薄壁类零件的车削工艺分析
薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 背景介绍薄壁零件是指壁厚较薄,形状复杂的零件,通常用于汽车、航空航天、电子等领域。
随着现代工业的发展,对薄壁零件的需求越来越大,但是薄壁零件的加工过程中容易产生变形、残余应力等问题,给加工工艺提出了更高的要求。
薄壁零件的加工难度主要体现在以下几个方面:一是薄壁零件在加工过程中容易变形,特别是在切削加工过程中会出现振动、共振等问题;二是薄壁零件在加工过程中很容易产生残余应力,影响零件的精度和稳定性;三是薄壁零件通常要求加工精度高,加工表面要求光洁度要求高。
对薄壁零件的机械加工工艺进行深入研究和分析,对提高零件加工质量和效率具有重要意义。
本文将通过对薄壁零件的加工特点、机械加工方法、加工工艺优化、加工设备选择和注意事项等方面进行分析,希望能为薄壁零件的加工提供一些参考和帮助。
1.2 研究目的薄壁零件的机械加工工艺分析本文旨在探讨薄壁零件的机械加工工艺,通过对薄壁零件加工特点、机械加工方法、加工工艺优化、加工设备选择以及加工注意事项等方面进行深入分析,以期为相关行业提供一定的参考和指导。
薄壁零件因其结构特殊、加工难度大、容易变形等特点,在实际生产中存在一定的挑战。
通过对薄壁零件的机械加工工艺进行研究分析,可以帮助企业更加有效地解决加工过程中所面临的问题,提高生产效率、降低生产成本,提升产品质量和市场竞争力。
研究目的的关键在于深入了解薄壁零件的加工特点和加工工艺,找出存在的问题并提出解决方案,为制造工程技术人员提供可行的指导意见和建议。
通过本文的研究,希望能够为薄壁零件的机械加工工艺提供更加系统和全面的分析,为相关领域的技术人员提供参考和借鉴,推动薄壁零件的机械加工技术不断创新和提升。
1.3 研究意义薄壁零件在机械加工领域中起着重要的作用,其加工工艺的优化对于提高产品质量、降低生产成本具有重要意义。
由于薄壁零件的特殊性,其加工过程中容易出现变形、裂纹等问题,因此需要对其加工进行深入研究和优化。
薄壁零件的数控车削加工探讨

薄壁零件的数控车削加工探讨薄壁零件的数控车削加工是现代制造业中一个重要的加工方法。
薄壁零件由于其薄弱性、易变形等特点,在加工过程中容易出现裂纹、变形等问题,因此需要选择适当的工艺和工艺参数来进行加工。
本文将从数控车削加工的角度探讨薄壁零件加工的工艺和工艺参数选择。
1. 零件薄弱,容易变形。
薄壁零件的壁厚通常较薄,结构较为复杂,受力不均匀,容易发生变形和变形,导致加工难度加大。
2. 零件尺寸精度要求高。
由于薄壁零件的结构特点,要求其加工精度较高,尤其是对于一些需要组装的零件,其加工精度更是要求高度一致。
3. 对加工工艺的要求高。
由于薄壁零件的特殊性质,其加工过程需要针对其特点进行特别处理,否则可能导致加工效果不理想,甚至出现零件损坏的情况。
1. 首先,在加工薄壁零件之前,需要进行工件的固定和夹紧,以保证加工时工件的位置不发生变化,保证加工的精度。
通常情况下,可以采用卡盘等方式进行固定,但需要注意不要使用过大的夹紧力,以免零件变形或者损坏。
2. 在确定好工件固定和夹紧方式后,需要进行刀具选择和调整。
由于薄壁零件的结构特点,需要选用尖端小、削减力较小的刀具,以避免零件因为过大的削减力而出现变形、损坏等问题。
同时,由于薄壁零件加工需要长时间的切削,因此需要经常检查刀具的磨损程度,及时更换刀具,以保证加工效果的稳定性。
3. 在加工过程中,需要合理选择加工工艺参数,以防止零件出现变形、破裂等问题。
首先,需要控制进给速度和切削深度,以避免对零件产生过大的压力,导致零件形变和破裂。
其次,要控制切削液的使用,适当增加切削液的流量和压力,以改善切削润滑效果,并降低切削时产生的热量,降低零件变形的风险。
1. 在加工薄壁零件之前,需要对机床进行必要的调整和维修,以保证机床处于良好的工作状态,从而提高加工精度和效率。
2. 在加工过程中需要注意加工参数的选择和调整,以避免出现零件变形、破裂等问题。
同时,需要对加工过程进行监控和检查,及时发现和排除潜在的问题,保证零件加工质量。
薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 简介薄壁零件在机械加工领域中起着重要的作用,其加工难度和技术要求较高。
对薄壁零件的机械加工工艺进行深入分析和研究具有重要意义。
本文旨在探讨薄壁零件加工的相关问题,通过对薄壁零件的定义、加工难点以及机械加工工艺的分析,来探讨如何选择合适的加工方案,并对加工工艺进行优化,提高加工效率和产品质量。
在工艺优化的过程中,需要考虑到薄壁零件的特点和加工需求,不断完善工艺流程,优化加工参数,提高加工质量和生产效率。
本文还将讨论工艺优化的重要性以及未来研究方向,以期为薄壁零件的机械加工工艺提供一定的参考和借鉴。
1.2 研究背景薄壁零件在现代工业生产中得到了广泛应用,其轻量化、高强度和高性能的特点使其在航空航天、汽车制造、电子设备等领域发挥着重要作用。
由于薄壁零件的特殊性,其加工难度较大,容易出现变形、裂纹等质量问题,给生产制造带来了挑战。
通过深入分析薄壁零件的机械加工工艺,探讨加工中存在的难点和问题,并提出相应的加工方案和工艺优化措施,对于提高薄壁零件加工质量和效率具有重要意义。
薄壁零件加工的难点主要包括材料轻薄、刚度低、易变形等特点,导致加工过程中容易出现振动、共振、切削变形等问题。
针对这些问题,现有研究主要集中在加工参数优化、刀具选择、切削力控制等方面进行探讨,但仍存在一定的局限性。
有必要对薄壁零件的机械加工工艺进行进一步深入的研究和分析,以期提出更有效的解决方案,实现薄壁零件加工质量的提升和成本的降低。
2. 正文2.1 薄壁零件的定义薄壁零件是指在加工过程中其壁厚相对较薄的零件。
薄壁零件通常用于各种工业领域,包括航空航天、汽车制造、电子设备等。
由于其壁厚较薄,薄壁零件在机械加工过程中常常面临一些特殊的挑战和难点。
薄壁零件的定义可以从几个方面来说明。
薄壁零件的壁厚通常小于其最小尺寸的10%,这就要求在加工过程中需要特别注意避免壁厚过薄导致变形或破裂的问题。
薄壁零件的结构通常比较复杂,需要高精度的加工,以保证零件的质量和性能。
薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析什么是薄壁零件?薄壁零件是指壁厚相对较薄,外形也相对复杂,常见于汽车、电子、机械等领域的零件,如汽车车门、电子设备外壳等。
薄壁零件加工的难点薄壁零件加工的难点主要在于以下两个方面:1.零件壁厚薄:由于零件壁厚相对较薄,所以容易产生振动和翘曲等变形现象,而且易热变形,导致加工难度增加。
2.外形复杂:薄壁零件外形通常比较复杂,加工难度也大。
薄壁零件加工的常用方法单点加工法单点加工法是指通过刀具对薄壁零件进行加工的方法。
该方法适用于对平面零件和简单形状的薄壁零件进行加工。
常见的单点加工法包括:1.铣削:用铣刀对薄壁零件进行加工,可实现高速、高效、高精度的加工。
2.钻孔:用钻头对薄壁零件进行加工,也可加工一定程度的凸凹面。
3.车削:用刀具对薄壁零件进行加工,通常适用于对旋转体进行加工。
轧制加工法轧制加工法是指通过轧制的方式对薄壁零件进行加工。
该方法适用于对较大尺寸的薄壁零件进行加工,如汽车车身等。
常见的轧制加工法包括:1.深冲模:利用模具对薄壁零件进行加工,可加工多曲面、异形和复杂形状的零件。
2.拉伸模:利用模具对薄壁零件进行加工,适合加工尺寸大、平面面积较小的零件。
其他加工法除了上述两种方法外,还有一些其他的薄壁零件加工方法,如:1.冷却加工法:通过冷却液对薄壁零件进行加工,可减少热变形和振动。
2.激光加工法:通过激光对薄壁零件进行加工,可实现高精度、高效率的加工。
结论薄壁零件的加工难度比较大,但是通过一些常用的加工方法,如单点加工法和轧制加工法,以及一些其他的加工方法,如冷却加工法和激光加工法,就可以有效地解决加工难题,对薄壁零件进行高精度、高效率的加工。
谈薄壁零件数控车工加工工艺.docx

谈薄壁零件数控车工加工工艺1薄壁零件的性质薄壁零件在生产过程中对生产工艺的精度有着极其高的要求,当下数控技术在工业生产过程中已经得到了广泛应用,数控技术的应用还不够成熟,在制作工艺精度要求较高的零件过程中,数控加工工艺仍然不够完善。
薄壁零件壁厚较薄、容易变形,为了更好地保证薄壁零件的生产质量,要进一步完善数控加工技术。
2薄壁零件加工工艺的影响因素2.1热因素由于薄壁零件质量轻,因此薄壁零件在制作过程中很容易变形。
相对于传统的零件,薄壁零件在制造过程中要尤其重视对热量的控制,薄壁零件在切割和打磨过程中需要进行加热。
这就要求把握好加热的精确度,这样才能确保薄壁零件不会变形。
就我国目前数控车工加工的技术,薄壁零件在生产过程中,很难避免接触到过多的热量而出现变形,这也影响了薄壁零件的生产质量。
2.2力因素由于薄壁零件壁厚较薄,薄壁零件在生产过程中所用的材料也比较轻薄,因此薄壁零件的原材料很容易受到外力的影响。
在薄壁零件的加工过程中,一旦受到外力的影响,就会出现变形,使得薄壁零件出现小的瑕疵,严重者将直接导致薄壁零件无法使用。
在薄壁零件制作过程中,零件装夹也会对薄壁零件产生一定的影响。
倘若零件装夹对薄壁零件的作用力过大,超过薄壁零件承受范围,也会导致薄壁零件出现变形。
2.3振动因素薄壁零件在数控加工过程中,需要进行切削加工,在薄壁零件的切削过程中,会出现震动。
薄壁零件对数控车工的加工精确度要求较高,若零件出现微弱的差距,将造成极大的损失。
在切削薄壁零件过程中,倘若加工工艺不精确,会导致零件被切偏。
这样一来,不仅会导致原材料的浪费,也大大降低了薄壁零件的生产效率。
2.4其他因素薄壁零件在生产加工过程中,加工技术较为严格,倘若工作人员在薄壁零件的生产过程中没有遵循正确的制作流程,会导致薄壁零件出现瑕疵。
工作人员在薄壁零件加工过程中,很容易忽视对切割材料碎屑的清理。
3薄壁零件的数控加工工艺的完善策略3.1提高薄壁零件的加工精度薄壁零件在加工过程中对精确度要求较高,这要求充分保证薄壁零件在制作过程中的精确度。
薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指壁厚相对较薄的零件,通常壁厚小于3毫米。
由于薄壁零件的特殊性,其机械加工工艺需要特殊的处理方法,以下是对薄壁零件机械加工工艺的分析。
1. 加工前的准备:在进行薄壁零件的机械加工前,需要进行充分的准备工作。
要对薄壁零件的尺寸、形状和加工要求进行详细的了解和测量,确定加工方案。
要选择合适的材料以满足薄壁零件的强度和刚度要求。
还需要检查加工设备和刀具的状况,确保其正常工作。
2. 机床选择:在选择加工薄壁零件的机床时,需要考虑其承载能力和减振性能。
薄壁零件的加工对机床的稳定性有很高的要求,因此应选择具有较高刚性和较低振动的机床。
常用的机床有龙门铣床、数控机床等。
3. 夹紧方式:薄壁零件的夹紧方式也需要特别注意。
由于薄壁零件的刚度较低,夹紧力过大会导致变形或破坏,因此需要采用一些特殊的夹紧方法。
可以使用气体夹紧或真空吸盘夹紧来避免变形。
4. 工艺参数的选择:对于薄壁零件的机械加工,工艺参数的选择非常重要。
在确定切削速度、进给速度和切削深度时,需要综合考虑零件的材料、壁厚和加工要求等因素。
一般来说,应采用较小的切削深度和进给速度,以减小振动和变形的可能性。
5. 刀具选择:在加工薄壁零件时,刀具的选择也十分重要。
应优先选择刚度较高、刀片角度合适的刀具,以确保刀具与工件的接触面积尽可能小。
要定期对刀具进行检查和磨削,保持其良好的切削性能。
6. 切削方式:在薄壁零件的机械加工中,切削方式也需要特殊考虑。
应尽量采用切削速度高、进给速度小的方法,以减小振动和变形的风险。
避免使用过大切削力的方法,以减少对零件的变形影响。
7. 加工顺序:薄壁零件的加工顺序也需要合理安排。
一般来说,应从外表面向内部进行加工,逐渐减小夹持力度,以减小变形的可能性。
要合理选择加工路径,避免过长的刀具移动距离,减少振动和变形。
薄壁零件的机械加工工艺需要特别的谨慎和认真。
在加工前的准备、机床选择、夹紧方式、工艺参数的选择、刀具选择、切削方式和加工顺序等方面都需要特殊的考虑。
薄壁零件的车削技巧

薄壁零件的车削技巧薄壁零件是指壁厚相对较薄的零件,在车削加工中,由于其壁厚薄,容易产生变形和振动,所以需要特殊的车削技巧来保证加工质量。
本文将介绍薄壁零件的车削技巧。
首先,保持机床的稳定性。
薄壁零件在车削时容易产生振动,而振动会影响加工精度和表面质量。
为了保持机床的稳定性,首先要确保机床具备足够的刚性和抗震性,同时要确保机床的紧固件处于良好的状态,以免因紧固件松动而导致振动。
此外,还可以通过合理的刀具和夹具选择来减少振动,例如选择合适的刀具长度和刚度,使用刀柄的支撑力等。
其次,选择合适的切削参数。
在车削薄壁零件时,要选择合适的切削参数,以保证刀具的切削力不会过大。
一般来说,应尽可能采用小的进给量和切削深度,降低切削力。
另外,应注意保持刀具的尖角和刃磨状况良好,以减小刀具的切削力。
第三,选择合适的刀具和夹具。
在车削薄壁零件时,要选择合适的刀具和夹具,以提高加工的稳定性和精度。
刀具要选择具有较高刚度和切削性能的硬质合金刀具,以减小切削力和振动。
夹具要选择刚性好的夹具,以确保零件的稳定夹持,同时要避免夹持过紧而导致变形。
第四,采用适当的刀具路径。
在车削薄壁零件时,为了避免产生振动和变形,应采用适当的刀具路径。
一般来说,应优先选择切削路径中的外切削和镗削,避免内切削和过切削,这样可以减小刀具对零件的负荷,减少振动和变形。
第五,采用适当的刀具进给方式。
在车削薄壁零件时,应采用适当的刀具进给方式,以减小切削力和振动。
一般来说,可以采用铣削进给,即刀具的进给方向与工件的旋转方向相同,这样可以减小刀具对零件的冲击力和振动。
最后,进行切削加工时要进行监控和调整。
在车削薄壁零件时,要进行监控和调整,以确保加工质量。
可以通过加工中的监测手段,例如振动传感器、力传感器等,对加工过程中的切削力、振动等进行监测,及时调整切削参数和刀具路径,以减小振动和变形,保证加工质量。
总之,薄壁零件的车削技巧包括保持机床稳定性、选择合适的切削参数、刀具和夹具、采用适当的刀具路径和进给方式,以及进行监控和调整等。
薄壁零件的车削

薄壁零件的车削提要:薄壁零件的车削加工是加工中的一个难点,如何减少零件变形是保证薄壁零件质量的关键。
本文从工件装夹、切削用量、刀具的几何角度和切削液的选择四个方面对零件变形的影响,作一些探讨和分析。
关键词:薄壁零件、变形、装夹、切削用量前言薄壁零件的加工是车削中比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中容易变形,使零件的形位误差增大,不宜保证零件的加工质量。
薄壁零件也因为重量轻,节约材料,结构紧凑等特点,在机械加工运用比较广泛。
有时为了一个薄壁零件的加工质量,会影响到机器的正常运转。
为此,我结合多年的工作经验将薄壁零件的装夹、刀具的合理选用、切削用量的选择、切削液的选择等等,进行一次深入的分析和探讨。
为以后更好地加工薄壁零件,保证质量,提供一些依据。
1.由工件装夹引起的变形图1所示为套类薄壁零件。
它的内外圆直径差很小,强度当然就弱,如果在卡盘上夹的不紧,在车削时有可能使零件松动而报废。
夹紧力的大小,我采取粗车时夹紧些,精车时夹松些来控制零件的变形。
我们从图2中可以看到零件是在三爪自定心卡盘上装夹,零件只受到三个爪的夹紧力,夹紧力不均衡,从而使零件变形。
如果我们将零件上的每一点的夹紧力都保持均衡,换句话说,就是增大零件的装夹接触面,从而减少每一点的夹紧力。
零件的变形就会好的多,如图3所示。
也就是在加工薄壁零件时,工艺上所采用的开缝套筒或扇形软卡爪。
根据物理学中的压强公式:P=F/S可以知道,压力一定,受力面积越大,压强就越小。
从以上的理论分析中,可以看到,增大装夹接触面,减少每一点的夹紧力,这种方法是可行的。
在装夹零件的过程中,要受到力的影响。
零件形状不同,结构不同,受力的作用点不同,都可能对零件的形状精度产生影响。
从图2的装夹中,我们可以清楚得看到,零件是利用径向夹紧的。
因此加工后零件的变形部位也在直径方向。
如果我们转移夹紧力的作用点,由径向夹紧改为轴向夹紧(图4),我们来分析以下这种方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄壁类零件的车削工艺分析段立波一.引言薄壁类零件指的是零件壁厚与它的径向、轴向尺寸相比较, 相差悬殊, 一般为几十倍甚至上百倍的金属材料的零件,具有节省材料、结构简单等特点。
薄壁类零件已广泛地应用于各类石油机械部件。
但是薄壁类零件的车削加工是比较棘手的,具体的原因是因为薄壁类零件自身刚性差、强度弱,在车削加工中极容易变形,很难保证零件的加工质量。
如何提高薄壁类零件的加工精度是机械加工行业关心的话题。
二.薄壁类零件车削过程中常出现的问题、原因及解决办法我们在车削加工过程中,经常会碰到一些薄壁零件的加工。
如轴套薄壁件(图1),环类薄壁件(图2),盘类薄壁件(图3)。
本文详细分析了薄壁类零件的加工特点、防止变形的装夹方法、车刀材料、切削参数的选择及车刀几何角度。
进行了大量的实验,为以后更好地加工薄壁类零件,保证加工质量,提供了理论依据。
图1轴套薄壁件图2环类薄壁件图3盘类薄壁件1.薄壁类零件的加工特点1.1因零件壁薄,在使用通用夹具装夹时,在夹压力的作用下极易产生变形,而夹紧力不够零件又容易松动,从而影响零件的尺寸精度和形状精度。
如图4所示,当采用三爪卡盘夹紧零件时,在夹紧力的作用下,零件会微微变成三角形,车削后得到的是一个圆柱体。
但松开卡爪,取下零件后,由于零件弹性,又恢复成弧形三角形。
这时若用千分尺测量时,各个方向直径相同,但零件已变形不是圆柱体了,这种变形现象我们称之为等直径变形。
图4三爪卡盘装夹1.2因零件较薄,加工时的切削发热会引起零件变形,从而使零件尺寸难以控制。
对于膨胀系数较大的金属薄壁零件,如在一次安装中连续完成半精车和精车,由切削热引起零件的热变形,会对其尺寸精度产生极大影响,有时甚至会使零件卡死在芯轴类的夹具上。
1.3薄壁类零件加工内孔中,一般采用单刃镗刀加工,此时,当零件较长时,如果刀具参数及切削用量处理不当,将造成排屑困难,影响加工质量,损伤刀具。
1.4由于切削力和夹紧力的影响,零件会产生变形或振动,尺寸精度和表面粗糙度不易控制。
如刀具角度不正确或磨损后,导致切削力增大,工件表面会产生颤纹影响表面质量。
1.5薄壁类零件刚性差,不能采用较大的切削用量,生产效率低。
因此选择合适的装夹方法,加工工艺,合理的切削用量,刀具材料及角度,减小零件振动,充分冷却和检测都是保证加工薄壁类零件的关键因素。
2.薄壁类零件的装夹方法2.1通用软爪定位装夹:选择合理的夹紧力作用点,使夹紧力作用在零件刚性较好的部位,适用于形状和尺寸公差要求不严的零件加工。
优点:装卸方便长度可定位,可以承受较大切削力。
缺点:零件定位点较集中,零件加紧后变形较严重。
2.2扇形软爪装夹:采用扇形软爪的三爪卡盘(图5),按与加工零件的装夹面动配合的要求,加工出卡爪的工作面,增大与零件的接触面积。
图5扇形软爪优点:增大夹紧力的作用面积,使零件支持面增大,夹紧力均匀分布在工作面上,可加大切削用量,不易产生变形。
缺点:扇形软爪不易加工。
2.3刚性芯轴装夹图6 刚性芯轴2.3.1采用锥体芯轴装夹,将零件直接套在锥体芯轴加工。
2.3.2采用圆柱芯轴装夹,将零件装在芯轴上采用轴线压紧。
减小零件径向变形。
优点:装卸零件方便,能保证较高的同心度,技术要求。
缺点:零件内孔被芯轴划伤。
2.4磁力吸盘装夹:通过磁力将零件吸附在吸盘上,零件只承受轴向力,而径向不受力。
优点:可一次加工完零件内外圆。
缺点:零件找正比较麻烦,应用范围小,不适合加工有色金属类零件。
2.5采用轴向夹紧夹具:车薄壁零件时,不使用径向夹紧,而选用轴向夹紧方法。
零件靠轴向定位套的端面实现轴向夹紧,由于夹紧力沿零件轴向分布,而零件轴向刚度大,不会产生夹紧变形。
图7轴向夹紧夹具优点:零件变形小,加工质量好。
缺点:工艺系统复杂,夹具适用范围小。
2.6增加工艺肋:有些薄壁零件可以在其装夹部位特制几根工艺肋,以增强此处刚性,使夹紧力作用在工艺肋上,以减少零件的变形,加工完毕后,再去掉工艺肋。
图8工艺肋优点:增加了零件刚性,减小装夹变形。
缺点:不适合大批量加工。
2.7采用可涨式芯轴装夹:如图9所示,装夹时,工件以弹性心轴的外圆作为定位基准,通过拧紧或松开夹紧螺钉实现弹性心轴的轴向移动。
由于刚性心轴与弹性心轴间的配合为锥面配合,因此,弹性心轴沿轴向移动的同时将会产生径向的胀开或收缩,从而实现对工件的径向夹紧或松开图9优点:非常适合内孔尺寸一致性较差的成批零件加工,制造成本低。
缺点:不适合加工精度要求较高的零件。
3.薄壁类零件车削加工工艺的选择3.1 先粗后精:薄壁零件的车削一般应把粗车和精车加工分开进行, 粗车后进行热处理。
有些零件形状复杂、精度要求高, 需在粗车和精车之间增加半精车工序, 使粗加工产生的变形逐渐得到修正, 几何形状和尺寸精度逐步得到提高。
当使用同一基准、一次装卡完成工件半精车与精车加工时, 可在精车前松开工件, 并把它稍微转动一下, 使它恢复到自由状态, 再把工件夹紧进行精车, 同样能达到修正变形的目的。
同时使用夹具时应减少工件夹紧与车削时的变形, 以此保证薄壁件质量。
3.2先内后外:因为孔较外圆难加工,易产生变形。
先加工内孔,然后加工外圆,可采用芯轴装夹,以内孔定位轴向夹紧,防止零件加工中产生影响加工精度。
3.3一次完成在一次装夹中完成所需要的加工的所以尺寸,主要应用于毛坯料是棒料或带有工艺台的薄壁类零件加工。
薄壁零件的加工实例:图 10薄壁套筒薄壁套筒( 如图 10 所示) , 小批量生产, 材料为2A12( 硬铝) , 外圆 <44 0 - 0.02 mm, 与孔径 <40+ 0. 020mm 的同轴度要求为 0. 02 mm, 两端面平行度为 0. 02mm。
如果此零件一次加工完成, 变形很大, 所以分步骤如下:1)棒料装夹于三爪定心卡盘中夹紧, 车一端面用<38 mm 钻头钻孔, 粗车内孔成 <39 mm, 粗车外圆成 <45. 5 0 -0. 03 mm, 切断长 60. 5 mm, 外径批差为0. 05mm( 定位用) 。
2)粗车完成后, 转热处理时效工序, 之后装夹于软三定心卡盘中, 车一端面总长 60. 15 mm; 然后做一工装, 镗一内孔长 50 mm, 内孔的端面车平,内孔与零件的外圆配合。
注意不能拧紧, 否则零件内孔加工完卸下来之后内, 孔会变形, 这主要是因为零件外圆不圆造成的3)工装(如图 11 所示) 的外圆挑一外螺纹 M50@2 mm, 长50 mm,内孔车成<45. 6 mm, 长 50 mm, 再做一压帽,内螺纹为M50@ 2 mm, 长50 mm。
压帽外径为<60 mm,滚花, 总长53 mm, 压帽的内径为<44.5 mm。
图11工装图4.薄壁类零件车床加工时的切削用量选择我们都知道在切削用量中对切削力影响最大的是背吃刀量(Ap),对切削热影响最大的是切削速度(Vc)和刀具锋利状况。
因此车削薄壁套零件应减小背吃刀量和适当降低切削速度,同时应适当增大进给量。
在精加工时,应采用大的切削速度,小的进给量(F),当机床精度降低时,要适当的降低切削速度。
薄壁类零件切削用量参数(精车)5. 薄壁类零件加工车刀几何角度的选择车刀几何角度中对切削力影响最大的是主偏角(Kr)、前角(γ0)和刃倾角(λs)。
增大前角使车刀锋利,排屑顺利,减小切屑与前刀面之间的摩擦,减小切削力和切削热。
5.1外圆精车刀Kr=90°~93°,Kr′=15°,α0=14°~16°,α01=15°,γ0适当增大。
5.2内孔精车刀Kr=60°,Kr′=30°,γ0=35°,α0=14°~16°,α01=6°~8°,λs=5~6°。
6.减小薄壁类零件车削时产生振动措施。
6.1调整车床主轴、拖板、床鞍、刀架和滑动部位间隙,使转动和滑动部分处于最佳状态。
6.2使用吸振材料,用软塑料,橡胶带,橡胶片、软橡胶管,棉纱等材料填充或包裹零件。
当工件旋转时,在离心力的作用下橡胶片将紧贴孔壁,能阻碍减振并防止振动传播车削时减小振动和消除噪音的作用。
6.3填充低熔点的物质(如石蜡)就低熔点的物质,填入薄壁类零件与芯轴内孔只觉得缝隙,两端用堵头封上,不但减小振动,还可以减小变形。
6.4楔形芯轴填充法,应用铝制楔形芯轴,使楔形芯轴与零件内孔紧密配合达到减振的目的。
7.充分冷却在加工薄壁类零件时,应使薄壁类零件得到冷却,根据零件材料的不同选用合理的切削液来降低切削温度,减小零件受热而产生变形,以提高加工精度。
三.结语本文阐沭了薄壁零件的加工特点,加工难点分析,从装夹方法、车刀材料、切削参数的选择,车刀几何角度,减少和防止加工变形的方法,以及车削薄壁件参数的选择,以实例分析了车削工艺的设计。
论文的写作对于我来说是第一次,这次让我从中学到了很多以前没有学到东西,总结了以前的一些经验,这个过程给我以后的生产实践中又很大的帮助。
由于时间和本人水平有限,文中错漏之处在所难免,敬请各位师长、同行多多批评指正!四.参考文献1.作者:张洪波汪延君孙宝先篇名:《解析薄壁零件的加工工艺》2012年第5期《赤子》2.作者:朱敏红徐云王祥鑫篇名:《薄壁套的加工工艺与夹具设计》 2012年第4期《机械制造与自动化》。