最新2013届天津高三数学理科试题精选分类汇编7:立体几何
2013年天津高考数学(理科)试题及答案

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么 )()(()B P A A P P B = ·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z= y -2x 的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10) 6x⎛⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点.若·1AD BE =, 则AB 的长为 . (13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截得的线段长(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
2013年天津市高考数学试卷(理科)(有答案)(Word版)

2013年普通高等学校招生全国统一考试(天津卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2.本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+ ·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A) 1 (B) 32(C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ =(A)10 (B) 10 (C)310(D)5 (7) 函数0.5()2|log |1x f x x =-的零点个数为 (A) 1 (B) 2(C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a的取值范围是(A) 15,0⎛⎫- ⎪ ⎪⎝⎭ (B) 13,0⎛⎫- ⎪ ⎪⎝⎭(C) 15,0130,⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 5,1⎛⎫-- ⎪ ⎝⎭∞⎪2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10) 6x x ⎛- ⎪⎝⎭ 的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为2, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为3, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为43.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.- 5 - 2013高考真题。
2013年高考理科数学试题(天津卷)及参考答案

2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么·球的体积公式 其中R 表示球的半径.)()()(B P A P A P B ⋃=+)()(()B P A A P P B =34.3V R π=一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则(A)(B) [1,2](C) [-2,2](D) [-2,1](2) 设变量x , y 满足约束条件则目标函数z =y -2x 的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题:①若一个球的半径缩小到原来的, 则其体积缩小到原来的;②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆相切. 其中真命题的序号是:(A) ①②③ (B) ①②(C) ①③(D) ②③(5) 已知双曲线的两条渐近线与抛物线的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为, 则p =(A) 1(B)(C) 2 (D) 3(6) 在△ABC 中,则 =(A)(B) (C)(D)(7) 函数的零点个数为 (A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数. 设关于x 的不等式 的解集为A , 若,A B ⋂=(,2]-∞360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩12182212x y +=22221(0,0)x y a b a b -=>>22(0)px p y =>332,2,3,4AB BC ABC π∠===sin BAC ∠101010531010550.5()2|log |1xf x x =-()(1||)f x x a x =+()()f x a f x +<11,22A ⎡⎤-⊆⎢⎥⎣⎦则实数a 的取值范围是(A)(B) (C)(D)2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分. 二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10)的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为, 圆心为C , 点P 的极坐标为, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, , E 为CD 的中点.若AC ·BE =1, 则AB 的长为 . (13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)15,02⎛⎫- ⎪ ⎪⎝⎭13,02⎛⎫- ⎪ ⎪⎝⎭15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭52,1⎛⎫-- ⎪ ⎝⎭∞⎪61x x ⎛⎫- ⎪⎝⎭4cos ρθ=4,3π⎛⎫⎪⎝⎭60BAD ︒∠=1||2||a a b +已知函数.(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为, 求线段AM 的长.(18) (本小题满分13分)设椭圆的左焦点为F , 离心率为, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若, 求k 的值.(19) (本小题满分14分)已知首项为的等比数列不是递减数列, 其前n 项和为, 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列的通项公式;2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R0,2π⎡⎤⎢⎥⎣⎦2622221(0)x y a b a b +=>>33433··8AC DB AD CB +=32{}n a (*)n S n ∈N {}n a(Ⅱ) 设, 求数列的最大项的值与最小项的值.(20) (本小题满分14分)已知函数.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为, 证明: 当时, 有.2013年普通高等学校夏季招生全国统一考试数学理工农医类(天津卷)第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:D解析:解不等式|x |≤2,得-2≤x ≤2,所以A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤1}.故选D. 2.答案:A解析:作约束条件360,20,30x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩所表示的可行区域,如图所示,z =y -2x 可化为y =2x +z ,z 表示直线在y 轴上的截距,截距越大z 越大,作直线l 0:y =2x ,平移l 0过点A (5,3),此时z 最小为-7,故选A.3.答案:B解析:由程序框图,得x =1时,S =1;x =2时,S =9;x =4时,S =9+64=73,结束循环输出S 的值为73,故选B. 4.答案:C*()1n n nT S n S ∈=-N {}n T 2l ()n f x x x =()t f s =()s g t =2>e t 2ln ()15ln 2g t t <<解析:设球半径为R ,缩小后半径为r ,则r =12R ,而V =34π3R ,V ′=33344114πππ33283r R R⎛⎫==⨯ ⎪⎝⎭,所以该球体积缩小到原来的18,故①为真命题;两组数据的平均数相等,它们的方差可能不相等,故②为假命题;圆x 2+y 2=12的圆心到直线x +y +1=0的距离d==,因为该距离等于圆的半径,所以直线与圆相切,故③为真命题.故选C.5.答案:C解析:设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|·|y 0|.抛物线y 2=2px 的准线为2p x =-,所以02p x =-,代入双曲线的渐近线的方程b y xa =±,得|y 0|=2bpa .由2222,,ca abc ⎧=⎪⎨⎪+=⎩得b,所以|y 0|p .所以S △AOB2p =,解得p =2或p =-2(舍去). 6. 答案:C解析:在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=2923+-=5,即得AC.由正弦定理sin sin AC BCABC BAC =∠∠,即3sin BAC=∠,所以sin ∠BAC.7.答案:B解析:函数f (x )=2x |log 0.5x |-1的零点也就是方程2x |log 0.5x |-1=0的根,即2x|log 0.5x |=1,整理得|log 0.5x |=12x ⎛⎫ ⎪⎝⎭.令g (x )=|log 0.5x |,h (x )=12x⎛⎫ ⎪⎝⎭,作g (x ),h (x )的图象如图所示.因为两个函数图象有两个交点,所以f (x )有两个零点.8. 答案:A解析:f (x )=x (1+a |x |)=22,0,,0.ax x x ax x x ⎧+≥⎨-+<⎩若不等式f (x +a )<f (x )的解集为A ,且11,22⎡⎤-⎢⎥⎣⎦A ⊆,则在区间11,22⎡⎤-⎢⎥⎣⎦上,函数y=f(x+a)的图象应在函数y=f(x)的图象的下边.(1)当a=0时,显然不符合条件.(2)当a>0时,画出函数y=f(x)和y=f(x+a)的图象大致如图.由图可知,当a>0时,y=f(x+a)的图象在y=f(x)图象的上边,故a>0不符合条件.(3)当a<0时,画出函数y=f(x)和y=f(x+a)的图象大致如图.由图可知,若f(x+a)<f(x)的解集为A,且11,22⎡⎤-⎢⎥⎣⎦A ⊆,只需1122f a f⎛⎫⎛⎫-+<-⎪ ⎪⎝⎭⎝⎭即可,则有2211112222a a a a⎛⎫⎛⎫⎛⎫--++-+<---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a<0),整理,得a2-a-1<0a<<.∵a<0,∴a∈⎫⎪⎪⎭.综上,可得a的取值范围是⎫⎪⎪⎭.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分.9.答案:1+2i解析:由(a+i)(1+i)=a-1+(a+1)i=b i,得10,1,aa b-=⎧⎨+=⎩解方程组,得a=1,b=2,则a+b i=1+2i. 10.答案:15解析:二项展开式的通项为3662166C(1)Crrr r r rrT x x--+⎛==-⎝,3602r-=得r=4,所以二项展开式的常数项为T5=(-1)446C=15.11.答案:解析:由圆的极坐标方程为ρ=4cos θ,得圆心C的直角坐标为(2,0),点P的直角坐标为(2,),所以|CP|=12.答案:1 2解析:如图所示,在平行四边形ABCD 中,AC =AB +AD ,BE =BC +CE =12-AB +AD .所以AC ·BE =(AB +AD )·12AB AD ⎛⎫-+ ⎪⎝⎭=12-|AB |2+|AD |2+12AB ·AD =12-|AB |2+14|AB |+1=1,解方程得|AB |=12(舍去|AB |=0),所以线段AB 的长为12.13.答案:83解析:∵AE 为圆的切线,∴由切割线定理,得AE 2=EB ·ED . 又AE =6,BD =5,可解得EB =4. ∵∠EAB 为弦切角,且AB =AC , ∴∠EAB =∠ACB =∠ABC . ∴EA ∥BC .又BD ∥AC ,∴四边形EBCA 为平行四边形. ∴BC =AE =6,AC =EB =4. 由BD ∥AC ,得△ACF ∽△DBF ,∴45CF AC BF BD ==. 又CF +BF =BC =6,∴CF =83.14.答案:-2解析:因为a +b =2,所以1=1||22||a b a a b +⋅+=||||22||4||4||a ba ab a a b a a b ++=++≥+14||4||a a a a +=,当a >0时,5+1=4||4a a ,1||52||4a a b +≥; 当a <0时,3+1=4||4a a ,1||32||4a a b +≥,当且仅当b =2|a |时等号成立. 因为b >0,所以原式取最小值时b =-2a .又a +b =2,所以a =-2时,原式取得最小值.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.解:(1)f (x )=sin 2x·ππcossin 44x ⋅+3sin 2x -cos 2x=2sin 2x-2cos 2x=π24x⎛⎫-⎪⎝⎭.所以,f(x)的最小正周期T=2π2=π.(2)因为f(x)在区间3π0,8⎡⎤⎢⎥⎣⎦上是增函数,在区间3ππ,82⎡⎤⎢⎥⎣⎦上是减函数.又f(0)=-2,3π8f⎛⎫=⎪⎝⎭,π22f⎛⎫=⎪⎝⎭,故函数f(x)在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为,最小值为-2. 16.解:(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A)=1322252547C C+C C6C7=.所以,取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X的所有可能取值为1,2,3,4.P(X=1)=3347C1C35=, P(X=2)=3447C4C35=, P(X=3)=3547C2C7=, P(X=4)=3647C4C7=.所以随机变量X的分布列是随机变量X的数学期望EX=1×135+2×435+3×27+4×47=175.17.解:(方法一)(1)证明:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).易得11B C=(1,0,-1),CE=(-1,1,-1),于是11B C·CE=0,所以B1C1⊥CE.(2)1B C=(1,-2,-1).设平面B1CE的法向量m=(x,y,z),则10,0,B CCE⎧⋅=⎪⎨⋅=⎪⎩mm即20,0.x y zx y z--=⎧⎨-+-=⎩消去x,得y+2z=0,不妨令z=1,可得一个法向量为m=(-3,-2,1).由(1),B1C1⊥CE,又CC1⊥B1C1,可得B1C 1⊥平面CEC 1,故11B C=(1,0,-1)为平面CEC1的一个法向量.于是cos〈m,11B C〉=1111||||14B CB C⋅==⋅mm,从而sin 〈m ,11B C.所以二面角B 1-CE -C 1.(3)AE =(0,1,0),1EC =(1,1,1).设EM =λ1EC =(λ,λ,λ),0≤λ≤1,有AM =AE +EM =(λ,λ+1,λ).可取AB =(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM ,AB 〉|=AM ABAM AB⋅⋅=.=,解得13λ=,所以AM . (方法二)(1)证明:因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1⊂平面A1B 1C 1D 1, 所以CC1⊥B 1C 1.经计算可得B 1E B 1C 1,EC 1, 从而B 1E 2=22111B C EC +, 所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1, 所以B 1C 1⊥平面CC 1E ,又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1),B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G , 所以∠B 1GC 1为二面角B 1-CE -C 1的平面角.在△CC 1E 中,由CE =C 1E ,CC 1=2,可得C 1G.在Rt △B 1C 1G 中,B 1G , 所以sin ∠B 1GC 1,即二面角B 1-CE -C 1.(3)连接D 1E ,过点M作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角.设AM =x ,从而在Rt △AHM 中,有MHx ,AHx .在Rt △C 1D 1E 中,C 1D 1=1,ED 1,得EH13x =. 在△AEH 中,∠AEH =135°,AE =1,由AH 2=AE 2+EH 2-2AE ·EHcos 135°,得221711189x x x =++,整理得5x 2--6=0,解得x.所以线段AM.18.解:(1)设F (-c,0),由c a=a =.过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有2222()1c y a b -+=,解得y ==,解得b =, 又a 2-c 2=b 2,从而ac =1, 所以椭圆的方程为22=132x y +.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1), 由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=22623k k -+,x 1x 2=223623k k -+.因为A (3-,0),B (3,0),所以AC ·DB +AD ·CB=(x 1y 1-x 2,-y 2)+(x 2y 2x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=22212623k k +++. 由已知得22212623k k +++=8,解得k =. 19.解:(1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是25314a q a ==. 又{a n }不是递减数列且132a =,所以12q =-. 故等比数列{a n }的通项公式为11313(1)222n n n n a --⎛⎫=⨯-=-⋅ ⎪⎝⎭. (2)由(1)得11,121121,.2n n n n n S n ⎧⎫+⎪⎪⎪⎛⎫=--=⎪⎨ ⎪⎝⎭⎪⎪-⎪⎪⎩⎭为奇数,为偶数 当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32, 故11113250236n n S S S S <-≤-=-=. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1, 故221134704312n n S S S S >-≥-=-=-. 综上,对于n ∈N *,总有715126n n S S -≤-≤. 所以数列{T n }最大项的值为56,最小项的值为712-. 20.解:(1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =当x- +所以函数f (x )的单调递减区间是⎛ ⎝,单调递增区间是⎫+∞⎪⎭. (2)证明:当0<x ≤1时,f (x )≤0.设t >0,令h (x )=f (x )-t ,x ∈[1,+∞).由(1)知,h (x )在区间(1,+∞)内单调递增.h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t =f (s )成立.(3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而2ln ()ln ln ln ln ln ()ln(ln )2ln ln(ln )2ln g t s s s u t f s s s s s u u ====++,其中u=ln s.要使2ln()15ln2g tt<<成立,只需0ln2uu<<.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln2uu-,u>1.F′(u)=112u-,令F′(u)=0,得u=2.当1<u<2时,F′(u)>0;当u>2时,F′(u)<0. 故对u>1,F(u)≤F(2)<0.因此ln2uu<成立.综上,当t>e2时,有2ln()15ln2g tt<<.祝福语祝你考试成功!。
天津市2013届最新高三数学精选分类汇编7 立体几何 文

最新2013届天津高三数学文科试题精选分类汇编7:立体几何姓名____________班级___________学号____________分数______________一、选择题1 .(天津市新华中学2012届高三上学期第二次月考文科数学)如图,是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是 ( )A .24B .12C .8D .42 .(天津市天津一中2013届高三上学期第二次月考数学文试题)在正三棱锥P ABC -中,,D E 分别是,AB AC 的中点,有下列三个论断:①PB AC ⊥;②AC //平面PDE ;③AB ⊥平面PDE ,其中正确论断的个数为 ( )A .3个B .2个C .1个D .0个 3 .(天津市天津一中2013届高三上学期第二次月考数学文试题)设,m n 是两条不同的直线,γβα、、是三个不同的平面.给出下列四个命题: ①若m ⊥α,//n α,则m n ⊥; ②若γβγα⊥⊥,,则βα//; ③若//,//m n αα,则//m n ;④若//,//,m αββγα⊥,则m γ⊥.其中正确命题的序号是 ( )A .①和②B .②和③C .③和④D .①和④ 4 .(天津市和平区2013届高三第一次质量调查文科数学)已知正四棱柱ABCD —A 1B 1C l D 1中,AA 1=2AB ,E是AA 1的中点,则异面直线D 1C 与BE 所成角的余弦值为 ( )A .15B C D .35二、填空题5 .(天津市天津一中2013届高三上学期第三次月考数学文试题)已知某几何体的三视图如图所示,则该几何体的体积为___________.6 .(天津市天津一中2013届高三上学期第二次月考数学文试题)如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是_________.7 .(天津市天津一中2013届高三上学期第二次月考数学文试题)若某空间几何体的三视图如下图所示,则该几何体的体积是______.8 .(天津市十二区县重点中学2013届高三毕业班联考(一)数学(文)试题)某几何体的三视图如图所示,则该几何体的体积为.9 .(天津市六校2013届高三第二次联考数学文试题)若某几何的三视图(单位:cm )如下图所示,此几何体的体积是_____________3cm .10.(天津市滨海新区五所重点学校2013届高三联考试题数学(文)试题(解析版))一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为________.11.(天津市和平区2013届高三第一次质量调查文科数学)已知某几何体的三视图如图所示,根据图中标出的尺寸(单位cm),可得这个几何体的体积是 cm 3.12.(天津市渤海石油第一中学2013届高三模拟数学(文)试题(2))如图是一个几何体的三视图,则该几何体的体积为13.(2013年普通高等学校招生天津市南开区模拟考试(一))一个几何体的三视图如右图所示(单位:cm),则这个几何体的体积为 立方厘米.2 2 22 24正视图侧视图俯视图三、解答题14.(天津市耀华中学2013届高三第一次月考文科数学试题)如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥底面ABCD,且AB=PD=1. (1)求证:AC ⊥PB;(2)求异面直线PC 与AB 所成的角; (3)求直线PB 和平面PAD 所成角的正切值.15.(天津市新华中学2012届高三上学期第二次月考文科数学)如图,PAD ∆为等边三角形,ABCD 为矩形,平面⊥PAD 平面ABCD ,2=AB ,E 、F 、G 分别为PA 、BC 、PD 中点,22=AD .(1)求PB 与平面ABCD 所成角; (2)求证:EF AG ⊥;(3)求多面体AGF P -的体积.16.(天津市天津一中2013届高三上学期第三次月考数学文试题)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD 是正三角形,且平面PAD ⊥底面ABCD (1)求证:AB ⊥平面PAD(2)求直线PC 与底面ABCD 所成角的余弦值; (3)设1AB =,求点D 到平面PBC 的距离.17.(天津市天津一中2013届高三上学期第二次月考数学文试题)如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ======(Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的余弦值; (III)求点E 到平面ACD 的距离.BE18.(天津市天津一中2013届高三上学期第二次月考数学文试题)在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCCB ; (2)直线1//A F 平面ADE .19.(天津市十二区县重点中学2013届高三毕业班联考(一)数学(文)试题)已知在四棱锥P ABCD-中,//AD BC ,AD CD ⊥,22PA PD AD BC CD ====,,E F 分别是,AD PC 的中点. (Ⅰ)求证AD PBE ⊥平面; (Ⅱ)求证//PA BEF 平面;(Ⅲ)若PB AD =,求二面角F BE C --的大小.20.(天津市六校2013届高三第二次联考数学文试题)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=,平面PAD ⊥底面ABCD ,E 为AD 的中点,M 是棱PC 的中点,2PA PD ==,112BC AD ==,CD =. (Ⅰ)求证:PE ⊥平面ABCD ;(Ⅱ)求直线BM 与平面ABCD 所成角的正切值; (Ⅲ)求直线BM 与CD 所成角的余弦值.PABCD EMA DFEBC21.(天津市滨海新区五所重点学校2013届高三联考试题数学(文)试题(解析版))在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD //EF BC ,24BC AD ==,2AE BE ==,G 是BC 的中点.(Ⅰ)求证://AB 平面DEG ;(Ⅱ)求直线BD 与平面BCFE 所成角的正切值; (Ⅲ)求证:BD EG⊥.22.(天津市和平区2013届高三第一次质量调查文科数学)如图,在直三棱柱ABC —A1BlC1中,,∠ACB=90o.AA 1=2,D 为AB 的中点.(I)求证:AC ⊥BC 1;(II)求证:AC 1//平面B 1CD :(III)求异面直线AC 1与B 1C 所成角的余弦值23.(天津市渤海石油第一中学2013届高三模拟数学(文)试题(2))如图,在底面为直角梯形的四棱锥P ABCD -中,90AD BC ABC ∠=,∥°,PA ⊥平面ABCD .326PA AD AB BC ====,,.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)求二面角P BD A --的大小24.(2013年普通高等学校招生天津市南开区模拟考试(一))如图,四边形ABCD 是矩形,AD=2,DC=1,AB⊥平面BCE ,BE ⊥EC ,EC=1.点F 为线段BE 的中点. ( I )求证:CE ⊥平面ABE ;AEDPCB(Ⅱ)求证:DE∥平面A CF;(Ⅲ)求AC和平面ABE所成角的正弦值。
2013年天津市高考数学试卷(理科)及解析

2013年天津市高考数学试卷(理科)及解析 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]解析:本题主要考察不等式的解法,和集合的简单应用,属于简单题。
(2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z =y -2x 的最小值为(A) -7 (B) -4(C) 1 (D) 2解析:本题主要考查不等式中的线性规划,属于简单题。
(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585解析:本题主要考察程序框图,属于简单题。
2013年天津市高考数学试卷(理科)答案与解析

2013年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:(每题5分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的,3.(5分)(2013•天津)阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()4.(5分)(2013•天津)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.V=V=可知,若一个球的半径缩小到原来的;故的圆心到直线=相切,5.(5分)(2013•天津)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px (p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB求出双曲线的渐近线方程与抛物线的面积为,±x,±,双曲线的离心率为,所以则±=的面积为,,得6.(5分)(2013•天津)在△ABC中,,则sin∠BAC=()BABC=AB=,=得:BAC=x(8.(5分)(2013•天津)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是().﹣﹣|+1≤讨论,可得时,﹣﹣<时,解得0>时,解得,时,(﹣)二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.,解得10.(5分)(2013•天津)的二项展开式中的常数项为15.=解;设•r=0的二项展开式中的常数项为=1511.(5分)(2013•天津)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,则|CP|=.的极坐标为|CP|==2.12.(5分)(2013•天津)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.,=+﹣,,∴故答案为13.(5分)(2013•天津)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.故答案为:.14.(5分)(2013•天津)设a+b=2,b>0,则当a=﹣2时,取得最小值.=﹣,=,当取得最小值时,取得最小值三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2013•天津)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.2x+)展开,结合二倍角的正余弦公式化简合=2)∈,得﹣﹣≤﹣,)在区间sinxcosx=x=2x+2cos2x=2﹣T==≤,∴﹣≤≤﹣)取得最小值﹣时,﹣)在区间上的最大值为)=216.(13分)(2013•天津)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.张的所有可能结果数有=的卡片的概率为====17.(13分)(2013•天津)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明B1C1⊥CE;(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.标系,标出点的坐标后,求出和,由求出(Ⅱ)解:,,即.=.=.的正弦值为(Ⅲ)解:=.所以.的长为.18.(13分)(2013•天津)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.代入求出弦长使其等于,由,再由韦达定理进行求解.求得(Ⅰ)根据椭圆方程为,得±,=∵离心率为,∴=b=;﹣(﹣(,,(k=19.(14分)(2013•天津)已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{T n}的最大项的值与最小项的值.的方程,结合首项为的等比数列=不是递减数列,且等比数列的首项为﹣(﹣)﹣(﹣)=≤﹣==≥﹣=,总有≤,最小项的值为20.(14分)(2013•天津)已知函数f(x)=x2lnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)证明:对任意的t>0,存在唯一的s,使t=f(s).(Ⅲ)设(Ⅱ)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.,由导数在(,,一方面由﹣•,,(,,===成立,只需,2+,<,<,时,有成立.。
高考真题理科数学解析分类汇编7立体几何

2013年高考真题理科数学解析分类汇编7 立体几何一选择题1.[湖南]7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 BCD【答案】 C 【解析】由题知,正方体的棱长为1,1]2,1[1<,宽在区间正视图的高为。
选C2.陕西12. 某几何体的三视图如图所示, 则其体积为 3π. 【答案】3π 【解析】立体图为半个圆锥体,底面是半径为1的半圆,高为2。
所以体积32121312ππ=⋅⋅⋅⋅=V3.安徽理(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。
所以选A4.广东5.某四棱台的三视图如图1所示,则该四棱台的体积是图1A. 4B.143C.163D. 6解析:显然棱台的上下底的面积分别为1214S S==、,故其体积为121114V=()(124)2333S S h+=++⨯=选B5.广东6.设m,n是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是A.若,,m nαβαβ⊥⊂⊂,则m⊥n; B. 若//,,m nαβαβ⊂⊂,则//m nC. 若,,m n m nαβ⊥⊂⊂,则αβ⊥; D. 若,//,//m m n nαβ⊥,则αβ⊥解析:选D ∵,//,//m m n nαβ⊥,∴平面β内存在直线α⊥,故αβ⊥其它选项均错。
6.新课标I,6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A、500π3cm3B、866π3cm3C、1372π3cm3 D、2048π3cm3【解析】设球的半径为R,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R=-+,解得R=5,∴球的体积为3453π⨯=500π3 3cm,故选A.7.新课标I,8、某几何体的三视图如图所示,则该几何体的体积为A.168π+B.88π+C.1616π+D.816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A .8.新课标II 4、已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,l ⊄α, l ⊄β,则( )(A ) α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l【答案】D设m ∥γ n ∥γ 因为 m ⊥β⟹m ⊥a n ⊥α⟹n ⊥a 所以a ⊥γ又l ⊥m ,l ⊥n 所以l ⊥γ 因此l ∥a新课标II 7、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A)(B)(C)(D)【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),所以选A.9.江西8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为,m n ,那么m n +=A.8B.9C.10D.1110.辽宁(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A B ..132D .[答案]C【解析】如图:因为,AB AC ⊥所以BC 是小圆的直径,是小圆的直径,所以球心在的中点R==11.全国(10)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B )3 (C )3 (D )13【答案】A【解析】如下图,连接AC 交BD 于点O ,连接1C O ,过C 作1CH C O ⊥于H 为垂足, ⟹⟹CH ⊥平面CD 与平面所成的角为∠CDH设AB=a 则OC=,CH==,sin ∠CDH=12.山东4、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为(A)512π (B) 3π (C) 4π (D) 6π13.四川3、一个几何体的三视图如图所示,则该几何体的直观图可以是()14.重庆5、某几何体的三视图如题()5图所示,则该几何体的体积为()A、5603B、5803C、200D、240【答案】:C15.湖北16.浙江二填空题17.上海13.在x O y平面上,将两个半圆弧22x y x(3)1(3)-+=≥、两条直线x y x(1)1(1)-+=≥和221y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________ 答案2216ππ+[解析]:构造如图所示的圆柱和长方体长方体的长与圆柱的高是2π,圆柱的底面园的直径为2与长方体的侧面长方形的长为4,高为2则水平截面,所得截面面积为48π由祖暅原理得Ω的体积值==2π×4×2+π×2216ππ+18.浙江19. [江苏] 8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.20.[全国] (16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 .答案16π 解析:如图:过两圆相交弦AB 的中点E 分别与两圆圆心O,K 连线 ,得到两圆直径 CD,和GH 则CD ⊥AB ,和GH ⊥AB ,∠GEC 为两圆的二面角的平面角∠GEC =,O 是大圆圆心即为球心所以OK ⊥圆K 所在平面,AB=OA=OB=OC=R在正三角形AOB 中 高OE=R ,在直角三角形OKE 中OK =OE ⟹R=⟹ R= 2⟹ S =16π21.辽宁(13)某几何体的三视图如图所示,则该几何体的体积是 .ABC1A DE F1B1C【答案】1616π-【解析】直观图是圆柱中去除正四棱柱。
2013年高考理科数2013年高考理科数学试题分类汇编:7立体几何

实用文档2013年高考理科数2013年高考理科数学试题分类汇编:7立体几何一、选择题1、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为 ( )AB.C .132D.2、(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm πB .38663cm πC .313723cm πD .320483cm π实用文档3、(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是4、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则 ( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为0605、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是 ( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面实用文档C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线6、(2013年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .117、高中数学人教版备份2013-10-15.ln8、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,3的正三角形.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )实用文档A .512πB .3πC .4πD .6π9、(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于 ( )A .23BCD .1310、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥11、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为实用文档( )A .B .C .D .12、(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:1613、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l实用文档14、(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+15、(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<<B .1324V V V V <<<C 2134V V V V <<<D .2314V V V V <<<16、(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方等于()体的正视图的面积不可能...A.1B2C2-1D2+117、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))某四棱台的三视图如图所示,则该四棱台的体积是实用文档实用文档( )A .4B .143 C .163D .6二、填空题18、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P ,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 61 221 1正视俯视侧视第5题图实用文档19、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.20、(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3_____.112121、实用文档(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O 和圆K是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60,则球O 的表面积等于______.22、(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.23、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.A B C 1A D E F1B 1C 1B实用文档24、(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________25、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________26、(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线实用文档1A B 与1B C 所成角的大小为_______27、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .三、解答题28、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.DC B ADC AB实用文档(1) 证明:A O '⊥平面BCDE ; (2) 求二面角A CD B '--的平面角的余弦值.29、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的中点,1AA AC CB AB ===. (1)证明:1//BC 平面1ACD ; (2)求二面角1D AC E --的正弦值.. CO B D EAC D O B E 'A图1图2实用文档 ABC D1A 1C 1B E实用文档30、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)实用文档31、(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(1)证明:1AC B D ⊥; (2)求直线111B C ACD 与平面所成角的正弦值..32、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥P ABQ-中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,AQ BQ AP BP 的中点, 2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(1)求证:AB GH ; (2)求二面角D GH E --的余弦值.33、(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))如图,四棱锥P ABCD-中,902,ABC BAD BC AD PAB∠=∠==∆,与PAD∆都是等边三角形.(I)证明:;PB CD⊥(II)求二面角A PD C--的大小.34、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))本小题满分10分.如图,在直三棱柱111A B C ABC-中,ACAB⊥,2==ACAB,41=AA,点D是BC的中点(1)求异面直线BA1与DC1所成角的余弦值实用文档实用文档(2)求平面1ADC 与1ABA 所成二面角的正弦值.35、(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(1)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(2)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值. D 1D B A B 1C 1AP36、如图,四棱锥P ABCD-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,实用文档 3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面; (2) 求平面BCP 与平面DCP 的夹角的余弦值.37、(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD , 12AB AA ==.(1) 证明: A 1C ⊥平面BB 1D 1D ;(2) 求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.O D 1B 1C 1DA C A 1实用文档38、(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(1) 证明B 1C 1⊥CE ;(2) 求二面角B 1-CE -C 1的正弦值.(3) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.39、(2013年高考北京卷(理))如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求1BD BC 的值.实用文档40、(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.41、(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.第19题图实用文档 D 1C 1B 1A 1DC B A42、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.43、(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.B 1A 1C 1 AC B ABC SGF E实用文档44、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCDA -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.;45、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°.(1)证明:平面PAB 与平面PCD 的交线平行于底面; (2)求cos COD ∠.AB CDP QM(第20题图)实用文档46、(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.47、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(1)求证:PAC PBC ⊥平面平面;(2)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值48、(2013年高考新课标1(理))如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.(1)证明AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值.以下是答案一、选择题1、C2、A3、D4、A5、A6、A实用文档7、C8、B9、A10、D11、A12、C13、D14、A15、C16、C17、D二、填空题18、①②③⑤π-19、1616实用文档实用文档20、3π21、16π2223、1:2424、2216ππ+.25、12π26、23π27、24三、解答题28、(1) 在图1中,易得3,OC AC AD ===实用文档x连结,OD OE ,在OCD ∆中,由余弦定理可得OD == 由翻折不变性可知A D '=所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE .(2) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥,所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故OH =,从而A H '== 所以cos OH A HO A H '∠=='所以二面角A CD '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=-设(),,n x y z =为平面A CD '的法向量,则 CDO B E 'AH实用文档 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即330230y z x y z ⎧+=⎪⎨-++=⎪⎩,解得3y x z x =-⎧⎪⎨=⎪⎩,令1x =,得()1,1,3n =- 由(Ⅰ) 知,()0,0,3OA '=为平面CDB 的一个法向量, 所以315cos ,535n OA n OA n OA '⋅'===⋅',即二面角A CD B '--的平面角的余弦值为155.29、30、解:(1)取CD 中点E ,连接BE实用文档//AB DE ,3AB DE k ==∴四边形ABED 为平行四边形//BE AD ∴且4BE AD k ==在BCE 中,4,3,5BE k CE k BC k ===222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD ,所以CD AD ⊥1AA ⊥平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =,CD ∴⊥平面11ADD A(2)以D 为原点,1,,DA DC DD 的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-,1(0,3,1)AB k =,1(0,0,1)AA =设平面1AB C 的法向量(,,)n x y z =,则由10AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA n AA n AA n θ=〈〉=⋅26673613k k ==+,解得1k =.故所求k 的值为1 (3)共有4种不同的方案实用文档2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩31、(1) AC BB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新2013届天津高三数学理科试题精选分类汇编7:立体几何一、选择题1 .(天津市和平区2013届高三第一次质量调查理科数学)已知正四棱柱ABCD —A 1B 1C l D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线DC 1与BE 所成角的余弦值为 ( )A .15B C D .352 .(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)某几何体的三视图如图所示,则它的体积是 ( )A .283π-B .83π-C .82π-D .23π3 .(天津市天津一中2013届高三上学期第二次月考数学理试题)几何体的三视图如图所示,则该几何体的体积为( )A .2π+B .4π+C .2πD .4π+4 .(天津市新华中学2013届高三第三次月考理科数学)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为 ( )A B .C D 5 .(天津市新华中学2013届高三第三次月考理科数学)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是 ( )A .βαβα⊥⊥,//,b aB .βαβα//,,⊥⊥b aC .βαβα//,,⊥⊂b aD .βαβα⊥⊂,//,b a6 .(天津市新华中学2013届高三第三次月考理科数学)如图,E 、F 分别是三棱锥P-ABC 的棱AP 、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为()( )A .90°B .60°C .45°D .30°二、填空题7 .(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)某几何体的三视图如图所示,则该几何体的体积为__________.8 .(天津市六校2013届高三第二次联考数学理试题(WORD 版))一个几何体的三视图如上图所示,且其侧视图为正三角形,则这个几何体的体积为 .9 .(天津南开中学2013届高三第四次月考数学理试卷)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm 2)为________.10.(2012-2013-2天津一中高三年级数学第四次月考检测试卷(理))一个几何体的三视图如图所示,则该几何体的表面积与体积分别为___________11.(天津市新华中学2012届高三上学期第二次月考理科数学)如图为一个几何体的三视图,其中俯视为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为_______。
12.(天津市滨海新区五所重点学校2013届高三联考试题数学(理)试题)右图是一个空间几何体的三视图,则该几何体的体积大小为___________________.13.(天津市天津一中2013届高三上学期第二次月考数学理试题)已知直线m,n 与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是______个14.(天津市天津一中2013届高三上学期第三次月考数学理试题)已知某几何体的三视图如图所示,则该几何体的体积为___________.15.(天津市新华中学2013届高三第三次月考理科数学)已知一个几何体的三视图如下图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是________cm3.16.(天津耀华中学2013届高三年级第三次月考理科数学试卷)一个几何体的三视图如图所示,则该几何体的体积为____________;三、解答题 17.(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)如图,四棱柱1111D C B A ABCD -的底面A B C 是平行四边形,且1=AB ,2=BC ,060=∠ABC ,E 为BC 的中点, ⊥1AA 平面ABCD .(Ⅰ)证明:平面⊥AE A 1平面DE A 1;(Ⅱ)若E A DE 1=,试求异面直线AE 与D A 1所成角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试求二面角1--C A D E 的余弦值.18.(天津市六校2013届高三第二次联考数学理试题(WORD 版))如图,直三棱柱ABC-A 1B 1C 1中∠ACB=90°,M,N 分别为A 1B,B 1C 1的中点,BC=AA 1=2AC=2,求证:(1)求三棱柱C 1-A 1CB 的体积;(2)求直线A 1C 与直线MB 1所成角的余弦值;(3)求平面B 1MN 与平面A 1CB 所成锐二面角的余弦值.19.(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)已知四棱锥P-ABCD 的底面为直角梯形,AB∥DC,⊥=∠PA DAB ,90底面ABCD, 且PA=AD=DC=21AB=1,M 是PB 的中点. (Ⅰ)证明:面PAD⊥面PCD; (Ⅱ)求AC 与PB 所成角的余弦值;(Ⅲ)求面AMC 与面BMC 所成二面角的余弦值.ABCDE1A 1B 1C 1D20.(天津南开中学2013届高三第四次月考数学理试卷)如图,已知四棱锥E-ABCD 的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=2(1)求证:平面EAB⊥平面ABCD(2)求二面角A-EC-D 的余弦值21.(2012-2013-2天津一中高三年级数学第四次月考检测试卷(理)).在长方体1111ABCD A B C D -中,1AB BC ==,12AA =,E 为1BB 中点.(Ⅰ)证明:1AC D E ⊥;(Ⅱ)求DE 与平面1AD E 所成角的正弦值;(Ⅲ)在棱AD 上是否存在一点P ,使得BP ∥平面1AD E ?若存在,求DP 的长;若不存在,说明理由.D 1C 1B 1A 1ED CA22.(天津市耀华中学2013届高三第一次月考理科数学试题)(本小题满分13分)在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD//EF ,EF//BC .BC=2AD=4,EF=3,AE=BE=2,G 为BC 的中点。
(1)求证:AB//平面DEG ; (2)求证:BD ⊥EG ;(3)求二面角C —DF —E 的正弦值。
23.(天津市滨海新区五所重点学校2013届高三联考试题数学(理)试题)如图在四棱锥P ABCD -中,底面A B C D 是边长为a 的正方形,侧面PAD ⊥底面A B C D ,且PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:面PAB ⊥平面PDC ; (Ⅲ) 求二面角B PD C --的正切值.24.(天津市天津一中2013届高三上学期第二次月考数学理试题)如图,在四棱锥P-ABCD 中,底面为直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N 分别为PC,PB 的中点.(1)求证:PB⊥DM;(2)求CD 与平面ADMN 所成角的正弦值;(3)在棱PD 上是否存在点E,PE∶ED=λ,使得二面角C-AN-E 的平面角为60o.存在求出λ值.BA25.(天津市天津一中2013届高三上学期第三次月考数学理试题)在四棱锥P ABCD -中,底面ABCD 是直角梯形,AB ∥CD ,∠90ABC=, 2AB PB PC BC CD ====,平面PBC ⊥平面ABCD .(1)求证:AB ⊥平面PBC ;(2)求平面PAD 和平面BCP 所成二面角(小于90°)的大小; (3)在棱PB 上是否存在点M 使得CM ∥平面PAD ?若存在,求PMPB的值;若不存在,请说明理由.PABC D26.(天津市新华中学2013届高三第三次月考理科数学)如图,在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F(1)证明://PA 平面EDB . (2)证明:⊥PB 平面EFD .(3)求二面角D PB C --的大小.27.(天津耀华中学2013届高三年级第三次月考理科数学试卷)(本小题满分13分)在四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB//CD ,︒90=ABC ∠,AB=PB=PC=BC=2CD ,平面PBC ⊥平面ABCD. (1)求证:AB ⊥平面PBC ;(2)求平面ADP 与平面BCP 所成的锐二面角的大小; (3)在棱PB 上是否存在点M 使得CM//平面PAD ?若存在,求PBPM的值;若不存在,请说明理由.最新2013届天津高三数学试题精选分类汇编7:立体几何参考答案一、选择题 1. B 2. A 3. 【答案】C解:由三视图可知,该几何体下面是半径为1,高为2的圆柱.上面是正四棱锥.真四棱锥,底面边长为,所以四棱锥的体积为213⨯=,圆柱的体积为2π,所以该几何体的体积为2π+,选C. 4. 【答案】A【解析】因为ABC ∆为边长为1的正三角形,且球半径为1,所以四面体O ABC -为正四面体,所以ABC ∆的外接圆的半径为3,所以点O 到面ABC 的距离d ==,所以三棱锥的高2SF OE ==,所以三棱锥的体积为11326⨯=,选A.5. 【答案】C【解析】若b β⊥,//αβ,所以b α⊥,又a α⊂,所以b a ⊥,即a b ⊥,所以选C.6. 【答案】B【解析】,取AC 的中点M,连结EM,MF ,因为E,F 是中点,所以16//,322MF AB MF AB ===,110//,522ME PC ME PC ===,所以MF 与ME 所成的角即为AB 与PC 所成的角。
在三角形MEF 中,222537151c o s 253302E MF +--===-⨯⨯,所以120EMF ∠=,所以直线AB 与PC 所成的角为为60,选B.二、填空题 7. π3108+ ; 8.π63334+9. 21248+10. 2,3211. 【答案】24【解析】由三视图可知,该几何体是一个正三棱柱,底面边长为2,高是4.所以该三棱柱的表面积为2122324242⨯⨯+⨯⨯=。
12. 【答案】243π-由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球。
所以长方体的体积为2214⨯⨯=,半球的体积为142233ππ⨯=,所以该几何体的体积为243π-。
13. 【答案】2解:①平行于同一平面的两直线不一定平行,所以①错误.②根据线面垂直的性质可知②正确.③根据面面垂直的性质和判断定理可知③正确,所以真命题的个数是2个. 14. 【答案】3π解:由三视图我们可知原几何体是一个圆柱体的一部分,并且有正视图知是一个12的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.15. 【答案】32【解析】由三视图可知,该几何体为一个放到的四棱柱,以梯形为低,所以梯形面积为1(12)322⨯+=,四棱柱的高为1,所以该几何体的体积为32。