:冷流体流量

主检测变送器:铂电阻温度传感器

副检测变送器:涡轮流量传感器

执行器:变频器

三、仪表的选型以及参数的确定

1.温度的测量

选择装配式热电偶如图5所示

图5装配式热电偶

测量范围及允许误差范围

注:t为感温元件实测温度值(℃)

热电偶时间常数

热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外)绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。具有防溅式接线盒的热电偶,当相对温度为93± 3℃ 时,绝缘电阻≥0.5兆欧(电压100V)

高温下的绝缘电阻:热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。

规定的长时间使用温度

试验温度(℃)绝缘电阻值(Ω)(℃)

≥600 600 72000

≥ 800 800 25000

≥1000 1000 5000

2温度变送器

选择通用型智能温度变送器如图6所示,接线端子如图7所

图6通用型智能温度变送器

图7接线端子

性能简介

输入单路或双路热电偶、热电阻信号,变送输出隔离的单路或双路线性的电流或电压信号,并提高输入、输出、电源之间的电气隔离性能。

技术特点

本产品采用了先进的数字化技术,具备了传统模拟仪表所不具备的多项先进性能,在对高、低频干扰信号的抑制方面均有着优异表现,即使在大功率变频

控制系统中依然能够可靠应用,同时,数字化技术的应用彻底克服了传统温度变送器线性差的缺点,内部采用数字化调校、无零点及满度电位器、自动动态校准零点、温度飘移自动补偿等诸多先进技术,并符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求,这一系列技术的应用使产品的稳定性及可靠性得到科学的保证。

以上各项技术领先国际先进水平.

适用性

可以与单元组合仪表及DCS、PLC等系统配套使用,在油田、石化、制造、电力、冶金等行业的重大工程中有着广泛应用。

技术参数

系统传输准确度:±0.2%×F·S

温度漂移:≤0.0015%F·S/℃

冷端温度补偿准确度:±0.1% 测量热电阻时允许的引线电阻:≤50Ω

工作温度:工业级标准 -10~+55℃

电流输出允许外接的负载阻抗:4-20mA输出时0~500Ω;0-10mA输出时0~1KΩ需要更大的负载能力请在订货时说明。

电磁兼容:符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求.

输入/输出/电源/通讯/双路间绝缘强度:≥1500V.ac

储运环境温度:-40~+80℃

相对湿度:10-90%RH(40℃时)

供电电源:交流: AC 95~265V

直流:DC12V~32V(反接保护)

输入功率:0.9~1.8W(与型号有关,详见本手册附录中关于输入功率的计算方法)

通讯接口:RS232 或 RS485,MODBUS软件协议(选配)。

外形尺寸:宽×高×深:22.5×100×115mm 净重:140g±20g

3流量传感器

选用SKLUCB型插入式涡街流量计如图8所示

图8SKLUCB型插入式涡街流量计

工作原理

按国际标准化组织IS07145(在环形截面封闭管道中的流体流量测定—在截面一点的速度测量法),采用埋入压电晶体的涡街测速探头,插入大口径工业管道内,将卡门旋涡频率转换为与流量成正比的电流或电压脉冲信号或4~20mADC电流信号。

仪表特点

1、可测量蒸汽,气体,液体的体积流量和质量流量;

2、无机械运动部件,测量精度高,结构紧凑维护方便;

3、压力损失小,量程范围宽;范围度达1:25;

4、采用消扰电路和抗振传感头;

5、采用消扰电路和抗振传感头,使仪表具有一定抗环境振动性能;

6、可测介质温度达+250℃。

7、可实现不断流拆装传感器,可实现放大器与传感器分离(分离距离15m);技术参数

4调节器

选用SK-808/900系列智能PID调节仪如图9所示,接线端子如图10所示

图9 SK-808/900系列智能PID调节仪

图10接线端子

主要技术指标

基本误差:0.5%FS或 0.2%FS±1个字

分辨力:1/20000、14位A/D转换器

显示方式:双排四位LED数码管显示

采样周期:0.5S

报警输出:二限报警,报警方式为测量值上限、下限及偏差报警,继电器输出触点容量 AC220V/3A

控制输出:⑴继电器触点输出

⑵固态继电器脉冲电压输出(DC12V/30mA)

⑶单相/三相可控硅过零触发

⑷单相/三相可控硅移相触发

⑸模拟量4~20mA、0~10mA、1~5V、0~5V 控制输出

通讯输出:接口方式--隔离串行双向通讯接口RS485/RS422/RS232/Modem

波特率--300~9600bps内部自由设定

馈电输出:DC24V/30mA

电源:开关电源 85~265VAC 功耗4W以

选型表

输入类型表

5调节阀

选用电动三通合流(分流)调节阀如图11所示

ZAZQ(X)型电动三通合流(分流)调节阀有合流和分流二种型式,由DKZ电动执行机构和三通合流或三通分流调节组成,以电源为动力,接受统一的标准信号0~10mA DC或4-20mA Dc驱使阀门开度与此操作信号相对应。合流阀的作用是将一种流体分成两路流体。分流合流阀只能对应选用,但当DN≤80时,和流阀可用于分流场合。可替代两台单、双座调节阀,节省投资,占据空间小。三通调节阀通常用于热交换器的两种介质调节,及简单的配比调节。

图11动三通合流(分流)调节阀

主要技术参数

公称通径mm

合流 25 32 40 50 65 80 100 125 150 200 250 300

分流

80 100 125 150 200 250 300

额定流量系数Kv

合流 8.5 13 21 34 52 85 135 210 340 535 800 1260 分流

85 135 210 340 535 800 1260

公称压力 MPa 1.6 4.0 6.0

流量特性 直线

执 行 机 构

Ⅱ型 DKZ-310 DKZ-310 DKZ-410 DKZ-510 DKZ-510 Ⅲ型 DKZ-510C DKZ-310C DKZ-410C DKZ-510C DKZ-510C

出轴推力(N) 4000 4000 6400 16000 16000 行程mm

16

25

40

60

100

上阀盖型式 1.6 1.0 2.5 1.6 1.5 1.0 0.65 0.4 0.3 0.1

6

0.26 0.18

允许压差(MPa) 普通式(常温型),热片式(中温型)

介质温度℃ -20~+200、-40~+250(常温型) -40~+450(中温型)

可调比 30:1

法兰标准 铸铁按JB78-59,铸铜按JB79-59

输入阻抗 Ⅱ型:200 Ⅲ型:250

出厂状态 电开(对上阀座而言),如需电关,订货时应注明

性能指标

四、仪表清单

1.、装配式热电偶

2、通用型智能温度变送器

3、SKLUCB型插入式涡街流量计

4、SK-808/900系列智能PID调节仪如图

5、电动三通合流(分流)调节阀

课程设计换热器-煤油汇总

《化工过程设备设计Ⅰ(一)》 说明书 设计题目:换热器的设计 专业: 班级: 学号: 姓名: 指导教师: 设计日期: 设计单位:青海大学化工学院化学工程系

目录 前言 (4) 任务书 (5) 目的与要求 (6) 一、工艺设计方案 (8) 二、确定物性数据 (9) 三、估算传热面积 (9) 四、工艺结构尺寸 (10) 五、换热器核算 (12) 六、设计结果概要一览表 (17) 七、参考文献 (19)

前言 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。 化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。设计时数为3周,其基本内容为: (1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。 (2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。 (3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。 (4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。 (5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。 (6)设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

换热器课程设计

课程实训任务书 课程石油装备设计综合实训 题目炼油厂柴油换热器的选用和设计 主要内容: 1.液化气工艺概述; 2.换热器的工艺计算; 3.换热器的结构设计; 4.换热器的强度校核; 5.换热器的结果汇总。 设计条件: 炼油厂用原油将柴油从1750C冷却至1300C,柴油流量为12500kg/h;原油初温为700C,经换热后升温到1100C。换热器的热损失可忽略。操作压力为60KPa 管、壳程阻力压降均不大于30KPa。污垢热阻均取0.0003Pa s。 主要参考资料: [1] GB150-2011,压力容器[S] . [2]郑津洋,董其伍,桑芝富.过程设备设计[M] .北京:化学工业出版社,2010. [3]JB 4731-2005,钢制卧式容器[S] . [4]JB4712-2007,容器支座[S]. [5] JB 4715-1992,固定管板式换热器型式与基本参数[S]. 完成期限2013年3月24日 指导教师 专业负责人 2013年2月25日

目录 第1章液化气工艺及流程图概述 (1) 1.1液化石油气工艺概述 (1) 1.1.1液化石油气的特点 (1) 1.1.2液化石油气的来源 (1) 1.1.3液化石油气的提取 (2) 第2章列管式换热器的选用与工艺设计 (4) 2.1列管式换热器的概述 (4) 2.2 初算换热器的传热面积 (4) 2.3主要工艺及结构基本参数的计算 (6) 2.4管、壳程压强降的校验 (9) 2.5总传热系数的校验 (12) 2.6列出所涉及换热器的结构基本参数 (14) 第3章换热器的结构设计 (15) 3.1 筒体部分计算 (15) 3.2 椭圆封头厚度 (16) 3.3 管板选取 (17) 3.4 法兰选取 (17) 3.5 鞍式支座 (19) 3.6 接管 (19) 第4章换热器的强度校核 (21) 4.1 计算容器重量载荷的支座反力 (21) 4.2 筒体轴向应力验算 (21) 4.3 鞍座处的切向剪应力校核 (23) 4.4 鞍座处筒体周向应力验算 (24) 第5章设计结果汇总 (26) 参考文献 (27)

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

管壳式换热器设计课程设计

河南理工大学课程设计 管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。

设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃ 第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 <

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①@ 14 ②物性数据的确定……………………………………………… ③总传热系数的计算 (14) ④传热面积的计算 (16) ⑤工艺结构尺寸的计算 (16) ⑥换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、? 33十、课程设计的收获及感想………………………………………… 十一、附表及设计过程中主要符号说明 (37) 十二、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 # 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 【 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述

热交换器设计说明书

结构设计 管箱设计 参照标准GB151-2014 壳体内径DN=450mm,材料为Q235,许用应力[δ]=125Mpa,壳体厚度δ=8mm,采用卷制。 接管 管程接管:Ф159×8,无缝钢管,材料为10号钢,L=100mm。 壳程接管:Ф219×8,无缝钢管,材料为10号钢,L=100mm。 管板 固定管板材料为Q235 Pg=1.6Mpa,厚度b=40mm。 具体尺寸(:mm) DN D D1 D2 D3 D4 D5 d2 450 565 530 500 447 487 450 18 螺栓规格数量 b f b P s P t M16 24 30 40 0.6 1.0

折流板 选取弓形折流板,上下缺口,材料Q235,缺口高度h=112.5mm,板间距l s =237.5mm, 进出口板间距L s,i =l s,o =260mm,厚度δ=6mm,外径D b=446.5mm,折流板数目9,经 计算换热与结构均符合要求。 拉杆 材料为Q235,选用Ф=16的拉杆4根,具体位置及装配方式见装配图,一端与管板采用螺纹连接,另一端用螺母固定在折流板上。 封头 选用材料为16Mn的椭圆形标准封头,取壁厚8mm。 H=137 h=25 D i =450 分程隔板 选用材料Q235,厚度为8mm,宽450mm,长489mm,一端为和封头形状相同的圆冠,另一端为平面,分程隔板焊于管箱内。 支座(JB-T4712.1-2007) DN450 120包角焊制,单筋,带垫板 L 1 b 1 δ 1 δ 2 b 3 δ 3 弧长 b 4 δ 4 e L 2 420 120 8 8 96 8 540 200 6 48 290

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

浮头式换热器课程设计说明书

精品文档 1.方案确定 选择换热器的类型 浮头式换热器:主要特点是可以从壳体中抽出便于清洗管间和管内。管束可以在管内自由伸缩不会产生热应力。 1.1 换热面积的确定 根据《化工设备设计手册》选择传热面积为 400m 2 1.2 换热管数N 的确定 我国管壳式换热器常用碳素钢、低合金钢钢管,其规格为φ19× 2、φ25× 2.5、φ32× 3、φ38 × 3、φ57 × 3.5 等,不锈钢钢管规格为φ19 × 2、φ25 × 2、φ32 × 2、φ38 × 2.5、φ57 × 2.5。 换热管长度规格为1.0、1.5、2.0、2.5、3.0、4.5、6.0、7.5、9.0m 等。换热器换热管长度与公称直径之比,一般在 4~25 之间,常用的为 6~10。管子的材料选择应根 据介质的压力、温度及腐蚀性来确定。 选用32×3mm 的无缝钢管,材质为 0Cr18Ni9,管长为 6000mm n=A/πd 0L 3-5 式 3-5:n —换热管数 A —换热面积m 2 d0—换热管外径mm L —换热管长度mm 故 -3-3 400 n= =6133.1432600010 ??10??根

表1.1 拉杆直径 /mm 表1.2 拉杆数量 换热器公称直径DN/mm 400<d400≤d<700700≤d<900900≤d<2600 44810 拉杆需 10根。 1.3 换热管的排布与连接方式的确定 换热管排列形式如图 3.1 所示。换热管在管板上的排列形式主要有正三角形、正方形和转正三角形、转三角形。正三角形排列形式可以在同样的管板面积上排列最多的管数,故用的最为广泛,但管外不易清洗。为便于管外便于清洗可以采用正方形或转正方形的管束。 换热管中心距要保证管子与管板连接时,管桥有足够的强度和宽度。管间需要清洗时还要留有进行清洗的通道。换热管中心距宜不小于 1.25 倍的换热管的外径。换热管排列形式如图 1.1 所示: 正三角形转角三角形 正方形转角正方形 图 1.1 换热管排列形式

化工原理课程设计报告(换热器)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

热交换器课程设计任务书(补充数据)

热交换器课程设计任务书 (补充数据10组) 一、对流管式换热器设计: 第一组: (1) 预热空气量:7500 m3/h; (2) 预热空气温度:330 ℃; (3) 冷空气温度:20 ℃; (4) 处理烟气量:8600 m3/h; (5) 换热器进口烟气温度:650 ℃; (6) 烟气成分(体积%): CO2SO2H2O O2N2 16.2 2.38.4 2.071.1第二组: (1) 预热空气量:8300 m3/h; (2) 预热空气温度:350 ℃; (3) 冷空气温度:20 ℃; (4) 处理烟气量:9800 m3/h; (5) 换热器进口烟气温度:650 ℃; (6) 烟气成分(体积%): CO2SO2H2O O2N2 15.9 2.68.8 1.571.2第三组: (1) 预热空气量:10000 m3/h; (2) 预热空气温度:350 ℃; (3) 冷空气温度:20 ℃; (4) 处理烟气量:12500 m3/h; (5) 换热器进口烟气温度:680 ℃; (6) 烟气成分(体积%): CO2SO2H2O O2N2 16.4 3.27.8 1.671.0第四组:

(1) 预热空气量:11500 m3/h; (2) 预热空气温度:360 ℃; (3) 冷空气温度:20 ℃; (4) 处理烟气量:14200 m3/h; (5) 换热器进口烟气温度:700 ℃; (6) 烟气成分(体积%): CO2SO2H2O O2N2 16.8 3.17.6 1.271.3第五组: (1) 预热空气量:12500 m3/h; (2) 预热空气温度:380 ℃; (3) 冷空气温度:20 ℃; (4) 处理烟气量:15000 m3/h; (5) 换热器进口烟气温度:700 ℃; (6) 烟气成分(体积%): CO2SO2H2O O2N2 16.5 3.07.7 1.871.0第六组: (1) 预热空气量:13500 m3/h; (2) 预热空气温度:330 ℃; (3) 冷空气温度:20 ℃; (4) 处理烟气量:16500 m3/h; (5) 换热器进口烟气温度:650 ℃; (6) 烟气成分(体积%): CO2SO2H2O O2N2 16.7 2.87.6 1.871.1第七组: (1) 预热空气量:15800 m3/h; (2) 预热空气温度:350 ℃; (3) 冷空气温度:20 ℃; (4) 处理烟气量:19000 m3/h; (5) 换热器进口烟气温度:665 ℃;

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

管壳式换热器设计课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (1) 第二章管壳式换热器简介 (2) 第三章设计方法及设计步骤 (4) 第四章工艺计算 (5) 物性参数的确定 (5) 核算换热器传热面积 (6) 传热量及平均温差 (6) 估算传热面积 (8) 第五章管壳式换热器结构计算 (10) 换热管计算及排布方式 (10) 壳体内径的估算 (12) 进出口连接管直径的计算 (13) 折流板 (13) 第六章换热系数的计算 (19) 管程换热系数 (19) 壳程换热系数 (19) 第七章需用传热面积 (22) 第八章流动阻力计算 (24) 管程阻力计算 (24) 壳程阻力计算 (25) 总结 (27)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

化工原理课程设计之列管式换热器

化工原理课程设计之列管式换热器 1

设计者:班级生物0902 姓名郑勇廖祥兵 学号 3503 3509 指导教师:陆爱霞 设计成绩:进度说明书图纸总分

日期: -11-19 西南科技大学生命科学与工程学院 目录 1.综述 (3) 1.1换热器较……………………………………………… 2.课程设计任务书…………………………………………………… 4 3.设计计算 (5) 3.1确定设计案………………………………………………… 3. 2 流动空间以及流速的确定………………………………… 5 3.3 确定流体流动及进出口温度…………………………… 3

5 3.4 计算两流体的平均温度差 (8) 3.5计算热负荷和冷却水流量...........................4.换热器主要附件的确定及工艺结构尺寸 (8) 4.1 污垢热阻 (9) 4.2管程数和传热管数 (9) 4.3平均温度校正和壳程数 (10) 4.4换热管排列和分程法 (10) 4.5 折流板和接管 (11) 5.核算总传热系数 (11) 5.1 壳程对流传热系数 (11) 5.2 管程对流传热系数 (12) 5.3 总传热系数 (13) 5.4 设计裕度 (13) 6.核算压强降 (13) 6.1 管程压强降 (13) 6.2 壳程压强降 (14) 7.换热器主要结构尺寸和计算结果 (15) 8.换热器的安装与维修 (16) 6.参考文 4

献 (16) 1.综述 换热器的分类与比较,根据冷、热流体热量交换的原理和方式,换热器基本上可分为三大类即间壁式混合式和蓄热式,其中间壁式 5

热交换器温度控制系统课程设计

热交换器温度控制系统课程设计

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1能够看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案

根据控制系统的复杂程度,能够将其分为简单控制系统和复杂控制系统。其中在换热器上常见的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是经过对换热器过程控制系统的分析,确定合适的控制系统。 换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别经过换热器的壳程和管程,经过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,经过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体经过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,能够调节冷热流体的大小。在冷流体出口设置一个电功调节阀,能够根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到经过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是经过变频器调节的,因此,本系统中采用变频器作为执行器。

化工原理课程设计(换热器的设计)

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列管式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①物性数据的确定 (14) ②总传热系数的计算 (14) ③传热面积的计算 (16) ④工艺结构尺寸的计算 (16) ⑤换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、课程设计的收获及感想 (33) 十、附表及设计过程中主要符号说明 (37) 十一、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。 在换热器中,至少有两种温度不同的流体,一种流体温度较

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

列管式换热器课程设计计算过程的参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下: 设计要求: 1.某工厂的苯车间,需将苯从其正常沸点被冷却到40℃;使用的冷 却剂为冷却水,其进口温度为30℃,出口温度自定。 2.物料(苯)的处理量为1000 吨/日。 3.要求管程、壳程的压力降均小于30 kPa。 1、换热器类型的选择。 列管式换热器 2、管程、壳程流体的安排。 水走管程,苯走壳程,原因有以下几点: 1.苯的温度比较高,水的温度比较低,高温的适合走管程,低温适合走壳程 2.传热系数比较大的适合走壳程,水传热系数比苯大 3.干净的物流宜走壳程。而易产生堵、结垢的物流宜走管程。 3、热负荷及冷却剂的消耗量。 冷却介质的选用及其物性。按已知条件给出,冷却介质为水,根进口温度t1=30℃,冷却水出口温度设计为t2=38℃,因此平均温度下冷却水物性如下: 密度ρ=994kg/m3粘度μ2=0.727Χ10-3Pa.s 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ 密度ρ=880kg/m3粘度μ2=1.15Χ10-3Pa.s 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

相关文档
最新文档