期权定价中的蒙特卡洛模拟方法

合集下载

期权定价数值方法

期权定价数值方法

期权定价数值方法期权定价是金融学和衍生品定价的重要研究领域之一。

相对于传统的基于解析公式的定价方法,数值方法在期权定价中发挥了重要作用。

本文将介绍几种常用的期权定价数值方法。

第一种方法是蒙特卡洛模拟法。

这种方法通过生成大量的随机路径,从而模拟出期权的未来价格演化情况。

蒙特卡洛模拟法能够处理各种复杂的衍生品,尤其适用于路径依赖型期权的定价。

其基本思想是通过随机游走模拟资产价格的变化,并在到期日计算期权的收益。

蒙特卡洛方法的优点在于简单易懂,适用于任意的收益结构和模型。

缺点是计算复杂度高,需要大量的模拟路径,同时计算结果存在一定的误差。

第二种方法是二叉树模型。

二叉树模型将时间离散化,并用二叉树结构模拟资产价格的变化。

每一步的价格变动通过建立期权价格的递归关系进行计算。

二叉树模型适用于欧式期权的定价,特别是在波动率较低或资产价格较高时效果更好。

二叉树模型的优点在于计算速度快,容易理解,可以灵活应用于各种不同类型的期权。

缺点是对期权到期日的分割存在一定的限制,复杂的期权结构可能需要更多的分割节点。

第三种方法是有限差分法。

有限差分法将连续时间和连续空间离散化,通过有限差分近似式来计算期权价格。

其基本思想是将空间上的导数转化为有限差分的形式,然后通过迭代的方法求解有限差分方程。

有限差分法适用于各种不同类型的期权定价,特别是美式期权。

它是一种通用的数值方法,可以处理多种金融模型。

缺点是计算复杂度高,特别是对于复杂的期权结构和高维度的模型,需要更多的计算资源。

综上所述,期权定价的数值方法包括蒙特卡洛模拟法、二叉树模型和有限差分法。

不同的方法适用于不同类型的期权和市场情况。

在实际应用中,可以根据具体的问题选择合适的数值方法进行期权定价。

期权定价是金融学中一个重要的研究领域,它的核心是确定期权合理的市场价值。

与传统的基于解析公式的定价方法相比,数值方法在期权定价中有着重要的应用。

本文将进一步介绍蒙特卡洛模拟法、二叉树模型和有限差分法,并探讨它们的优缺点及适用范围。

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法期权定价是金融市场中的一个重要问题。

近年来,蒙特卡洛模拟方法在期权定价中得到了广泛的应用。

蒙特卡洛模拟方法是一种基于随机模拟的数值计算方法,通过生成大量的随机样本来估计某些数量的数值。

下面将介绍蒙特卡洛模拟方法在期权定价中的基本原理及应用。

蒙特卡洛模拟方法采用随机数生成器生成大量的随机数,并利用这些随机数进行模拟计算。

在期权定价中,蒙特卡洛模拟方法可以用来估计期权的价格以及其他相关的风险指标,例如风险价值和概率分布等。

在蒙特卡洛模拟方法中,首先需要确定期权定价模型。

常用的期权定价模型包括布朗运动模型和风险中性估计模型等。

然后,根据期权定价模型,生成一个或多个随机数来模拟期权价格的变动。

通过对多个随机样本进行模拟计算,我们可以获得期权价格的分布情况及其他相关指标的估计值。

在期权定价中,蒙特卡洛模拟方法的精确度主要取决于两个方面:模拟路径的数量和模拟路径的长度。

路径的数量越多,模拟结果的精确度越高。

路径的长度越长,模拟结果的稳定性越好。

蒙特卡洛模拟方法在期权定价中的应用非常广泛。

例如,在欧式期权定价中,可以使用蒙特卡洛模拟方法来估计期权的风险价值和概率分布等指标。

在美式期权定价中,由于存在提前行权的可能性,蒙特卡洛模拟方法可以用来模拟期权的提前行权时机并确定最佳行权策略。

此外,在一些复杂的期权定价中,例如亚式期权和障碍期权等,蒙特卡洛模拟方法也可以提供有效的定价方法。

总之,蒙特卡洛模拟方法是期权定价中一种重要的数值计算方法。

它通过生成大量的随机样本来估计期权的价格及相关指标,具有较高的灵活性和精确度。

蒙特卡洛模拟方法在期权定价中广泛应用,为金融市场中的投资者和交易员提供了重要的决策工具。

蒙特卡洛模拟方法在期权定价中的应用非常广泛,下面将进一步介绍其在不同类型期权定价中的具体应用。

首先是欧式期权定价。

欧式期权是指在未来某个特定时间点(到期日)才能行使的期权。

蒙特卡洛模拟方法可以用来估计欧式期权的价格和概率分布等指标。

蒙特卡洛随机模拟方法

蒙特卡洛随机模拟方法

蒙特卡洛随机模拟方法摘要:蒙特卡洛随机模拟方法是一种通过随机采样和统计分析来解决数学问题的方法。

本文将从蒙特卡洛方法的起源、原理、应用以及优缺点等方面进行全面、详细、完整且深入地探讨。

1. 引言蒙特卡洛随机模拟方法是20世纪40年代由于法国科学家Stanislaw Ulam和美国科学家John von Neumann等人共同发展起来的一种重要的计算方法。

该方法通过随机数生成和统计分析的过程,模拟复杂的随机现象,解决各种数学问题,应用于各个领域。

2. 原理蒙特卡洛随机模拟方法基于大数定律和中心极限定理,通过生成大量的随机样本,对概率分布进行模拟和逼近,从而得到所求问题的近似解。

其基本原理可以归纳为以下几个步骤:1.建立数学模型:确定问题的数学模型,并将其转化为可计算的形式。

2.生成随机数:根据概率分布和随机数生成器,产生满足要求的随机数。

3.模拟实验:根据生成的随机数,进行模拟实验,并记录相应的结果。

4.统计分析:对模拟实验的结果进行统计分析,得到所求问题的近似解。

3. 应用蒙特卡洛随机模拟方法在各个领域有着广泛的应用,以下列举了部分典型的应用场景:3.1 金融领域蒙特卡洛方法在金融领域中被广泛应用于风险评估、期权定价、投资组合优化等问题。

通过模拟股价的随机波动,可以对不同的金融产品进行风险评估,提供决策支持。

3.2 物理学领域在物理学领域,蒙特卡洛方法被用于模拟粒子的运动轨迹、计算量子态的性质等问题。

通过生成大量的随机数,可以模拟复杂的物理过程,得到实验无法观测到的信息。

3.3 生物学领域生物学中的蒙特卡洛方法主要应用于蛋白质结构预测、基因表达调控网络的建模等问题。

通过随机模拟分子的运动,可以预测蛋白质的折叠结构,并推断其功能和相互作用关系。

3.4 工程领域在工程领域,蒙特卡洛方法通常用于模拟复杂系统的可靠性和优化设计。

通过对系统的不确定性进行随机抽样和模拟,可以评估系统的可靠性,并进行可靠性设计和优化。

拟蒙特卡洛模拟方法在期权定价中的应用研究

拟蒙特卡洛模拟方法在期权定价中的应用研究

拟蒙特卡洛模拟方法在期权定价中的应用研究杨首樟1,任燕燕2(1.伯明翰大学,英国;2.山东大学 经济学院,山东济南 250100)摘要:不断变化的市场利率、汇率,难以预测的突发事件,以及各种复杂情形都对金融衍生产品定价方法提出了更高的要求。

蒙特卡洛模拟是一种比较有效的衍生品定价方法,它通过伪随机序列模拟标的资产价格的路径,对相应的期权进行定价,但它存在着一定的弊端:收敛速度慢,不能通过增加模拟次数有效地逼近真值。

拟蒙特卡洛模拟对蒙特卡洛模拟进行了改进,用低差异序列代替伪随机序列,提高了模拟的准确性。

论文利用蒙特卡洛和拟蒙特卡洛模拟方法 对欧式期权进行定价,对两种方法进行比较分析,结果表明在低维情况下拟蒙特卡洛模拟方法可以得到更加精确地效果,收敛速度也比较快;在高维情况下通过修正也达到同样的效果。

关键词: 蒙特卡洛;拟蒙特卡洛; 欧式期权;Black-Scholes定价模型中图分类号:F830.91;F224 文献编码:A DOI:10.3969/j.issn.1003-8256.2017.01.0070 引言在过去的二十年中,期权作为管理风险和投机的工具得到了迅速的发展,同时也引发了对于期权定价的研究。

由于期权的价格受市场供求的影响,进而影响交易双方的收益,使得期权定价研究成为期权交易中的一个重要部分。

但由于市场的复杂性以及不可预见性,使得期权的定价非常复杂,当所求问题的维度不高于三维的时候,运用传统的数值方法,例如,二叉树方法、有限差分法等就可以得到比较理想的结果,但当问题的维度比较高的时候,这些传统数值方法表现就不太理想,这就是所谓的“维度灾难”。

为了解决更加复杂的问题,诸多学者提出了蒙特卡洛方法。

蒙特卡洛方法的基本思想是通过建立一个统计模型或者随机过程,使它的参数等同于所求问题的解,再通过反复的随机取样,计算参数的估计值和统计量,从而得到所求问题的近似解,当抽样次数越多的时候近似解就越接近于真实值,其基本原理就是大数定理和中心极限定理。

金融工程中的蒙特卡洛方法(一)

金融工程中的蒙特卡洛方法(一)

金融工程中的蒙特卡洛方法(一)金融工程中的蒙特卡洛介绍•蒙特卡洛方法是一种利用统计学模拟来求解问题的数值计算方法。

在金融工程领域中,蒙特卡洛方法被广泛应用于期权定价、风险评估和投资策略等各个方面。

蒙特卡洛方法的基本原理1.随机模拟:通过生成符合特定概率分布的随机数来模拟金融市场的未来走势。

2.生成路径:根据设定的随机模拟规则,生成多条随机路径,代表不同时间段内资产价格的变化情况。

3.评估价值:利用生成的路径,计算期权或资产组合的价值,并根据一定的假设和模型进行风险评估。

4.统计分析:对生成的路径和价值进行统计分析,得到对于期权或资产组合的不确定性的估计。

蒙特卡洛方法的主要应用•期权定价:蒙特卡洛方法可以用来计算具有复杂特征的期权的价格,如美式期权和带障碍的期权等。

•风险评估:通过蒙特卡洛模拟,可以对投资组合在不同市场环境下的价值变化进行评估,进而帮助投资者和风险管理者制定合理的风险控制策略。

•投资策略:蒙特卡洛方法可以用来制定投资组合的优化方案,通过模拟大量可能的投资组合,找到最优的资产配置方式。

蒙特卡洛方法的改进与扩展1.随机数生成器:蒙特卡洛方法的结果受随机数的生成质量影响较大,因此改进随机数生成器的方法是常见的改进手段。

2.抽样方法:传统的蒙特卡洛方法使用独立同分布的随机抽样,而现在也存在一些基于低差异序列(low-discrepancysequence)的抽样方法,能够更快地收敛。

3.加速技术:为了提高模拟速度,可以采用一些加速技术,如重要性采样、控制变量法等。

4.并行计算:随着计算机硬件性能的提高,可以利用并行计算的方法来加速蒙特卡洛模拟,提高计算效率。

总结•蒙特卡洛方法在金融工程中具有广泛的应用,可以用于期权定价、风险评估和投资策略等多个方面。

随着不断的改进与扩展,蒙特卡洛方法在金融领域的计算效率和准确性得到了提高,有助于金融工程师更好地理解和控制金融风险。

蒙特卡洛方法的具体实现步骤1.确定问题:首先需要明确要解决的金融工程问题,例如期权定价或投资组合优化。

蒙特卡洛定价方法

蒙特卡洛定价方法

蒙特卡洛定价方法蒙特卡洛定价方法是一种金融工程中常用的定价方法,广泛应用于期权定价、风险管理等领域。

它基于蒙特卡洛模拟,通过大量的随机模拟来计算出期权的预期价值,从而得出期权的定价结果。

蒙特卡洛定价方法的原理是通过随机模拟资产价格的未来走势,然后根据这些模拟结果计算出期权的预期收益,最终通过对这些预期收益进行加权平均来得到期权的定价。

具体步骤如下:1. 建立资产价格模型:首先,需要根据所研究的资产类型,建立一个适当的资产价格模型。

常见的资产价格模型包括布朗运动模型、几何布朗运动模型等。

2. 随机模拟价格路径:根据资产价格模型,使用随机数生成器模拟资产价格的未来走势。

一般情况下,可以根据资产价格的历史波动率和随机数生成器生成一系列符合资产价格模型的随机价格路径。

3. 计算期权收益:对于每条随机价格路径,根据期权的执行条件和收益规则,计算出期权在该价格路径下的收益。

4. 加权平均:对所有随机价格路径下计算得到的期权收益进行加权平均,得到期权的预期收益。

5. 折现:将期权的预期收益折现到当前时点,得到期权的预期价值。

蒙特卡洛定价方法的优点是可以考虑多种不确定性因素,并且相对于传统的解析解方法,它更加灵活,适用于各种复杂的金融产品。

然而,蒙特卡洛定价方法也存在一些缺点,比如计算量大、收敛速度慢等。

在实际应用中,蒙特卡洛定价方法可以用于期权定价、风险管理等领域。

例如,在期权定价中,可以使用蒙特卡洛定价方法来计算欧式期权的价格;在风险管理中,可以使用蒙特卡洛模拟来评估投资组合的风险暴露度。

蒙特卡洛定价方法是一种重要的金融工程方法,通过随机模拟和加权平均的方式,可以较为准确地计算出期权的预期价值。

它在期权定价、风险管理等领域有着广泛的应用前景。

随着计算机技术的不断进步,蒙特卡洛定价方法将会在金融领域发挥更加重要的作用。

(定价策略)期权定价中的蒙特卡洛模拟方法最全版

(定价策略)期权定价中的蒙特卡洛模拟方法最全版

(定价策略)期权定价中的蒙特卡洛模拟方法期权定价中的蒙特卡洛模拟方法期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。

而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。

蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。

蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。

§1.预备知识◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。

大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。

在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov强大数定律:设为独立同分布的随机变量序列,若则有显然,若是由同一总体中得到的抽样,那么由此大数定律可知样本均值当n很大时以概率1收敛于总体均值。

中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。

设为独立同分布的随机变量序列,若则有其等价形式为。

◆Black-Scholes期权定价模型模型的假设条件:1、标的证券的价格遵循几何布朗运动其中,标的资产的价格是时间的函数,为标的资产的瞬时期望收益率,为标的资产的波动率,是维纳过程。

2、证券允许卖空、证券交易连续和证券高度可分。

3、不考虑交易费用或税收等交易成本。

4、在衍生证券的存续期内不支付红利。

5、市场上不存在无风险的套利机会。

6、无风险利率为一个固定的常数。

下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。

首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

伊藤Ito公式:设,是二元可微函数,若随机过程满足如下的随机微分方程则有根据伊藤公式,当标的资产的运动规律服从假设条件中的几何布朗运动时,期权的价值的微分形式为现在构造无风险资产组合,即有,经整理后得到这个表达式就是表示期权价格变化的Black-Scholes 偏微分方程。

《金融衍生品》课件_第11章_期权定价数值方法

《金融衍生品》课件_第11章_期权定价数值方法
续复利年利率为 10% ,该股票 5 个月期的
美式看跌期权协议价格为 50 元,求该期权
的价值。
20
美式看跌期权的二叉树定价 (cont.)
• 为了构造二叉树,我们把期权有效期分为
五段,每段一个月(等于 0.0833 年)。可
u e t 1.1224
以算出
d e
t
0.8909
4、资产价格随机路径模拟(风险中
性概率测度)
(1)常数波动率模型的离散化和模拟
• 在风险中性世界中,为了模拟路径
dS r q Sdt Sdz
(11.4)
我们把期权的有效期分为 N 个长度为 ∆t 的
时间段,则上式的离散的近似方程为:
(11.5)
6
(2)GARCH模型模拟
模型的离散化形式:
2、欧式期权蒙特卡罗模拟定价
假设标的资长价格服从波动率为常数的几
何布朗运动。对于欧式期权,只需要模拟出
标的资产到期的分布。如欧式看涨期权,第i
条路径下的支付:
()
为标准正态分布的一个随机抽样,
(11.3)=.源自3、蒙特卡罗模拟方法的适用性
• (1)普通的蒙特卡罗模拟方法不适用于美式
(10.23)
(10.24)
其中,
定义为:
(10.25)
3、Heston模型的离散化和模拟
模型的离散化和模拟
5、GARCH模型下的蒙特卡洛模拟定价
二、二叉树模型
1、二叉树模型原理
假设股票当前价格是S,下一期价格有两种可能 (= u)
和 =(Sd),风险中性下上升概率是p,下跌概率是1-p。
e r q t d
p
ud
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,为独立同分布的随机变量序列,若2,则有pξ是由同一总体中得到的抽样,那么由,,n,为独立同分布的随机变量序列,若,[2,D μξ<∞则有k =∑1)exp(x=⎰η,并计算样本均值,,nKolmogorov强大数定律有,,)]T S ,,,)T S 是关于标的资产价格路径的预期n t T <<=2,)n,1,2,n),则如果用日数据计算波动率,+,并令其解为2,) 2,,}k,跳跃尺度()2()(,)()!N t W S r N t λτλτσ-exp(λλμ=,()(exp(N t r r λ=-1σσστ=+例2. 标的资产价格遵从跳扩散过程如下()(1)dSdt dW Y dN Sμλνσ=-++- 1.5(0)20, 2.5%,20%,0.5,1,500,0.004,0.8S t v Y n t Y μσλ=====-=∆==用蒙特卡洛模拟的资产价格路径如下图所示:◆无形资产——专利池的期权定价模问题专利池的市场价值V 依赖于企业使用专利池技术前后生产产品所获得的收益S 和成本C 及时间t ,这三个变量均可用跳扩散模型:()(1)dXdt dW Y dN Xμλνσ=-++-通过构造由V 和它所依赖的两个变量S 、C 组成的资产组合,利用带跳的伊藤引理获得V 与S 、C 所遵循的带跳的随机微分方程,并根据实际情况在一些假设条件下给出该方程的终边值条件,最终获得V 的求解公式。

构造无风险资产组合S S C V V S V C ∏=--一方面V∏的微分的期望为:()()V S C E d r V V S V C dt ∏=--时也不排除在一段时间后出现其他更好技术的可能性,一方面时间越长,这种可能性越大。

另一方面该技术使用寿命越长,这种可能性越小(l=l(t))。

并且,其他同类技术的出现使该专利池技术的收益下降, 下降幅度为LnY 。

因为设备的经济使用寿命是20年,根据市场需求,计划建成一条年生产100吨的生产线,其20年的成本,包括设备的直接制造成本和运营期间的管理费、工资等。

若在期初计划投资1000万,以后20年每年的生产量不变,生产成本按每年的通货胀率 10%递增。

假设在初期预计该项技术20年总收益为4000万,其收益率为25%,方差为20%。

1.3()0.02,25%,10%,0.6S S C S t t r Y λμμ=====(0)4000,(0)1000,4000,0.005S C n t ===∆=新产品发明专利池的市场价值 V=8050●在一次付清许可费用情况下的价格模型:新产品发明专利池的价格P所遵循的方程为:222211()22((,,)(,,))0t S S S C S SS C CCS C SC S SP r v P S rP C S P C PSCP E P Y S C t P S C t rPλσσσσλ+-+++++--=(,,)max((()()),0)(,,)0 as 0(,,)0 as C(,,) asP S C T S T C TP S C t SP S C tP S C t S Sαα=-→→→→∞→→∞在一次付清许可费用情况下的新产品发明专利池的价格为:(,,)(,,)P S C t V S C tα=1.3()0.02,25%,10%,0.5,0.6(0)4000,(0)1000,4000,0.005S S C St t r YS C n tλμμα=========∆=在一次付清许可费用情况下新产品发明专利池的价格 P=5450。

●在首付加每期按收益固定比率支付许可费用情况下的价格模型新产品发明专利池技术产生的收益S遵循模型()(1)S S S S S S SdSq dt dW Y dNSμλνσ=--++-引进新产品发明专利池技术后的成本 C 遵循模(, NμσSY在首付加每期按收益固定比率支付许可费用情况下新产品发明专利池的价格P=855。

§6. 最小二乘蒙特卡洛模拟与美式期权定价运用最小二乘蒙特卡洛模拟方法为美式期权定价的基本原理与蒙特卡洛模拟方法基本相同,并且用最小二乘回归同时还可解决各样本时点上继续持有期权价值的确定和各样本路径的最优停时的确定。

其基本思路是:在期权的有效期,将其标的资产价格过程离散化,随机模拟出标的资产价格的多条样本路径,从而得到每个时刻资产价格的截面数据。

选取以某时刻资产价格为变量的一组基函数作为解释变量,下一时刻期权价值的贴现值作为被解释变量,进行最小二乘法回归求得该时刻期权的持有价值,并与该时刻期权的在价值作比较,若后者较大,则应该立即执行期权,否则,就应继续持有期权。

最小二乘蒙特卡洛模拟方法定价的基本实现步骤:首*,,,,)]T t S S *,,,,T t S S 为标的资产价格的路径,*,,,,)T t S S 的期权价值。

上式定义的用最小二乘蒙特卡洛方法进行模拟的期权价值。

{0,1,,}N ,随机变量,,N S ,重复执行3,,0 N执行,或是永不执行。

具体设计程序时,令初{0,1,,}执行期权,则t*1,2,,}M也不同,所以应分别进行贴现求均值,最终得到初,,,)]j T t S S *=∑已知股票价格为50,美式看跌期权执行价为R=[ones(size(X1)) (1-X1) 1/2*(2-4*X1+X1.^2)];a=R\Y;C=R*a;Jdx=max(K-X,0)>C;nIdx=setdiff((1:M),Idx(Jdx));CF(ii,Idx(Jdx))=max(K-X(Jdx)',0);ExTime(Idx(Jdx))=ii;CF(ii,nIdx)=exp(-r*dt)*CF(ii+1,nIdx);endPrice=mean(CF(2,:))*exp(-r*dt)%%%%% 绘制标的股票价格模拟图 %%%%%x1=[0:N];y1=S';y2=mean(S');subplot(2,1,1)plot(x1,y1)subplot(2,1,2)plot(x1,y2)xlabel('期权存续期间')ylabel('股价的模拟路径')%%%%% 绘制期权价值模拟图 %%%%%figure;x2=[1:N];y3=CF(2:end,:)';for i=1:My4(i)=y3(i,ExTime(i));endplot(x2,y3,ExTime,y4,'*')xlabel('期权的最优停止时间')ylabel('期权价值的模拟路径')模拟的美式看跌期权的价格路径如下图所示:模拟的期权价值路径及其最优停时如下图:本例中的美式看跌期权价格为:price=AmericanOptLSM(50,50,0.1,5/12,0.4,50,1000 00)Price=4.2654§7. 改进蒙特卡洛方法计算效率的常用几种方2,,mj T S 也是股票价格终值的{}exp()max 0,,1,2,,j j T C rT S K j m =--=的平均值也能得到期权价格的无偏估计量。

因此,由对偶变量技术得到的jC 。

]j C ,所以1](])2jj C Var C =;并且,令()Z φ=,对于标是单调递]0j C ≤,从而1](jC Var ≤122,,,,,m m C C C C C 并122,,,222m mC C C C C ++才是独立同分布的抽样,故122,,,22m mC C C C C ++而非2n 122,,,,,m m C C C C C 来,,n Y 是期权到期回报贴现的1,,n 独立同分布,则对于确定的数(),,)d TX并且i1,,n独立同分布,(),,d X 之()[]2i X -∑2,,d 将bY 。

,,X,从而将n,,X作为多元控制变量可得相应的控制变量估计值为n)b=∑m,,m Z 。

由于对这些样本进行调整,使其一阶矩、二阶矩乃至高阶矩与总,2,,j j Z Z Z m =-,~(0,1)j Z N j Z 生成的股票价格终jT S ,从期回报现的一次{}exp()max 0,j j T C rT S K=--,利用矩匹配技术得到的蒙特卡洛估计量为1m jC ∑。

和对偶变量技术一样,12,,,m Z Z Z 并不独立,导致12,,,m C C C 也不独立,所以不能直接应用中心极限定理估计误差。

一个解决方案是将抽样分隔为不同批次,对每个批次分1,2,,j j ZZ Z Z m S -=。

j Z 不再服从标准正态分布,故相应j C 将是期权价格的有偏估计。

这个偏差在极端情况下可能2,,j j Z Z Z m =-(2,,j j ZZ Z Z m S -=其中Z 与S 的定义同上。

仍以标准欧式看涨股票期权为例,若股价服从风险中性的几何布朗运动,则股价终值的均j T S 运用矩匹配技术。

,,m Z ,其经验分布不会完全与总体分布相吻合,尤的经验分布加以改进。

,,m U 是在1],,[,1]m m-2,,m 。

显然,1()j j Z V φ-=m 分位数之间,故由,,m V 可得标准正态分布的一个分层抽样。

需要注意的是,,m V 的高度相关性使得标准误差的估(),,),1,2,,d j U j m =是[0,1]d 上均匀分布随机,,d π是1,2,,}m 上的随机排1,1,2,,1,2,,k dj m m-==上服匀分布的随机向量,并且的第,,mV ,,m V 不独立,故,,m X 均为服从1(m j h m θ=∑()g x ⇒>,,m X 是服从1m g h m θ=∑g θ是θ的无偏估计量。

重要性抽样技术的方差减少效果:由于1,2,,d 监测,1,,},1,,},d d 使得均有,i X 是独,,d S ,故减少了模拟工作量,提高了效率。

如果对此期权综合应用条件蒙特卡洛与重要性抽样两11((),,)(,,)[()(,,)(,,),,)[()()],,),,),,)g d d d d r T g X X f X X E I S S X g X X X E I S S K S X X e X τττττττττ+++--那么结合了重要性抽样的标的资产服从风险中性几何布朗运动的下敲入看涨期权的到期回报贴现的条件蒙特卡,,),,)r X e X τττ-。

相关文档
最新文档