13.4最短路径问题
13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。
13.4最短路径问题1--两点(两定点)一轴型

13.4最短路径问题1--两点(两定点)一轴型一.【知识要点】 2. 主要类型有“两点一线”,“一点两线”,“两点两线” 模型。
3.方法:①“两点一线,两点在异侧,连接两点,交点为所求”;②“两点一线,两定点在同侧,先作对称,连接另一点,交点为所求”。
二.【经典例题】1.如图,牧马人从A 地出发,到一条笔直的河边饮马,然后到B 地,牧马人到河边的什么地方饮马,可使所走的路径最短?2.已知点P 、Q 分别是△ABC 边AB 、AC 上的两定点,在BC 边上求作一点M ,使△PQM 周长最短。
画出图形,不写作法。
3.如图所示,△ABC 为等边三角形,D 为AB 的中点,高AH=10cm ,P 为AH 上一动点,则PD+PB 的最小值为___________cm.【问题 1】作法作图 原理在直线 l 上求一点 P ,使PA+PB 值最小。
连 AB ,与 l 交点即为 P .两点之间线段最短. PA+PB 最小值为 AB .【问题 2】作法作图 原理在直线 l 上求一点 P ,使PA+PB 值最小.作 B 关于 l 的对称点 B '连 A B ',与 l 交点即为 P .两点之间线段最短. PA+PB 最小值为A B '.4.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1) C.(0,2) D.(0,3)5.(绵阳2021年期末10题)已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.(1)在AB边上求作点P,使PC+PD最小;(2)求出(1)中PC+PD的最小值.6.(2022年绵阳期末第11题)如图,在正五边形ABCDE中,点F是CD的中点,点G在线段AF上运动,连接EG,DG,当△DEG的周长最小时,则∠EGD=()A.36°B.60°C.72°D.108°三.【题库】【A】1.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()。
13.4将军饮马——最短路径问题

A
BP
河
B'
最短路线:A ---P--- B.
将军饮马:
例2.如图:一位将军骑马从城堡A到城堡B, 途中马要到 河边饮水一次,问:这位将军怎样走路程最短?
BP B'
A
P'
河
AP + BP < AP' + BP'
将军饮马:
例2变式:已知:P、Q是△ABC的边AB,AC上的点,你能
在BC上确定一点R,使△PQR的周长最短吗?
将军饮马:
例4:如图,A为马厩,B为帐篷,将军某一天要 从马厩牵出马,先到草地边某一处牧马,再到河 边饮马,然后回到帐篷,请你帮助确定这一天的 最短路线。
将军饮马:
A'
P
NQ
B'
A
M
B将军饮马:
例4变式:如图,OMCN是矩形的台球桌面,有黑、白两 球分别位于B、A两点的位置上,试问怎样撞击白球,使 白球A依次碰撞球台边OM、ON后,反弹击中黑球?
将军饮马:
例3.如图:一位将军骑马从驻地A出发,先牵马去草地
OM吃草,再牵马去河边ON喝水, 最后回到驻地A,
问:这位将军怎样走路程最短?
A' M 草地
最短路线:
P
O
. A ---P--- Q---A 驻地A
Q
N 河边
A''
将军饮马:
例3变式:已知P是△ABC的边BC上的点,你能在
AB、AC上分别确定一点Q和R,使△PQR的周 长最短吗?
八年级 上册
13.4 课题学习 最短路径问题
恩施州清江外国语学校 教师:刘玉兰
将军饮马:
13.4课题学习-最短路径问题

B A C
L
B
/
证明:
在L 上任取另一点C ',连结AC ' 、BC'、B'C'. ∵ 直线 L 是点B、B'的对称轴,点C、C' 在对称轴上, ∴CB=CB',C'B=C'B'. B ∴AC+CB=AC+CB'=AB'
A
C'
在△AC'B'中, AC'+C'B'>AB', ∴AC'+C'B>AC+CB, 即AC+CB 最小.
13.4课题学习 最短路径问题
提出问题
八年级(1)班同学做游戏,在活动区 域边放了一些球(如下图),小华按怎 样的路线跑,去捡哪个位置的球,才 能最快拿到球跑到目的地A?
A
B小华 l
探究一
如图,直线L两侧有两点A、B。 在直线L上求一点C,使它到A、B两 点的距离之和最小?
C 两点之间,线段最短。
A/
。
A C B小明 l
巩固新知
练 习 一
A
龟兔赛跑新规则:参赛者从A点出发到达直 线a上任意一点后,再回到直线a同侧的终点B, 最先达到终点者胜。下面是小猫、小猪、小猴、 小熊为他们设计的路线,其中路程最短的是()
B A a B A B A a B
C
C
a
C
a
C
小猫
小猪
A‘
小猴
小熊
练 习 二
巩固新知
A/
。
l2 N M A
B/
。
B小华
l1
人教版八年级数学13.4最短路径问题(包含答案)

13.4最短路径问题知识要点:1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.一、单选题1.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在()A.在A的左侧B.在AB之间C.在BC之间D.B处【答案】D2.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P 的位置应在()A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上【答案】A3.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.【答案】D4.已知:如图,在Rt△ABC中,△ACB=90°,△A<△B,CM是斜边AB上的中线,将△ACM 沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则△A的度数是()A.30° B.36° C.50° D.60°【答案】A5.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.4 C.4.8D.5【答案】C6.如图所示,△ABC中,AB=AC,△EBD=20°,AD=DE=EB,则△C的度数为()A.70°B.60°C.80°D.65°【答案】A7.如图所示,在Rt△ABC中,△ACB=90°,△B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13 cm,则AC的长是()A.13 cm B.6.5 cmC.30 cm D.cm【答案】B8.如图所示,从点A到点F的最短路线是()A.A→D→E→F B.A→C→E→FC.A→B→E→F D.无法确定【答案】C9.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.125B.4 C.245D.510.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)【答案】D11.如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短..的是()二、填空题12在平面直角坐标系中,已知点A(0,2)、B(4,1),点P在轴上,则PA+PB的最小值是______________。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题

人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
13.4 课题学习 最短路径问题

A
点B“移”到l 的另一侧B′处,
l
满足直线l 上的任意一点C,
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
方法揭晓
作法: (1)作点B 关于直线l 的对称点B′; (2)连接AB′,与直线l 相交于点C.
B
则点C 即为所求.
A
C l
B′
问题3 你能用所学的知识证明AC +BC最短吗?
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
问题1 现在假设点A,B分别是直线l异侧的两个点,如 何在l上找到一个点,使得这个点到点A,点B的距离的 和最短?
连接AB,与直线l相交于一点C.
A
根据是“两点之间,线段
C
最短”,可知这个交点即
l
为所求.
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如 何解决?
B
想一想:对于问题2,如何将
方法归纳 解决最短路径问题的方法
在解决最短路径问题时,我们通常利用轴对 称等变换把未知问题转化为已解决的问题,从而 作出最短路径的选择.
课堂小结
原理 线段公理和垂线段最短
最 短 牧马人饮 路 径 马问题 问题
解题方法 轴对称知识+线段公理
造桥选 址问题
13.4课题学习++最短路径问题-讲练课件-2023-2024学年+人教版+八年级数学上册

(1)涂黑部分的面积是原正方形面积的一半;
(2)涂黑部分成轴对称图形.如图2是一种涂法,请在图4-6中分别设计
出另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一
种涂法,如图2与图3)
解:如图所示.(答案不唯一,合理即可)
数学活动
活动3 等腰三角形中相等的线段
例3 综合探究探索等腰三角形中相等的线段.
3.如图,点A,点B为直线MN外两点,且在MN异侧,点A,B到直
线MN的距离不相等,试求一点P,同时满足下面两个条件:
①点P在MN上;②PA+PB最小.
解:如图所示,点P即为所求.
4.如图,铁路l的同侧有A,B两个工厂,要在路边建一个货物站C,
使A,B两厂到货物站C的距离之和最小,那么点C应该在l的哪里呢?画出
数学(RJ)版八年级上册
第十三章 轴对称
课题学习
最短路径问题
新课学习
单动点问题—— 两点在直线异侧
例1 如图,在直线l上找一点P,使得PA+PB的和最小.
解:如图,连接AB,AB与l的交点即为所求点P.
1.如图,高速公路l的两侧有M,N两个城镇,要在高速公路上建一个出
口P,使M,N两城镇到出口P的距离之和最短,请你找出点P的位置.
你找的点C.
解:如图所示,点C即为所求.
5.(2022·珠海市期末)在如图所示的平面直角坐标系中,点A的坐标
为(4,2),点B的坐标为(1,-3),在y轴上有一点P使PA+PB的值最小,
则点P的坐标为(
D
)
A.(2,0)
B.(-2,0)
C.(0,2)
D.(0,-2)
第5题图
6.如图,直线l1与l2交于点O,P为其平面内一定点,OP=3,M,N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§13.4 课题学习 最短路径问题【内容解析】本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”或“三角形两边之和大于第三边”的问题. 【目标解析】能利用轴对称解决最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想. 【学习重难点】利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 【复习回顾】1. 线段公理:__________________________________________.2. 垂线性质:__________________________________________.3. 三角形三边不等关系:①______________________________;②___________________________.4. 要在河边修建一个泵站向张村引水,在何处修建才能使所用引水管道最短?为什么?5. 如图所示,从A 地到B 地有三条路可供选择,你会选走哪条路最近?你的理由是什么?6. 如图,点A ,B 在直线l 的异侧,点C 是直线l 上的一个动点. (1)当点C 在l 的什么位置时,AC+CB 有最小值?试在图中作出点C ,数学依据:____________________.(2)你能将点B “移”到l 的另一侧'B 处,即点A ,'B 在直线l 的同侧,仍能满足'CB CB =,试在图中作出点'B ,数学依据:____________________.小组长检查批改: 等级与评价:【典例赏析】前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.问题1:相传,古希腊亚历山大里亚城里有一位久负盛名的学者海伦.一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短呢?精通数学、物理学的海伦稍加思考,利用轴对称的知识回答了这个问题.后来这个问题被称为“将军饮马问题”.小小数学家,你能将这个问题抽象为数学问题吗?分析:将A ,B 两地抽象为两个点,将河l 抽象为一条直线.(1)将军从____出发,到______饮马,然后到______地.(2)在河边l 饮马的地点有______处,把这些地点与A ,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和.(3)需要解决的问题是怎样找出使两条线段长度之和为最短时直线l 上的点,设C 为直线上的一个动点,上面的问题转化为:当____在l 的什么位置 时,AC 与CB 的_____最小. (4)如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?如何将B “移”到l 的另一侧'B 处,满足直线l 上的任一点C ,都能满足'CB CB =? (5)你能利用轴对称的有关知识,找到上问中符合条件的点'B 吗? 作法:①作点B 关于直线l 的对称点_______; ②连接_______,与直线l 交于点C ; ③点C 即为所求.证明:如图,在直线l 上任取一点C ′(与点C 不重合),连接AC ′,BC ′,B ′C ′.由轴对称的性质知, BC =_____,BC ′=_______. ∴ AC +BC = AC +_____ = ______, AC ′+BC ′ = AC ′+____.在△AB ′C ′中,AB ′<AC ′+B ′C ′,∴ AC +BC <__________. 即AC +BC 最短.【小试牛刀】1.如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC上,再返回P 处,请画出旅游船的最短路径.思路点拨:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的必经之路.将河岸抽象成一条直线BC ,这样问题就转化为“P ,Q 在直线BC 的同侧,如何在BC 上找到一点R ,使PR 与QR 的和最小.”2.如图,已知甲、乙、丙三人做接力游戏,开始时,甲站在∠AOB 内的P 点,乙站在OA 上,丙站在OB 上,游戏规则:甲将接力棒传给乙,乙将接力棒传给丙,最后丙跑至终点P 处.如果甲、乙、丙三人速度相同,试作图求出乙、丙必须站在何处,他们比赛所用时间最短.3.(1)如图1,已知直线MN 与在MN 同侧的两点A ,B ,在MN 上求作一点P ,使PA PB -最大; (2)如图2,已知直线MN 与在MN 异侧的两点A ,B ,在MN 上求作一点Q ,使QA QB -最大.并说明理由及作法.BA问题2:(造桥选址问题)如图,A ,B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直)分析:(1)我们可以把河的两岸看成两条平行线a 和b ,N 为直线b 上的一个动点,MN 垂直于直线b ,交直线a 于点M ,这样,上面的问题 可以转化为下面的问题:当点N 在直线b 的什么位置时,AM+MN+NB 最小?(2)由于河岸宽度是固定的,因此当AM+NB 最小时,AM+MN+NB 最小.这样问题可转化为:当点N 在直线b 的什么位置时,AM+NB 最小. 作法:①将点A 沿垂直与河岸的方向平移一个河宽到A'; ②连接A'B 交河对岸于点N ;③则点N 为建桥的位置,MN 为所建的桥.证明:由平移的性质,得 AM ∥____,且AM =___, MN =_____, 所以A ,B 两地的距离:AM+MN+BN =____+MN +____=______+MN ,若桥的位置建在N'处,过N '作N'M'⊥a ,垂足为M ',连接AM',A'N ',BN', 则AB 两地的距离为:AM'+M'N'+N'B=_____+M'N'+N'B ,在△A'N'B 中,∵_____+_____>A'B ,∴______+______+MN >_____+MN , 即AM'+M'N'+N'B >AM+MN+BN .所以在点N 的位置建桥MN ,AB 两地的路径AMNB 最短.【小试牛刀】如图,直线12l l ,A 、B 为两定点,M 、N 分别在直线1l ,2l 上,且2MN l ^,请确定M 、N 的位置,AM MN BN ++最小.1l2l【课后达标检测】1.请各位小数学家帮助我们解决以下生活中的数学实际问题,要求作图保留痕迹,并写作法. (1)张湾区政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.(2)如图,要在河边修建一个水泵站,分别向张村、李庄送水,修在河边什么地方,可使所用的水管最短?(3)如图,八(1)班与八(2)班两个班的学生分别在M 、N 两处参加植树劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P ,使P 到两条道路的距离相等,且使PM=PN ,请你找到点P .2.如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC+BC 的长度最短,作法为:①作点B 关于直线l 的对称点B′;②连接AB′与直线l 相交于点C ,则点C 为所求作的点.在解决这个问题时没有运用到的知识或方法是( ) A .转化思想 B .三角形的两边之和大于第三边C .两点之间,线段最短D .三角形的一个外角大于与它不相邻的任意一个内角3.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ) A .25° B .30° C .35° D .40° 4.如图,在矩形ABCD 中,AB =10,BC =5.若点M 、N 分别是线段AC ,AB 上的两个动点,则BM+MN 的最小值为( ) A .10B .8C .D .65.如图,四边形ABCD 中,∠BAD =120°,∠B =∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数为( ) A .130° B .120° C .110°D .100°6.如图,等腰三角形ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则△BDM 的周长最短为 cm .7.如图,钝角三角形ABC 的面积为15,最长边AB =10,BD 平分∠ABC ,点M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值为 .8.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是____________.9.(1)如图1,直线同侧有两点A 、B ,在直线上求一点C ,使它到A 、B 之和最小(保留作图痕迹). (2)如图2,A ,B 在直线MN 的同侧,在直线MN 上求一点P ,使∠APM =∠BPN.(3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;②若∠BAE =125°,∠B =∠E =90°,AB=BC ,AE=DE ,∠AMN +∠ANM 的度数为 . (4)如图4,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 上一点,AE =2,当EF +CF 取得最小值时,∠ECF 的度数为_________.第3题 第4题 第5题 第6题 第7题 第8题。