椭圆综合练习2(含答案)
高二数学椭圆练习题及答案

高二数学椭圆练习题及答案一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是2.已知椭圆,长轴在y轴上、若焦距为4,则m等于 4.已知点F1、F2分别是椭圆+=1的左、右焦点,弦AB过点F1,若△ABF26.方程=10,化简的结果是7.设θ是三角形的一个内角,且,则方程xsinθ﹣ycosθ=1表示的曲线221、22129.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP,则该椭10.若点O和点F分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为11.如图,点F为椭圆=1的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为12.椭圆顶点A,B,若右焦点F到直线AB的距离等于,则椭圆的离心率e=高二数学周测一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B 为焦点的椭圆”,那么 A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件.若椭圆2kx?ky?1的一个焦点是,则k的是 A.2211B.C. D.3228D.3x2-y2=363.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为 A.y2-3x2=36B.x2-3y2=36C.3y2-x2=364.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 A.23B.33C.22D.2x2y25.椭圆2?2?1的两个焦点F1,F2三等分它的两条准线间的距离,那么它的离心率abA.B. C. D.336x2y26.已知是直线l被椭圆??1所截得的线段的中点,则l 的方程为369A.x?2y?0B. x?2y?4?0C.x?3y?4?0D. x?2y?8?0x2y27.设F1,F2分别是椭圆2?2?1的左、右焦点,若在其右准线上存在P,ab使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是?A.?0 ?2???B.?01?C.?1?D.? ??x2y28.在椭圆,F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|??1内有一点P43的值最小,则这一最小值是 A.D.457B. 2C.3二、填空题.双曲线3mx2-my2=3的一个焦点是,则m的值是x2y210.已知方程??1表示椭圆,则k的取值范围是____________.3?k2?kx2y211.设F1、F2是椭圆C:+=1的焦点,在曲线C上满足PF1?PF2=0的点P的个数124为________x2y2?12. 已知椭圆+=1的两个焦点为F1、F2,P为椭圆上一点,满足∠F1PF2=,则△F1PF2433的面积为_________________.13.已知椭圆C的焦点F1和F2,长轴长6,设直线y?x?2交椭圆C于A、B两点,则线段AB的中点坐标 .14. 已知圆A:?x?2??y?16,圆B:?x?2??y?14.动圆C与圆A内切,且222与圆B外切.则动圆圆心的轨迹方程为.三、解答题 x2y215. 求以椭圆+1的两个顶点为焦点,以椭圆的焦点为顶点的169双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.16. 从双曲线C:x?y?1上一点Q引直线l:x?y?2的垂线,垂足为N,求线段QN的中点P的轨迹方程.17. 已知动点P与平面上两定点A,对应的准线方程为y??且离心率e为和42时,求直线l的方程.92,4234的等比中项.平分?2求椭圆方程,是否存在直线l与椭圆交于不同的两点M、N,且线段MN恰为直线x??若存在,求出直线l的斜率的取值范围,若不存在,请说明理由.x219. 设F1、F2分别是椭圆?y2?1的左、右焦点.4若P是该椭圆上的一个动点,求PF1?PF2的最大值和最小值;设过定点M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.x2y220. 知椭圆2??1的左、右焦点分别为F1、F2,离心ab率e?x?2。
椭圆、双曲线抛物线综合练习题及答案.

一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。
( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。
(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C ,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P 到定点F (2,0)的距离和它到定直线x =8的距离的比为1:2,求点P 的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程22.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12 .化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。
椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。
椭圆的范围为-a≤x≤a,-b≤y≤b。
椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。
椭圆的长轴长为2a,短轴长为2b。
椭圆的顶点坐标为(±a,0),(0,±b)。
椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。
a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。
对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。
当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。
椭圆方程常用三角换元为x=acosθ,y=bsinθ。
弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。
判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。
2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。
椭圆 经典题型练习 (精选题) 含答案

椭圆经典题型练习一.选择题(共13小题)1.设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆与直线bx+y=b2相切,则该椭圆的离心率为()A.B.C.D.2.已知方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y轴上的椭圆,则实数m的取值范围为()A.(1,2)B.(2,3)C.(﹣∞,1)D.(3,+∞)3.已知椭圆的两个焦点分别为F1,F2,P是椭圆上一点,且∠F1PF2=60°,则△F1PF2的面积等于()A.B.C.6D.34.椭圆=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值是()A.B.C.D.5.已知点M(﹣4,0),椭圆的左焦点为F,过F作直线l(l的斜率存在)交椭圆于A,B两点,若直线MF恰好平分∠AMB,则椭圆的离心率为()A.B.C.D.6.设椭圆(a>b>0)的一个焦点F(2,0)点A(﹣2,1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=8,则椭圆E的离心率的取值范围是()A.B.C.D.7.已知椭圆的左焦点为F1,离心率为,P是椭圆C上的动点,若点Q(1,1)在椭圆C内部,且|PF1|+|PQ|的最小值为3,则椭圆C的标准方程为()A.B.C.D.8.在平面直角坐标系xOy中,过椭圆C:=1(a>b>0)的右焦点F作x 轴的垂线,交C于点P,若=2,cos∠OPF=,则椭圆C的方程为()A.=1B.=1C.=1D.=1 9.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()A.2B.C.4D.10.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则△AFB周长的取值范围是()A.(2,4)B.C.(6,8)D.(8,12)11.已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.椭圆的左右焦点分别为F1,F2,A为椭圆上一动点(异于左右顶点),若△AF1F2的周长为6且面积的最大值为,则椭圆的标准方程为()A.B.C.D.13.已知点A(0,0),B(2,0).若椭圆上存在点C,使得△ABC为等边三角形,则椭圆W的离心率是()A.B.C.D.二.填空题(共7小题)14.已知点P圆C:(x﹣4)2+y2=4上,点Q在椭圆上移动,则|PQ|的最大值为.15.已知点A在椭圆+y2=1上,且O、A、P三点共线(O是坐标原点),=24,则线段OP在x轴上的投影长度的最大值为16.直线y=kx+k与焦点在y轴上的椭圆+=1总有两个公共点,则实数m的取值范围是.17.过直线l:y=x+9上的一点P作一个长轴最短的椭圆,使其焦点为F1(﹣3,0),F2(3,0),则此椭圆的离心率为18.椭圆右焦点为F,存在直线y=t与椭圆C交于A,B 两点,使得△ABF为等腰直角三角形,则椭圆C的离心率e=.19.已知F1,F2是长轴长为4的椭圆的左右焦点,P是椭圆上一点,则△PF1F2面积的最大值为.20.已知点P(x,y)在椭圆上运动,则最小值是三.解答题(共10小题)1.已知F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.(Ⅰ)求△ABF2的周长;(Ⅱ)若AF2⊥BF2,求△ABF2的面积.2.已知p:实数m使得椭圆的离心率.(1)求实数m的取值范围;(2)若q:t≤m≤t+9,p是q的充分不必要条件,求实数t的取值范围.3.已知椭圆C:=1(a>b>0)的离心率为,短轴端点到焦点的距离为2.(1)求椭圆C的方程;(2)设A,B为椭圆C上任意两点,O为坐标原点,且OA⊥OB.求证:原点O 到直线AB的距离为定值,并求出该定值.4.已知椭圆C:+=1(a>b>0)的离心率为,F1,F2分别是其左、右焦点,P为椭圆C上任意一点,且|PF1|+|PF2|=4(1)求椭圆C的标准方程;(2)过F1作直线l与椭圆C交于A、B两点,点Q(m,0)在x轴上,连结QA、QB分别与直线x=﹣2交于点M、N,若MF1⊥NF1,求m的值.5.已知椭圆的离心率为且经过点.(1)求椭圆方程;(2)直线y=kx+m交椭圆于不同两点A,B,若,△OAB(O是坐标原点)的面积等于,求直线AB的方程.6.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2且离心率为,过左焦点F1的直线l与C交于A,B两点,△ABF2的周长为16.(1)求椭圆C的方程;(2)已知过点P(2,1)作弦且弦被P平分,则此弦所在的直线方程.7.设F1,F2分别是椭圆C:的左、右焦点,M是C上一点,且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为3,且|MN|=7|F1N|,求a,b.8.已知椭圆C:+=1(a>b>0)的离心率为,且C过点(1,).(1)求椭圆C的方程;(2)若斜率为k(k<0)的直线l与椭圆C交于P,Q两点,且直线OP,l,OQ 的斜率成等比数列,求k值.9.已知椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,设直线x﹣y+2=0交椭圆于A,B两点,求线段AB的中点坐标.10.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的右焦点F(1,0),过F且垂直于x轴的弦长为3,直线l与圆(x﹣1)2+y2=1相切,且与椭圆C交于A,B两点,Q为椭圆的右顶点.(1)求椭圆C的方程;(2)用S1,S2分别表示△ABF和△ABQ的面积,求S1•S2的最大值.椭圆练习参考答案与试题解析一.选择题(共13小题)1.【解答】解:椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆x2+y2=c2,以F1F2为直径的圆与直线bx+y=b2相切,可得:,即a2﹣c2=ac,因为e=∈(0,1),所以e=.故选:C.2.【解答】解:方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),即,方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y 轴上的椭圆,可得m﹣1>3﹣m>0,解得2<m<3.故选:B.3.【解答】解:如图所示,椭圆,可得a=5,b=3,c==4.设|PF1|=m,|PF2|=n,则m+n=2a=10,在△F1PF2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos60°,可得(m+n)2﹣3mn=6即102﹣3mn=64,解得mn=12.∴△F1PF2的面积S=mnsin60°==3.故选:B.4.【解答】解:由椭圆=1,可得a=5,b=4,c==3.如图所示,设△ABF2的内切圆的圆心为G.连接AG,BG,GF2.设内切圆的半径为r,则2πr=π,解得r=.则==•|F1F2|,∴4a=|y2﹣y1|×2c,∴|y2﹣y1|==.故选:D.5.【解答】解:设F(﹣c,0),A(x1,y1),B(x2,y2),直线AB的方程为y=k(x+2),代入椭圆方程,可得(b2+4k2)x2+8ck2x+4k2c2﹣4b2=0,即有x1+x2=﹣,x1x2=,由直线MF恰好平分∠AMB,可得k AM+k BM=0,即有+=0,可得k(x1+c)(x2+4)+k(x2+c)(x1+4)=0,化为2x1x2+(c+4)(x1+x2)+8c=0,可得2•+(c+4)•(﹣)+8c=0,化简可得c=1,则椭圆的离心率e==,故选:C.6.【解答】解:椭圆(a>b>0)的一个焦点F(2,0),另一个焦点为F'(﹣2,0),由椭圆的定义可得2a=|PF|+|PF'|,即|PF'|=2a﹣|PF|,可得|PA|﹣|PF'|=8﹣2a,由||PA|﹣|PF'||≤|AF'|=1,可得﹣1≤8﹣2a≤1,解得≤a≤,又c=2,可得e=∈[,],故选:A.7.【解答】解:如图所示,设右焦点为F2.|PF1|+|PQ|=2a﹣(|PF2|﹣|PQ|)≥2a﹣|QF2|=3,∴2a﹣=3,=a2=b2+c2,联立解得a=2,c=1,b2=3.∴椭圆C的标准方程为=1.故选:A.8.【解答】解:∵|OF|=c,PF⊥x轴,cos∠OPF=,∴sin∠OPF=,∴cos∠OPF=,|OP|===c,∵=2,∴|OP|•c•cos∠OPF=|OP|•c•=c•c•=2,解得c2=2,即c=∴|OP|=,∴|PF|=×=1,∴P(,1),∴+=1∵a2﹣b2=c2=2,∴a2=4,b2=2,∴+=1故选:B.9.【解答】解:如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.10.【解答】解:∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx(k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2)则△AFB周长的取值范围是(6,8).故选:C.11.【解答】解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.故选:D.12.【解答】解:由椭圆的定义可得2(a+c)=6,所以a+c=3①,当A在上(或下)顶点时,△AF1F2的面积取得最大值,即最大值为bc=②,由①②及a2=c2+b2联立求得a=2,b=,c=1,椭圆方程为+=1,故选:A.13.【解答】解:过点C做x轴垂线,垂足为D,根据正三角形性质可知D为A,B的中点,C坐标为(1,),C点的坐标代入椭圆方程得,解得m=6,所以椭圆的离心率为:=.故选:C.二.填空题(共7小题)14.【解答】解:∵点Q在椭圆上移动,∴可设Q(cosθ,2sinθ),由圆C:(x﹣4)2+y2=4,可得圆心C(4,0),半径r=2.∴|CQ|===≤5,当且仅当cosθ=﹣1时取等号.∴|PQ|的最大值=5+r=7.故答案为:7.15.【解答】解:∵O、A、P三点共线(O是坐标原点),=24,∴|OA|•|OP|=24,设OP与x轴夹角为θ,设A(x,y)在第一象限,B为点A 在x轴的投影,则OP在x轴上的投影长度为|OP|cosθ==24×=24×=24×≤24×=8.当且仅当x=时等号成立.则线段OP在x轴上的投影长度的最大值为8.故答案为:8.16.【解答】解:直线y=kx+k恒过(﹣1,0),直线与焦点在y轴上的椭圆+=1总有两个公共点,可得:解得m∈(1,4).故答案为:(1,4).17.【解答】解:设直线l上的占P(t,t+9),取F1(﹣3,0)关于l的对称点Q (﹣9,6),根据椭圆定义,2a=|PF1|+|PF2|=|PQ|+|PF2|≥|QF2|==6 ,当且仅当Q,P,F2共线,即,即=﹣时,上述不等式取等号,∴t=﹣5.∴P(﹣5,4),据c=3,a=3,离心率为:e==.故答案为:.18.【解答】解:要使△ABF为等腰直角三角形,则B(c,2c).,又a2=b2+c2,∴b2=2ac,⇒c2+2ac﹣a2=0,⇒e2+2e﹣1=0,且0<e<1,∴e=﹣1.故答案为:﹣1.19.【解答】解:F1,F2是长轴长为4的椭圆的左右焦点,a=2,b2+c2=4,P是椭圆上一点,△PF1F2面积的最大值时,P在椭圆的短轴的端点,此时三角形的面积最大,S=bc≤=2,当且仅当b=c时,三角形的面积最大.故答案为:2.20.【解答】解:根据题意,点P(x,y)在椭圆上运动,则有,变形可得:+=,变形可得x2+2(y2+1)=5,则=[x2+2(y2+1)]()=×[1+4++]=×[5++]≥(5+2×2)=;即最小值是,故答案为:三.解答题(共10小题)1.【解答】解:(I)∵F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.∴△ABF2的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=4.…(3分)(II)设直线l的方程为x=my﹣1,由,得(m2+2)y2﹣2my﹣1=0.设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=﹣,…(5分)∵AF2⊥BF2,∴•=0,∴•=(x1﹣1)(x2﹣1)=(my1﹣2)(my2﹣2)+y1y2=(m2+1)y1y2﹣2m(y1+y2)+4=﹣2m×+4==0∴m2=7.…(10分)∴△ABF2的面积S=×|F1F2|×=.2.【解答】解:(1)当0<m<2时,∵,又,∴,∴,当m>2时,∵,又,∴解得4<m<8.综上所述实数m的取值范围:或4<m<8.(2)∵q:t≤m≤t+9,p是q的充分不必要条件,∴⊆[t,t+9],∴,解得.3.【解答】解:(1)由题意知,e==,a==2,又a2=b2+c2,所以a=2,c=,b=1,所以椭圆C的方程为+y2=1;(2)证明:当直线AB的斜率不存在时,直线AB的方程为x=±;此时,原点O到直线AB的距离为;当直线AB的斜率存在时,设直线AB 的方程为y=kx+m,A(x1,y1),B(x2,y2).代入椭圆方程x2+4y2=4,得(1+4k2)x2+8kmx+4m2﹣4=0,则△=(8km)2﹣4(1+4k2)(4m2﹣4)=16(1+4k2﹣m2)>0,x1+x2=﹣,x1x2=,则y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,由OA⊥OB得k OA k OB=﹣1,即x1x2+y1y2=0,所以=0,即m2=(1+k2),所以原点O到直线AB的距离为d==,综上,原点O到直线AB的距离为定值.4.【解答】解:(1)由题意可得:=,|PF1|+|PF2|=4=2a,a2=b2+c2.联立解得:a=2,c==b.∴椭圆C的标准方程为:+=1.(2)如图所示,设直线l的方程为:ty=x+,A(x1,y1),B(x2,y2).联立,化为:(t2+2)y2﹣2ty﹣2=0,∴y1+y2=,y1y2=.直线QA的方程为:y=(x﹣m),可得:M.直线QB的方程为:y=(x﹣m),可得N.∵MF1⊥NF1,∴•=0.又F1(﹣,0).∴+•=0,化为:2[x1x2﹣m(x1+x2)+m2]+=0,∵x1+x2=t(y1+y2)﹣2,x1x2=(ty2﹣)=t2y1y2﹣t(y1+y2)+2.∴(2t2+8+4m+m2)y1y2﹣(2+2mt)(y1+y2)+4+4m+2m2=0,∴(2t2+8+4m+m2)•﹣(2+2mt)+4+4m+2m2=0,化为:(m2﹣4)(t2﹣1)=0.∵∀t∈R上式都成立,∴m2﹣4=0,解得m=±2.5.【解答】解:(1)椭圆的离心率为且经过点,可得e==,+=1,a2﹣b2=c2,解得a=,b=1,则椭圆方程为+y2=1;(2)直线y=kx+m与椭圆x2+2y2=2联立,可得(1+2k2)x2+4kmx+2m2﹣2=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,可得|AB|=•==•=,①由△OAB(O是坐标原点)的面积等于,设O到AB的距离为d,可得|AB|d=,即d=,即有=,即3m2=2+2k2②联立①②解得m=1,k=±;m=﹣1,k=±,则直线AB的方程为y=±x+1或y=±x﹣1.6.【解答】解:(1)如图所示,椭圆C:=1的离心率为,∴=,△ABF2的周长为|AB|+|AF2|+|BF2|=4a=16,∴a=4,∴c=2,∴b2=a2﹣c2=4,∴椭圆C的方程+=1;(2)设过点P(2,1)作直线l,l与椭圆C的交点为D(x1,y1),E(x2,y2),则,两式相减,得(﹣)+4(﹣)=0,∴(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,∴直线l的斜率为k==﹣=﹣=﹣,∴此弦所在的直线方程为y﹣1=﹣(x﹣2),化为一般方程是x+2y﹣4=0.7.【解答】解:(1)根据及题设知,5b2=24ac将b2=a2﹣c2代入5b2=24ac解得或(舍去),故C的离心率为;………………………………………………(4分)(2)由题意得,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,3)是线段MF1的中点,故,即b2=6a①………………………………………………(7分)由|MN|=7|F1N|得|DF1|=3|F1N|,设N(x1,y1)则,即代入C的方程,得②……………………………………………(10分)将①及代入②得解得故8.【解答】解:(1)由题意可得,解得,因此,椭圆C的方程为;(2)由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+m(m≠0),由,消去y整理得(1+4k2)x2+8kmx+4(m2﹣1)=0,∵直线l与椭圆交于两点,∴△=64k2m2﹣4(1+4k2)(m2﹣1)=4(4k2﹣m2+1)>0,设点P、Q的坐标分别为(x1,y1)、(x2,y2),则,,∴y1+y2=(kx1+m)(kx2+m)=,∵直线OP、l、OQ的斜率成等比数列,∴,整理得,∴,又m≠0,所以,,结合图象可得,故直线l的斜率为定值.9.【解答】解:椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,焦点在x轴上,设椭圆C的方程为:(a>b>0),a=3,b2=a2﹣c2=9﹣8=1,∴椭圆C的方程为:;由,消y整理得:10x2+36x+27=0,由△=362﹣4×10×27=216>0,∴直线与椭圆有两个不同的交点,设A(x1,y1),B(x2,y2),中点E(x0,y0),则x1+x2=﹣,由中点坐标公式可知:x0==﹣,y0=x0+2=,故线段AB的中点坐标为(﹣,).10.【解答】解:(1)由已知c=1,,又a2=b2+c2,解得.∴椭圆C的方程为:;(2)当l斜率不存在时,AB=,得S1•S2=6.当l斜率存在时,设为直线为y=kx+m,由l与圆(x﹣1)2+y2=1相切,得m2+2km=1…(*)联立,得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则.|AB|=.Q到直线的距离,S1•S2==.将(*)式代入得S1•S2=,令t=m2+1∈(1,+∞).∴S1•S2==.综上,S1•S2的最大值为6.。
椭圆专题训练卷(含解析)

椭圆专题训练卷一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .102.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4B .5C .7D .84.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A B C D5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .347.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )A .2B .34C .12D .148.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( )A .4B .2C D 9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .B .4C .3D .110.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( )A .(0B .1)C .5)6, D .5(,1)6二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .1312.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1B .3C .4D .813.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( ) A .当点P 不在x 轴上时,12PF F ∆的周长是6 B .当点P 不在x 轴上时,12PF F ∆面积的最大值为3 C .存在点P ,使12PF PF ⊥ D .1PF 的取值范围是[1,3]14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为512-的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________.16.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______.21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点(2,1)P 在椭圆上.(1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程; (2)求点到直线距离的最大值.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项. (1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x yC a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点. (1)求椭圆C 的方程; (2)求直线AB 的斜率.27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 6. (1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围.一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .2.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】“|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“216x +29y ≤1”表示的平面区域N 为椭圆216x +29y ≤1及其内部, 则如图显然N 在M 内, 故选:B .3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4 B .5C .7D .8【答案】D 【解析】∵ 椭圆221102x y m m +=--的焦点在y 轴上,∴ 22a m =-,210b m =-, ∵ 焦距为4, ∴ 24c =即24c =,在椭圆中:222a b c =+即2(10)4m m -=-+,解得:8m =, 故选:D4.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A .3B .3C .2D .3【答案】B 【解析】依题意可知3ab ,即3b =,又c ===,所以该椭圆的离心率3c e a ==. 故选:B5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A 点睛:求椭圆标准方程的两种思路方法(1)定义法:根据椭圆的定义,确定22a b ,的值,结合焦点位置可写出椭圆方程.(2)待定系数法:这种方法是求椭圆方程的常用方法,具体思路是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a b ,的方程组.如果焦点位置不确定,也可把椭圆方程设22100()mx ny m n m n >>≠+=,,的形式.6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .34【答案】A 【解析】试题分析:如图取P 与M 重合,则由2(,0),(,)b A a M c a--⇒直线22:()(0,)bb a AM y x a Ec a a c=+⇒-+-同理由222221(,0),(,)(0,)33b b b b B a Mc G a c e a a c a c a c -⇒⇒=⇒=⇒=+-+,故选A.7.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线2:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) A .32B .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A ,则24y x =由2AB c =,可知22OA x y c =+=2224x x c ⎛⎫+= ⎪ ⎪⎝⎭,解得22x =, 所以221,33A c ⎛⎫ ⎪ ⎪⎝⎭把点A 代入椭圆方程得到222222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得3e =故选A 项.8.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( ) A .4 B .2C .32D .332【答案】A 【解析】延长2F N 交1MF 的延长线于点P ,作图如下:因为MN 为12F MF ∠的角平分线,且2F N MN ⊥, 所以2MF MP =,所以2111MF MF MP MF F P -=-=, 因为,O N 分别为122,F F F P 的中点, 所以ON 为12PF F ∆的中位线, 所以1122ON F P ==, 所以21124MF MF F P ON -===. 故选:A9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .23B .4C .3D .1【答案】C 【解析】连接2PF ,设椭圆的基本量为,,a b c ,()()()()2212121QF QF QO OF QO OF QO QF ⋅=+⋅+=-,()221222222322PF PF QN NO c c a c b ⎛⎫=+-=+-=-== ⎪⎝⎭故答案为:C10.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( ) A .2(0, B .21) C .25)6, D .5(,1)6【答案】D 【解析】∵点,2a N c ⎛⎫ ⎪⎝⎭在椭圆的外部,∴222214c a a b +>,2212b a < ,由椭圆的离心率22121122c b e a a ==--=> ,122MF MN a MF MN +=-+, 又因为2MF MN -+≤2NF ,且22aNF =,要11232MF MN F F +<恒成立,即22a MF MN -+≤32222a a c +<⨯,则椭圆离心率的取值范围是5,16⎛⎫⎪⎝⎭.故选D . 二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .13【答案】CD 【解析】由22c =,则1c =.过点F 的弦长最小值为222b a≥,即22b a ≥即有222a c a -≥,即2210a a --≥,解得:a ≥或152a(舍),122c e a=≤=. 故选: CD.12.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1 B .3C .4D .8【答案】BC 【解析】由题意可得4a =,16122c ,则26a cPF a c .故选:BC .13.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( )A .当点P 不在x 轴上时,12PF F ∆的周长是6B .当点P 不在x 轴上时,12PF F ∆C .存在点P ,使12PF PF ⊥D .1PF 的取值范围是[1,3] 【答案】ABD 【解析】由椭圆方程可知,2,a b ==,从而1c ==. 据椭圆定义,1224PF PF a +==,又1222F F c ==, 所以12PF F ∆的周长是6,A 项正确. 设点()()000,0P x y y ≠,因为122F F =, 则12120012PF F S F F y y ∆⋅==.因为003y b <=,则12PF F ∆项正确. 由椭圆性质可知,当点P 为椭圆C 短轴的一个端点时,12F PF ∠为最大. 此时,122PF PF a ===,又122F F =,则12PF F ∆为正三角形,1260F PF ︒∠=,所以不存在点P ,使12PF PF ⊥,C 项错误.由图可知,当点P 为椭圆C 的右顶点时,1PF 取最大值,此时13PF a c =+=; 当点P 为椭圆C 的左顶点时,1PF 取最小值,此时11PF a c =-=, 所以1[1,3]PF ∈,D 项正确, 故选:ABD .14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为12的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 【答案】BD 【解析】2222:1(0)x y C a b a b+=>>()()()()1212,0,,0,0,,0,A a A a B b B b ∴--,()()12,0,,0F c F c -对于A :111222||,||,||A F F F F A 为等比数列则2112212||||||A F F A F F ⋅=()()222a c c ∴-=2a c c ∴-=13e ∴=不满足条件,故A 错误; 对于B :11290F B A ∠=︒222211112A F B F B A ∴=+ ()2222a c a a b ∴+=++220c ac a ∴+-=即210e e ∴+-=解得e =或e = 故B 正确;对于C :1PF x ⊥ 轴,且21//PO A B2,b P c a ⎛⎫∴- ⎪⎝⎭21POA B k k =即2b c ab a =--解得bc =222a b c =+2c e a ∴===不满足题意,故C 错误; 对于D :四边形1221A B A B 的内切圆过焦点12,F F 即四边形1221A B A B 的内切圆的半径为c ,ab ∴=422430c a c a ∴-+=42310e e ∴-+=解得232e +=(舍去)或232e =e ∴=故D 正确 故选:BD 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________. 【答案】4或8 【解析】因为221102x y a a +=--是椭圆的方程,所以100a ->且a 20->,所以210a <<,由椭圆的方程可得()2c 102122a a a =---=-,又2c 4=,所以1224a -=,解得4a =或8a =. 故答案为4或816.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.【答案】2212524x y +=【解析】椭圆的短轴长为,即2b =,∴b = .∵两个焦点恰好为长轴的2个相邻的五等分点,∴1225c a =⨯,得5a c =, 又因为222a b c =+,故可解得1c =,5a =,故该椭圆的标准方程为2212524x y +=.故答案为:2212524x y +=.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.【解析】 如图所示,由题意得,()0,A b -,(),0F c -,直线MN 的方程为3y x b =-,把35y b =代入椭圆方程解得45x a =,∴4355N a b ⎛⎫ ⎪⎝⎭,, ∵N 在直线MN 上,∴34355b a b =-,解得3b a =又222a b c =+,∴222)3b c =+,解得3b c =, 令3y x b =-=0,则3M ⎫⎪⎭,即(),0M c ,∴M 为椭圆的右焦点,∴2FM c =, 由椭圆的定义可知,2NF NM a +=, ∵FMN 的周长为6,∴226a c +=, ∵3b a =2a c =,∴1,2,3c a b === ∴()13883255FANSFM b b c b ⎡⎤=⋅⋅--=⋅=⎢⎥⎣⎦故答案为:35. 四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.323【解析】椭圆2214x y +=得:2,1,a b c ===2214x y +=椭圆的焦距长为:19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.【答案】2 ;23π; 【解解:因为由椭圆的定义,我们可知1221222121212121222||||cos 21642812422PF PF a PF a PF PF PF F F PF F F PF PF PF +=∴=-+-∆∠=⨯+-==-⨯⨯中,20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______. 【答案】11(2,)(,1)22---; (0,1),(0,1)-. 【解析】①根据椭圆的方程特征,方程22121x y m m+=+-表示椭圆,则201021m m m m+>⎧⎪->⎨⎪+≠-⎩解得:11(2,)(,1)22m ∈---; ②1m =-时,椭圆的方程2212y x +=,焦点在y 轴,其坐标分别为(0,1),(0,1)-故答案为:①11(2,)(,1)22m ∈---;②(0,1),(0,1)- 21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 【答案】椭圆 45【解析】设()11,A x y ,()22,C x y 则()22,B x y --,1AF 的斜率不为0,可设1:1AF l x my =- 则122:11BF y y l x x =+-①,211:11AF y y l x x =--② 所以()12121221212121211112224y y y y y y y y x x x x my my m y y m y y ⋅=⋅=⋅=+------++ 联立221143x my x y =-⎧⎪⎨+=⎪⎩得2242303m y my ⎛⎫+--= ⎪⎝⎭,得122243m y y m +=+,122343y y m -=+ 所以222316133y x m -=--+由①②得()12122112y y x x m y y y y ++-+=-,所以35x m y = 所以22231316353y x x y -=-⎛⎫-+⎪⎝⎭整理得222215344x x +=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以M 的轨迹所在的曲线是椭圆,14554e == 故答案为:椭圆;45.五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.【答案】2212516x y +=或221167y x +=【解析】(1)若椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x ya b a b+=>>.将点(0,4)代入,得4b =.由26c =,解得3c =.22225∴=+=a b c ,从而椭圆方程为2212516x y +=; (2)若椭圆的焦点在y 轴上,设椭圆的标准方程为22221(0)y xa b a b+=>>.将点(0,4)代入,得4a =.由26c =,解得3c =,2227b a c =-=,从而椭圆方程为221167y x +=. 综上所述,椭圆的标准方程为2212516x y +=或221167y x +=.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点2,1)P 在椭圆上.(1)求m的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率.【答案】(1)2(2)长轴长4、短轴长22、焦距22、离心率2 2【解析】(1)由题意,点(2,1)P在椭圆上,代入,得222114m+=,解得2m=(2)由(1)知,椭圆方程为22142x y+=,则2,2,2a b c===椭圆的长轴长24a=;’短轴长222b=;焦距222c=;离心率22cea==.24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程;(2)求点到直线距离的最大值.【答案】(1);(2)【解析】(1)由已知得,得椭圆(2)设,则当时,.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项.(1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.【答案】(1) 22143x y +=;(2) 3【解析】(1)设所求椭圆方程为22221(0,0)x y a b a b+=>>, 根据已知可得2221212242,2,413F F PF PF a a b a c =∴+==∴==-=-=, 所以此椭圆方程为22143x y +=; (2)在12PF F ∆中,设12,PF m PF n ==,由余弦定理得:22242cos604()22cos60163m n mn m n mn mn mn︒︒=+-⋅∴=+--⋅=- 121134sin 6004322PF F mn S mn ︒∆=∴=⋅=⨯=26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x y C a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点.(1)求椭圆C 的方程;(2)求直线AB 的斜率.【答案】(1)22182x y +=;(2)12. 【解析】(1)将(2,1)P -代入22212x y a +=, 得()2222112a -+=,28a =. 故椭圆方程为22182x y +=. (2)当直线AB 斜率不存在时不合题意,故设直线:AB y kx m =+,1122(,),(,)A x y B x y ,AB 的中点为00(,)M x y ,由22182y kx m x y =+⎧⎪⎨+=⎪⎩得222()148480k x kmx m +++-=, 0122()14214km x x x k +=-=+,00214m y kx m k =+=+, 直线OP 经过弦AB 的中点,则OM OP k k =,0012y x =-, 142m km =--,12k ∴=,即直线AB 的斜率为12. 27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 到短轴的一个端点的距离是6.(1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围. 【答案】解(I )(II ) 【解析】(I )由已知,;,故椭圆C 的方程为………………4分(II )设则A、B坐标是方程组的解.消去,则,………………7分所以k的取值范围是………………12分。
2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。
高考数学一轮复习 考点50 椭圆必刷题 理(含解析)-人教版高三全册数学试题

考点50 椭圆1.(市昌平区2019届高三5月综合练习二模理)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在某某卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里.已知月球的直径为3476公里,则该椭圆形轨道的离心率约为A.125B.340C.18D.35【答案】B 【解析】如下图,F为月球的球心,月球半径为:12×3476=1738,依题意,|AF|=100+1738=1838,|BF|=400+1738=2138. 2a=1838+2138,a=1988,a+c=2138,c=2138-1988=150,椭圆的离心率为:1503198840cea==≈,选B.2.(某某省实验中学等四校2019届高三联合考试理)已知椭圆C :22221x y a b+=,()0a b >>的左、右焦点分别为1F ,2F ,M 为椭圆上异于长轴端点的一点,12MF F ∆的内心为I ,直线MI 交x 轴于点E ,若2MI IE=,则椭圆C 的离心率是( )A .22B .12C .32D .13【答案】B 【解析】解:12MF F ∆的内心为I ,连接1IF 和2IF , 可得1IF 为12MF F ∠的平分线,即有11MF MI F EIE=,22MF MI F EIE=,可得12122MF MF MI F E F E IE===,即有1212222MF MF aF EEF c===, 即有12e =, 故选:B .3.(某某2019届高三高考一模试卷数学理)以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( )A .32-B .31-C .22D .32【答案】B 【解析】解:设椭圆的两个焦点为1F ,2F ,圆与椭圆交于A ,B ,C ,D 四个不同的点, 设122F F c =,则1DF c =,23DF c =. 椭圆定义,得122||||3a DF DF c c =+=+, 所以23131c e a ===-+, 故选:B .4.(某某省某某市高级中学2019届高三适应性考试(6月)数学理)在平面直角坐标系xOy 中,已知点, A F分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13B .23C .83D .32或83【答案】A 【解析】 如图设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M 三点共线,MF QF k k =000022y y x a c x c -∴=++-, 即00002y y c x x a c=++-, 002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A. 5.(某某省某某市2019届高三全真模拟考试数学理)已知1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,则椭圆C 的离心率为_________.【解析】1F 、2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,可得2AF 的方程为x c =,1AF 的方程()a y x c b =+,可得2(,)acA c b, 1AF 的中点为(0,)acb ,代入直线bx ay ab +=,可得:222ac b c a ==-,1c e a=<, 可得210e e --=,解得12e =.6.(某某省某某市2018-2019学年高二5月质量检测(期末)数学(理)已知F 是椭圆()222210x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,直线AF 与椭圆另一交点为B ,且2AF FB =,则椭圆的离心率为______.【答案】33【解析】设()0,A b -,(),0F c ,作BC y ⊥轴,垂足为C ,如下图所示:则:22AF b c a =+=由2AF FB =得:23AF c ABBC==32BC c ∴=,即:32B x c = 由椭圆的焦半径公式可知:B BF a ex =-232B AF a ac c a ex FBa a ∴===--⋅,整理可得:223a c =213e ∴=,即3e =本题正确结果:337.(某某省某某市2019届高三第三次教学质量检测数学理)如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.25【解析】如图,圆锥面与其内切球1O ,2O 分别相切与B,A ,连接12,O B O A 则1O BAB ,2O A AB ,过1O 作12O D O A 垂直于D ,连接12,O F O E ,EF 交12O O 于点C设圆锥母线与轴的夹角为α ,截面与轴的夹角为β 在12Rt O O D 中,2312DO ,22182215O D11221515cos84O O O D 128O O = 218CO O C21EO CFO C11218O C O CO E O F 解得1=2O C 222211213CFO FO C即13cos2CF O C则椭圆的离心率3cos 252cos 5154e8.(某某省某某市师X 大学某某市附属中学2019届高三第四次模拟考试)已知椭圆()2222:10x y E a b a b+=>>与y 轴正半轴交于点(3M ,离心率为12.直线l 经过点()(),00P t t a <<和点()0,1Q .且与椭图E 交于A 、B 两点(点A 在第二象限). (1)求椭圆E 的标准方程; (2)若AP PB λ=,当230t <≤时,求λ的取值X 围. 【答案】(1)22143x y +=(2)35λ⎛+∈ ⎝⎦【解析】解析:(1).由题意,12c e a ==且3b =2a =,所以椭圆E 的标准方程为22143x y +=.(2).因为直线l 经过点()(),00P t t a <<和点()0,1Q ,所以直线l 的斜率为1t -,设1:1l y x t=-+,将其代入椭圆方程22143x y +=中,消去x 得()22223463120t y t y t +-+-=,当∆>0时,设()11,A x y 、()22,B x y ,则2122634t y y t +=+……①,212231234t y y t -=+……②因为AP PB λ=,所以()()1122,,t x y x t y λ--=-,所以12y y λ=-……③ 联立①②③,消去1y 、2y ,整理得()222124141t λλ⎛⎫=+- ⎪⎝⎭-.当0t <≤时,()[)2221241412,1t λλ⎛⎫=+-∈+∞ ⎪⎝⎭-,解351,2λ⎫⎛+∈⎪ ⎪ ⎣⎭⎝⎦由()2122261034t y y y t λ+=-=>+且20y <,故1λ>,所以λ⎛∈ ⎝⎦. 9.(某某省威海市2019届高三二模考试数学理)在直角坐标系xOy 中,设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,短轴的两个端点分别为,A B ,且160AF B ∠=︒,点1)2在C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:(0)l y kx m k =+>与椭圆C 和圆O 分别相切于P ,Q 两点,当OPQ ∆面积取得最大值时,求直线l 的方程.【答案】(Ⅰ) 2214x y +=.(Ⅱ) y x =【解析】(Ⅰ)由160AF B ∠=︒,可得2a b =,①由椭圆C经过点1)2,得2231144b b+=,② 由①②得224,1a b ==,所以椭圆C 的方程为2214x y +=.(Ⅱ)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 整理得()222148440k x kmx m +++-=(*),由直线l 与椭圆相切得,()()222264161140k m m k ∆=--+=,整理得2241m k =+,故方程(*)化为2228160m x kmx k ++=,即2(4)0mx k +=, 解得4kx m-=, 设()11,P x y ,则124414km k x k m--==+,故111y kx m m =+=, 因此41(,)k P m m-. 又直线:(0)l y kx m k =+>与圆O相切,可得||OQ =所以||PQ ==所以1||||2OPQS PQ OQ ∆=⋅= 将2241m k =+式代入上式可得OPQS ∆===21321k k =⋅+3112k k=⋅+, 由0k >得12k k+≥,所以313124OPQ S k k∆=⋅≤+,当且仅当1k =时等号成立,即1k =时OPQ S ∆取得最大值.由22415m k =+=,得5m =±, 所以直线l 的方程为5y x =±.10.(某某省日照市2019届高三5月校际联合考试数学理)如图,已知椭圆()222210x y E a b a b +=:>>,()4,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,且213213cos OA CA OC OB BC BA 〈〉=-=-,,.(1)求椭圆E 的方程.(2)过椭圆E 右焦点F 的直线,交椭圆E 于11,A B 两点,交直线8x =于点M ,判定直线11,,CA CM CB 的斜率是否依次构成等差数列?请说明理由.【答案】(1)2211612x y +=;(2)是,理由见详解. 【解析】 (1)由2OC OB BC BA -=-,得2B A C C =,即2O A C C =,所以AOC ∆是等腰三角形, 又4a OA ==,∴点C 的横坐标为2;又213cos OACA 〈〉=,, 设点C 的纵坐标为C y 222132C y =+,解得3C y =±, 应取(2,3)C ,又点C 在椭圆上,∴22222314b +=,解得212b =,∴所求椭圆的方程为2211612x y +=;(2)由题意知椭圆的右焦点为(2,0)F ,(2,3)C , 由题意可知直线11,,CA CM CB 的斜率存在, 设直线11A B 的方程为(2)y k x =-,代入椭圆2211612x y +=并整理,得2222(34)1616480k x k x k +-+-=;设11(,)A x y ,22(,)B x y ,直线11,,CA CM CB 的斜率分别为123,,k k k ,则有21221634k x x k+=+,2122164834k x x k -=+, 可知M 的坐标为(8,6)M k ;∴()()12121312122323332222k x k x y y k k x x x x ------+=+=+---- 1212124232142()x x k k x x x x +-=-•=-+-+,又263222182k k k -=•=--; 所以1322k k k +=,即直线11,,CA CM CB 的斜率成等差数列.11.(某某市某某区2019届高三一模数学理)已知椭圆C :22221(0)x y a b a b +=>>过点()2,1,且离心率为(Ⅰ)求椭圆C 的方程;(Ⅱ)若过原点的直线1l 与椭圆C 交于P 、Q 两点,且在直线2:0l x y -+=上存在点M ,使得MPQ 为等边三角形,求直线1l 的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆综合练习2一、选择题1. 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)2.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23 B .3 C .27 D .43. 过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=o ,则椭圆的离心率为( )A .22 B .33 C .12 D .134. 椭圆141622=+y x 有两点P 、Q ,O 为原点,若OP 、OQ 斜率之积为41-,则22OQ OP + 为( )A .4 B.64 C.20 D.不确定5.若椭圆)0(12222>>=+b a b y a x 和圆c c by x (,)2(222+=+为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .)53,55( B.)55,52(C.)53,52(D.)55,0( 6. 已知c 是椭圆)0(12222>>=+b a by a x 的半焦距,则a cb +的取值范围是 ( )A (1, +∞)B ),2(∞+C )2,1(D ]2,1(二、填空题:7. 椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠ 为钝角时,点P 横坐标的取值范围是____________________.8. 圆心在y 轴的正半轴上,过椭圆14522=+y x 的右焦点且与其右准线相切的圆的方程为_______________________.9. 已知圆柱底面直径为2R,一个与底面成ο30角的平面截这个圆柱,截面边界为椭圆,则此椭圆离心率为______________________. 10. 已知12F 、F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,p 为椭圆C 上的一点,且12PF PF ⊥。
若12PF F ∆的面积为9,则b = . 三、解答题:11.如图所示,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个端点,BC 过椭圆中心O ,且0=⋅BC AC ,|BC |=2|AC |.求椭圆方程.12.设椭圆的中心在原点,焦点在x 轴上, 离心率23=e .已知点)23,0(P 到这个椭圆上的点的最远距离为7,求这个椭圆方程.13.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,两个焦点分别为1F 和2F ,椭圆G 上一点到1F 和2F 的距离之和为12.圆k C :0214222=--++y kx y x )(R k ∈的圆心为点k A .(1)求椭圆G 的方程; (2)求21F F A k ∆的面积; (3)问是否存在圆k C 包围椭圆G?请说明理由.14.已知椭圆)0(12222>>=+b a by a x 的离心率为33,以原点为圆心。
椭圆短半轴长半径的圆与直线2y x =+相切, (1)求a 与b ;(2)设该椭圆的左,右焦点分别为1F 和2F ,直线1l 过2F 且与x 轴垂直,动直线2l 与y 轴垂直,2l 交1l 与点P .求线段1PF 垂直平分线与2l 的交点M 的轨迹方程,并指明曲线类型。
15.已知椭圆的中心在原点,其中两顶点的坐标为(1,0)和(0,2),M 是椭圆上的动点. (1)若,C D 的坐标分别是(0,3),(0,3),求MC MD g 的最大值;(2)如图,点A 的坐标为(1,0),B 是圆221x y +=上的点,N 是点M 在x 轴上的射影,点Q 满足条件:OQ OM ON =+u u u r u u u u r u u u r ,0QA BA =u u u r u u u rg .求线段QB 的中点P 的轨迹方程.参考答案一、 选择题:DCB C A D3.解析:因为2(,)b P c a -±,再由1260F PF ∠=o有232,b a a=从而可得33c e a ==,故选B4.解析: 设直线方程为 kx y =,解出2OP ,写出2OQ 另法:设11(,)P x y ,22(,)Q x y 则12121212144y y y y x x x x ⋅=-⇒=- P Q 、Q 在椭圆上22222211121222222222222121212164324()16416164()16x y x x y y x y x x y y y y ⎧⎧=-+=-+⎪⎪⇒⎨⎨=-=-⋅++⎪⎪⎩⎩ 222222222121212121616164()16x x y y y y y y ==-⋅++ 得 22124y y += 22222222121212||||323()321220OP OQ x x y y y y ∴+=+++=-+=-=5.解析: 解齐次不等式:a c bb <+<2,变形两边平方. 6.解析: 焦三角形AFO,如图: θθθ,cos sin +=+acb 为锐角.转化为三角函数问题. 二、填空题: 7.5353<<-x 解析:以椭圆的中心为圆心,半焦距为半径的圆与椭圆相交;8.25)62(22=-+y x ;9.21 解析: 求b a , R c R b R a R a 33,,332,230cos 2===∴=ο 10.解析依题意,有⎪⎩⎪⎨⎧=+=•=+2222121214||||18||||2||||c PF PF PF PF aPF PF ,可得4c 2+36=4a 2,即a 2-c 2=9,故有b =3。
三、解答题:11.解: 以O 为原点,O A 为X 轴建立直角坐标系,设A (2,0),则椭圆方程为22214x y b+= ∵O 为椭圆中心,∴由对称性知|O C |=|O B |又∵0AC BC =u u u r u u u rg , ∴AC ⊥BC又∵|BC |=2|AC | ∴|O C |=|AC | ∴△A O C 为等腰直角三角形∴点C 的坐标为(1,1) ∴点B 的坐标为(-1,-1)将C 的坐标(1,1)代入椭圆方程得243b =, 则求得椭圆方程为223144x y +=12.解:设椭圆方程为)0(12222>>=+b a by a x , ),(y x M 为椭圆上的点,由23=a c 得b a 2=)(,34)21(3)23(22222b y b b y y x AM ≤≤-+++-=-+=若21<b , 则当b y -=时2AM 最大,即23()72b +=, 21237>-=∴b ,故矛盾.若21≥b 时,21-=y 时7342=+b , 12=b ,所求方程为 1422=+y x 13.解析(1)设椭圆G 的方程为:22221x y a b+= (0a b >>)半焦距为c;则21232a c a=⎧⎪⎨=⎪⎩ , 解得633a c =⎧⎪⎨=⎪⎩ , 22236279b a c ∴=-=-= 所求椭圆G 的方程为:221369x y +=. (2 )点K A 的坐标为(),2K - 12121126326322K A F F S F F =⨯⨯=⨯⨯=V (3)若0k ≥,由2260120215120k k ++--=+f 可知点(6,0)在圆k C 外, 若0k <,由22(6)0120215120k k -+---=-f 可知点(-6,0)在圆k C 外; ∴不论K 为何值圆k C 都不能包围椭圆G.14分析(1)由椭圆2222222313x y c a b c e a a b+==+==中及建立a 、b 等量关系,再根据直线与椭圆相切求出a 、b.(2)依据几何关系转化为代数方程可求得,这之中的消参就很重要了。
14.解析(1)由于33e = ∴22222213c a b e a a -=== ∴2223b a = 又211b ==+ ∴b 2=2,a 2=3因此, 3 . b=2a =(2)由(1)知F 1,F 2两点分别为(-1,0),(1,0),由题意可设P (1,t ).(t ≠0).那么线段PF 1中点为(0,)2t N ,设M(x 、y )是所求轨迹上的任意点.由于1(,) . (2,)2tMN x y PF t =--=--u u u u v u u u v 则12()02t MN PF x t y y t⎧=+-=⎪⎨⎪=⎩⋅u u u uv u u u v 消去参数t 得24(0)y x x =-≠,其轨迹为抛物线(除原点)15解:(1)由题设条件知焦点在y 轴上,故设椭圆方程为22221(0)x y a b b a +=>>.由两顶点的坐标为(1,0)和(0,2)知1,2b a ==从而得椭圆方程为2214y x += . 又易知C ,D 两点是椭圆2214y x +=的焦点,所以,24MC MD a +== 从而22()242MC MD MC MD +⋅≤==,当且仅当MC MD =,即点M 的坐标为(1,0)± 时上式取等号,MC MD ⋅的最大值为4(II )如图(20)图,设M(,),(,)m m B B x y B x y , (,)Q Q Q x y .因为(,0),N N x OM ON OQ +=u u u u r u u u r u u u r,故2,,Q N Q M x x y y ==222(2)4yQ Q M x y x y +=+= ①因为0,QA BA ⋅=u u u r u u u r(1)(1)(1)(1)0,Q Q N n Q N Q N x y x y x x y y --⋅--=--+=所以 1Q N Q N N Q x x y y x x +=+-. ②记P 点的坐标为(,)P P x y ,因为P 是BQ 的中点,所以 2,2P Q P P Q P x x x y y y =+=+由因为 221N N x y +=,结合①,②得22221(()())4P P Q N Q N x y x x y y +=+++22221(2())4Q N Q n Q N Q N x x y y x x y y =+++++1(52(1))4Q N x x =++-34P x =+故动点P 的轨迹方程为221()12x y -+=。