2.4等比数列的概念与通项公式
2.4等比数列(基础)

2.4等比数列(基础)要点一、等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(0q ≠),即:1(0)n na q q a +=≠. 要点诠释:①由于等比数列每一项都可能作分母,故每一项均不为0,因此q 可不能是0; ②“从第二项起,每一项与它的前一项的比等于同一个常数q ”,这里的项具有任意性和有序性,常数是同一个;③隐含条件:任一项0n a ≠且0q ≠;“0n a ≠”是数列{}n a 成等比数列的必要非充分条件;④常数列都是等差数列,但不一定是等比数列;不为0的常数列是公比为1的等比数列; ⑤证明一个数列为等比数列,其依据*1(0)n na q n N q a +=∈≠,.利用这种形式来判定. 要点二、等比中项如果三个数a 、G 、b 成等比数列,那么称数G 为a 与b 的等比中项.其中G =。
要点诠释:①只有当a 与b 同号即0ab >时,a 与b 才有等比中项,且a 与b 有两个互为相反数的等比中项. 当a 与b 异号或有一个为零即0ab ≤时,a 与b 没有等比中项。
②任意两个实数a 与b 都有等差中项,且当a 与b 确定时,等差中项2a bc +=唯一. 但任意两个实数a 与b 不一定有等比中项,且当a 与b 有等比中项时,等比中项不唯一。
③当0ab >时,a 、G 、b 成等比数列⇔G ba G=2 ④2G ab =是a 、G 、b 成等比数列的必要不充分条件。
要点三、等比数列的通项公式首相为1a ,公比为q 的等比数列{}n a 的通项公式为:11n n a a q -=⋅(*1N 0n a q ∈⋅≠,)推导过程:(1)归纳法: 根据等比数列的定义1nn a q a -=可得1(2)n n a a q n -=≥: ∴21211a a q a q -==;23132111()a a q a q q a q a q -====; 234143111()a a q a q q a q a q -====;……111(2)n n n a a q a q n --===≥L当n=1时,上式也成立∴归纳得出:111(*n n a a q n N a q -=⋅∈⋅≠,(2)累乘法: 根据等比数列的定义1nn a q a -=可得: 21a q a =,32a q a =,43aq a =,…,1n n a q a -=, 把以上1n -个等式的左边与右边分别相乘(累乘),并化简得:11n na q a -=,即11(2)n n a a q n -=≥又1a 也符合上式∴111(*0)n n a a q n N a q -=⋅∈⋅≠,.要点诠释:①通项公式由首项1a 和公比q 完全确定,首项和公比确定,该等比数列就唯一确定了。
高中数学第二章数列2.4等比数列第1课时等比数列的概念与通项公式同步aa高一数学

(2)a1=qan-n 1=5642-51=5,故 a1=5. (3)a3=a1·q2,即 8=2q2, 所以 q2=4,所以 q=±2. 当 q=2 时,an=a1qn-1=2·2n-1=2n, 当 q=-2 时,an=a1qn-1=2(-2)n-1=(-1)n-12n, 所以数列{an}的公比为 2 或-2, 对应的通项公式分别为 an=2n 或 an=(-1)n-12n.
所以 a1=q-42q4=12-42124=96. 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7=a1q4·a1q6=a21q10=962·1210=9. 所以 G=±3. 即 a5,a7 的等比中项为±3.
归纳升华 等比中项的三点认识
1.当 a,b 同号时,a,b 的等比中项有两个;当 a, b 异号时,没有等比中项.
2.在一个等比数列中,从第二项起,每一项(有穷数 列的末项除外)都是它的前一项与后一项的等比中项.
3.“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),要特别注意限定的条件,否则是不等价的.可 以用它来判断或证明三个数成等比数列,同时还要注意到 “a,G,b 成等比数列”与“G=± ab”是不等价的.
又 an=1,所以 3212n-1=1, 即 26-n=20,所以 n=6. 法二 因为 a3+a6=q(a2+a5), 所以 q=12. 由 a1q+a1q4=18,知 a1=32. 由 an=a1qn-1=1,知 n=6.
归纳升华 1.在已知 a1 和 q 的前提下,利用公式 an=a1qn-1 可 求出等比数列中任意一项. 2.在通项公式中知道 a1、q、n、an 四个量中的任意 三个,可求得另一个量.
[变式训练] (1)已知-1,x,-4 成等比数列,则 x
等比数列的概念及通项公式

3、已知三个数成等比数列,它们的和为14,它们的 积为64,求这三个数。 2,4,8 或8,4,2
4、正项等比数列{an},公比q=2,且a1a2a3…a18=230, 则a3a6a9…a18=__________ 。 216
例题分析
例:(2006全国卷I)已知{an}为等比数 列,公比q>1,a2+a4=10, a1.a5=16 求等 比 数列 {an}的通项公式
练
习
Байду номын сангаас
1、已知数列{an}为等比数列,且an>0,a2a4+ 2a3a5+a4a6=25,那么a3+a5的值等于( A ) A.5 B.10 C.15 D.20
log3 (a1a2 a3 a11 )
3
1
3
2
3
3
3
11
11
log a log 3
11 3 6 11 3
∵a1a11 = a62=9且an>0
∴a6=3
形成性训练
1、在等比数列{an}中,已知a2 = 5,a4 = 10,则公比 q的值为________ 2、 2与8的等比中项为G,则G的值为_______ 3、在等比数列{an}中,an>0, a2a4+2a3a5+a4a6=36, 那么a3+a5=_________ 4、在等比数列中a7=6,a10=9,那么a4=_________.
等比数列中有类似性质吗???
想一想
探究一
在等比数列{an}中,a2.a6=a3.a5是否成立?
第二章2.4第1课时等比数列的概念及通项公式

2. 4等比数列第1课时等比数列的概念及通项公式1•通过实例,理解等比数列的概念并学会简单应用. 2•掌握等比中项的概念并会应用. 3•掌握等比数列的通项公式并了解其推导过程.预冃案*自建迸习j 研读• M •営试新知提炼1.等比数列的定义(1) 从第2项起条件(2) 每一项与它的前一项的比等于同一个常数结论这个数列就叫做等比数列有关概念这个常数叫做等比数列的公比,通常用字母q(q M 0)表示2•等比数列的通项公式门―1a n = aq 1.3. 等比中项若a、G、b成等比数列,称G为a, b的等比中项且G= ± ab.■自我尝试‘1•判断(正确的打“V”,错误的打“x”)(1) 数列1,—1, 1, - 1,…是等比数列.()(2) 若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列. ()⑶等比数列的首项不能为零,但公比可以为零. ()(4) 常数列一定为等比数列.()(5) 任何两个数都有等比中项. ()答案:(1)2 (2) x⑶x ⑷x ⑸x2.等比数列{a n} 中, a1 = 2, q = 3,贝U a n 等于()A. 6B. 3x 2n—13. 4与9的等比中项为()A . 6B . - 6=1,C . 2 x 3n —1 D . 6n答案:CA . 6B . - 6=1,C . i6D . 36 答案:C 11 14. 等比数列一10-而,一而0,…的公比为 -------------------- . 1 答案:105. ______________________________________________ 在等比数列{a n }中,已知a n = 4n 3,贝V a 1 = _____________________________________________ , q = ________1答案:1 4探究案讲练互普探究点一等比数列的通项公式H 在等比数列{a n }中, (1) a 4 = 2, a 7= 8,求 a n .(2) a 2 + a 5= 18, a 3+ a 6= 9, a n = 1,求 n. a 4= ag 3,[解](1)因为6 a 7= a 1q , a 1q 3= 2,① 所以a 1q 6= 8,②②3, 由①,得43= 4,从而q = - 4,而a 1q 3= 2,n — 1又a n = 1,所以32 x 即 26-n = 20,故 n = 6.方祛归纳于是a 1 = q 3=M2' 2n -5所以 a n = a 1q n -1 = 2 3a 2 + a 5= a 〔q + a 1q 4 = 18, ①⑵因为25② 1由①,得q =P 从而a 1 = 32.等比数列通项公式的求法a i 和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.关于 a i 和q的求法通常有以下两种方法:⑴根据已知条件,建立关于a i , q 的方程组,求出a i , q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出 q 后,再求a i ,最后求a n ,这种方法带有一定的技巧性,能简化运算.”i.在等比数列{a n }中,(1) 已知 a i = 3, q = — 2,求 a 6; (2) 已知 a 3= 20, a 6 = i60,求 a n ; …9i 2十(3) 已知 a i = 8〉a n = 3, q = 3,求 n.解:⑴由等比数列的通项公式,得a 6= 3 X (— 2)6— i = — 96.⑵设等比数列的公比为 q ,a i q 2= 20,由已知可得a i q 5= i60,q= 2,解得a i = 5.所以 a n = a i q n — i = 5X 2n — i . ⑶由 a n = a i q n —i ,3,得 n = 4.探究点二等比数列的判定■- 在数列{a n }中,若a n >0,且a n +i = 2a n + 3(n € N *).证明:数列{a n + 3}是等比数列.[证明]法一:因为a n >0, 所以 a n + 3>0.i 9得 3=8 Xn — i又因为a n+1= 2a n+ 3,a n +1 + 3 2a n+ 3+ 3 2 (a n + 3)所以= = =2.a n + 3 a n+ 3 a n + 3所以数列{ a n+ 3}是首项为a i + 3,公比为2的等比数列. 法二:因为a n>0, 所以a n+ 3>0.又因为a n+1= 2a n+ 3,所以a n+ 2= 4a n+ 9.所以(a n+ 2+ 3)(a n + 3) = (4a n+ 12)(a n+ 3)=(2a n+ 6)2=(a n+1+ 3)2.即a n+ 3, a n +1 + 3, a n+2+ 3 成等比数列,所以数列{a n+ 3}是等比数列.Rm貝*本例的条件不变,若a1 = 2,求数列{a n}的通项公式.解:由数列{a n + 3}是等比数列,当a1= 2 时,a1 + 3 = 5,所以数列{a n+ 3}是首项为5,公比q= 2的等比数列,所以a n+ 3 = 5 x 2n-1,即a n= 5 x —1—3.方注归期等比数列的三种判定方法(1)定义法探究点三等比中项及其应用方祛归抽已知等比数列中的相邻三项 a n — 1 , a n , a n + 1,则a n 是a n — 1与a n + 1的等比中项, a n -1 a n +1,运用等比中项解决问题,会大大减少运算过程,同时等比中项常起到桥梁作用, 要认真感悟和领会."!" '||[3.(1)如果一1, a , b , c,— 9 成等比数列,那么()a n + 1—=q(q 为常数且q z 0)等价于{a n }是等比数列. a n (2)等比中项法a n +1 = a n a n + 2(n € N *且a n 丸)等价于{a n }是等比数列. (3)通项公式法a n = a 1q n —1(a 1^0且q z 0)等价于{a n }是等比数列.1”2.已知数列{a n }是首项为2,公差为一1的等差数列,令b n = 1,求证数列{b n }是等比数列,并求其通项公式.解:由已知得,a n = 2+ (n — 1)x (— 1) = 3— n ,1 3-( n + 1)b n + 1 2 故 = ~b n 1 3—n23 — ( n + 1) — 3+ n所以数列{ b n }是等比数列. 因为b 1= 114,所以 b n =X 2n —1 = 2n ― 3[解]由题意知 3 b 2, b ,243, c 这五个数成等比数列,求 32a ,b ,c 的值.23b2= — 2243 X—亦 3ab = — 2 27 27所以b = ±8•当b =—时,2 10243 3 初/曰bc =—五=—2 ,解得 c =3 6 =2 ,2,解得2 a =3 ;27 2同理,当 b =— "8■时,a =— 3, 3 c =—2综上所述,a , b , c 的值分别为2 27 3, 8 ,2 — 27 3, —8,A . b = 3, ac = 9 B. b =— 3, ac = 9 C. b = 3, ac =— 9 D. b =— 3, ac =— 9⑵已知等比数列{a n }的前三项依次为 a — 1, a +1, a + 4,贝U a n = _________解析:(1)因为 b 2= (— 1)x (— 9) = 9, 且b 与首项—1同号, 所以b =— 3,且a , c 必同号. 所以 ac = b 2= 9.⑵由已知可得(a + 1)2= (a — 1)(a + 4), 解得 a = 5,所以 a 1= 4, a 2= 6,所以a n = 4 x 31. 等比数列定义的再认识(1)每一项与它的前一项的比是同一个常数, 是具有任意性的,但须注意是从“第2项”⑵从“第2项”起,每一项与它的前一项的比是同一个常数,强调的是“同一个”.(3)对于公比q ,要注意它是每一项与它前一项的比,次序不能颠倒,q 不为零.⑷各项不为零的常数列既是等差数列,又是等比数列. 2. 等比数列的通项公式(1)已知首项a 1和公比q ,可以确定一个等比数列.⑵在公式a n = a 1q n 1中有a n , a 1, q , n 四个量,已知其中任意三个量,可以求得第四个量.⑶等比数列{a n }的通项公式的推导所以a 2a 12'答案:(1)B3 n — 1(2)4 x 3起.法一:(迭代法) 根据等比数列的定义,有2n — 2 n —1a n = a n -i q = a n — 2q 2=^= a 2q 2= a i q 1 法二:(累乘法) 根据等比数列的定义,可以得到把以上n -1个等式左右两边分别相乘,得 a 2 a 3 a 4 a i a 2 a 3即 an = q n —1, a i 所以 a n = a 1q n -1.3. 等比中项的理解(1) 当a , b 同号时,a , b 的等比中项有两个;当 a , b 异号时,没有等比中项.(2) 在一个等比数列中, 从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后 一项的等比中项.(3) “a , G , b 成等比数列”等价于“ G 2= ab ”(a , b 均不为0),可以用它来判断或证明 三数是否成等比数列.当堂检测 ♦1•数列{a n }的通项公式是a n = 5x 3n ,则此数列是( )A •公比为3的等比数列B •公比为5的等比数列C .首项为5的等比数列D .公差为3的等差数列 解析:选A.因为a n = 5x 3n , 所以 a n -1= 5x 3n -1(n 》2), 所以当n > 2时,—匹=3.a n - 1由等比数列的定义知,{a n }是公比为3的等比数列. 2.在首项a 1= 1,公比q = 2的等比数列{a n }中,当a n = 64时,序号n 等于()a 2 ar q , a 3 a 4 ar q ,aT q ,a na n -1q ,a n a n -1n -1A. 4B. 5C. 6解析:选 D.因为a n= a i q—1,所以 1 x 2n-1= 64,即1= 26,得 n— 1 = 6,解得n = 7.3. (2015高考广东卷)若三个正数a, b, c成等比数列,其中a = 5+ 2丁6, c= 5—2.6,则b= ________ .解析:因为a, b, c成等比数列,所以b2= a c= (5 + 2 '6) (5 — 2 .:6)= 1.又b>0,所以b= 1.答案:14•求下列各等比数列的通项公式:(1) a1 = —2, a3= —8;(2) a1 = 5,且2a n+1 = —3a n.解:(1)因为a3= a1q2,所以q2= 4,所以q= ±2.当q = 2 时,a n= (—2) x 2n—1= —2n;当q = — 2 时,a n= ( —2)x (—2)n—1= (—2)n.a n+1 3(2)因为q= "a^ =—2,又a1 = 5,3 n—1 所以a n= 5 x — 2.应用案巩固提升丄[A 基础达标]1. 若{a n}为等比数列,且2a4= a6 —a5,则公比是()A. 0 B . 1 或一2D . —1或一2解析:选 C.由已知得2a1q3= a1q5—ag4,得2= q2—q,所以q=—1或q = 2.2. 在等比数列{a n}中,a n>0,且a i+ a2= 1, a3+ a4= 9,贝U a4+ a5 的值为()A. 16B. 27C. 36D. 81解析:选 B.由a3+ a4= q2(a1 + a2)= 9,所以q2= 9,又a n>0,所以q= 3.a4+ a5= q(a3 +a4)= 3X 9 = 27.3. 彳,是等比数列4,2, 4, 2 2,…的()A .第10项B .第11项C.第12项 D .第13项解析:选B.由题意可知q=痣二乎,令¥= 4返x普,所以土= 32=扌210,故n— 1 = 10,即n= 11.4. 在数列{a n}中,a1= 1,点(a n, a n+1)在直线y= 2x上,贝U a4的值为()A . 7B . 8C. 9D. 16解析:选B.因为点(a n, a n+1)在直线y= 2x上,所以a n+1= 2a n.因为a1= 1丰0,所以a n丸,所以{a n}是首项为1,公比为2的等比数列,所以a4= 1 x 23= 8.5. 一个数分别加上20, 50, 100后得到的三个数成等比数列,其公比为()5 4A・3 %3 1CQ DQ解析:选A.设这个数为x,则(50+ x)2= (20 + x) (100 + x).解得x= 25,所以这三个数为45, 75, 125,75 5公比q为45= 36.右一1, 2, a, b成等比数列,则a + b=解析:根据题意有=身=b,解得a=—4, b= 8,—1 2 a所以a+ b= (-4) + 8 = 4.答案:47•下面各数列一定是等比数列的是(填序号).①一1, —2, —4, —8;② 1 , 2, 3, 4;1111③x, x, x, x;④a,評評尹解析:根据等比数列的定义,①④是等比数列,②不是等比数列,③中x可能为0,故③不一定是等比数列.答案:①④1 r,&在等比数列{a n}中,若a4= 27, q= —3,贝卩a6= ,a n =1解析:因为a4= a1q3= a1 —3 = 27,所以a1= —36,所以a6= a1q5= —36x=36x 3 = 3,n- 11a n=—36X—1= (—1)n37—n答案:3 (—1)n37 —n16 a3=—4,且公比为正数.9.已知数列{a n}为等比数列,首项a1=—9,(1)写出此等比数列的通项公式a n;⑵—20丁是否为{a n}中的项?若是,是第几项?若不是,请说明理由.解:(1)设公比为q(q>0),由a3= a i q2,得一4 =—£q2,3解得q=3,16 3 n—1所以a n=—— X 2 .n —1人16、/ 3 1 81⑵令—-X 2 = —204= —7,3 n—1819 3 6得2 =乎X 16= 3,解得n = 7.1故—204是{a n}中的第7项.10.已知数列{a n}的前n项和为S n,对一切正整数n,点(n, S n)都在函数f(x)= 2x+ 2—4的图象上.求证:数列{a n}是等比数列.证明:由题意得S n = 2n+ 2—4,4, n=1,S1, n = 1, 所以a n=S n—S n—1, n》22n+ 1, n》2.又a i= 4 也符合a n= zZln G N*, n》2),所以a n= 2n+ 1(n € N ),a n +1 2n+ 2因为百=产=2,所以数列{a n}是等比数列.[B 能力提升]1. 已知数列{a n},下列选项正确的是()A .若a2= 4n, n € N*,则{a n}为等比数列B. 若a n a n+2= a n+1, n € N*,则{a n}为等比数列C. 若a m a n= 2m n, m, n €N*,则{a n}为等比数列D .若a n a n+ 3= a n+ 1a n+ 2, n€ N*,则{ a n}为等比数列解析:选C•由a2= 4n知|a n| = 2n,则数列{a n}不一定是等比数列;对于 B , D选项,满足条件的数列中可以存在为零的项,所以数列{a n}不一定是等比数列;对于C选项,由a m a na n + 1=2m+n知,a m a n+ 1= 2m+ n+ S两式相除得石 =2(n € N ),故数列{a n}是等比数列.故选C.12. ___________________________________________________________________ 已知等比数列{a n}中,a i= 1,且a i, 2玄3, 2a2成等比数列,则a n = _____________________ 解析:设等比数列{a n}的公比为q,贝U a2= q, a3 = q2.1因为a i, §a3, 2a2成等比数列,1所以4q4= 2q,解得q= 2,所以an= 2n—I答案:2n_13. 已知数列{a n}的前n项和S n= 2a n + 1.(1)求证:{a n}是等比数列,并求出其通项公式;⑵设b n= a n+ 1+ 2a n,求证:数列{b n}是等比数列.解:(1)因为S= 2a n+ 1,所以S n+1= 2a n+1+ 1,S n + 1 —S n = a n+ 1 = (2a n + 1 + 1) —(2a n+ 1) = 2a n+ 1 —2a n,所以a n+ 1 = 2a n①,由已知及①式可知a n M O.a n+1所以由丁 = 2,知{a n}是等比数列.a n由a1= S1= 2a1 + 1,得a1=—1,所以a n = —2n—1.⑵证明:由(1)知,a n= —2n—1,所以b n= a n+1+ 2a n=—2n—2X 2n—1=—2X 2n=—2n +1= —4X 2n —1.所以数列{b n}是等比数列.4. (选做题)已知等比数列{a n}中,a1 = 1,公比为q,且b n= a n+1—a n.(1)判断数列{b n}是否为等比数列?说明理由;⑵求数列{b n}的通项公式.解:⑴因为等比数列{a n}中,a i= 1, 公比为q,所以a n = 1 x q n—1= q n一1, 若q = 1 ,贝y a n=1 , b n = a n+ 1 —a n= 0,所以数列{b n}是各项均为0的常数列,不是等比数列.若q丰1,由于b n+ 1a n+2—a n+1 q n+1—q nb n - =a n+1—a n = q n—q n-1q n(q —1)=q,q n —1(q —1)所以数列{ b n}是首项为b1= a2—a1= q —1,公比为q的等比数列.⑵由(1)可知,当q = 1时,b n= 0;当q 工 1 时,b n= (q —1)q n—1。
2.4等比数列的概念及通项公式(高中数学人教A版必修五)

(1)an am (n m)d
a1 0, q 0
通项 公式
an a1q
n 1
(1)an amqnm
则 am· n=as· r . a a
(3) an2=an-1· n+1 . a (等比中项)
主要 性质
(2)若m+n=s+r (m,n,s,r∈N*) (2)若m+n=s+r (m,n,s,r∈N*)
其中,a1与q均不为0。由于当n=1时上面等式两边均为a1, 即等式也成立,说明上面公式当n∈N*时都成立,因此它 就是等比数列{an}的通项公式。
(1)等比数列的通项公式
通项公式一:
an a1 q
n1
(a1 , q 0)
an a1q n 1、不要错误地写成
2、每一项都可以用a1和q表示,等比数列 由首项和公比确定
1 变式训练 已知数列{an}的前 n 项和为 Sn,Sn= 3 (an-1)(n∈N*). (1)求 a1,a2; (2)求证:数列{an}是等比数列. 1 解:(1)由 S1= (a1-1), 3 1 1 得 a1= (a1-1),∴a1=- . 3 2 1 又 S2= (a2-1), 3 1 1 即 a1+a2= (a2-1),得 a2= . 3 4
an am qn m
(1)等比数列的通项公式 如果数列 an }是等比数列,首项为 1 , 公比为q, { a
①.不完全归纳法 a2=a1q a3=a2q=a1q2 a4=a3q=a1q3 … an=a1qn1
②.叠乘法(累乘法) a2/a1=q a3/a2=q a4/a3=q … an/an-1=q 这n-1个式子相乘得an/a1=qn-1 所以 an=a1qn-1
等比数列的概念与通项公式

次取 n=1,2,……迭代得出通项公式.
第二章
2.4
第1课时
成才之路 ·数学 ·人教A版 · 必修5
3.等比数列的判断主要用定义式,有时也用其变式 a2 an+1(n≥2). n=an-1· 4.等比数列的增减性.
a1>0 q>1 a1<0 或 0<q<1 a1<0 时{an}为递增数列; q>1 a1>0 或 0<q<1
时
{an}为递减数列;q=1 时为常数列;q<0 时为摆动数列.
第二章
2.4
第1课时
成才之路 ·数学 ·人教A版 · 必修5
5.①在等差数列中,等差中项唯一,在等比数列中,等 比中项是互为相反数的两个值,即 G=± ab,这一点同学们务 必要记熟,再就是任意两个实数都有一个等差中项存在,但任 意两个实数间未必存在等比中项,如 0 和任一实数,或一正数 一负数间都不存在等比中项.只有同号的两个数才存在等比中 项. ②在等比数列中,an 是 an-k 和 an+k 的等比中项(n>k).即 a2 an+k,特别地 a2 an+1(n≥2). n=an-k· n=an-1·
① ②
第二章
2.4
第1课时
成才之路 ·数学 ·人教A版 · 必修5
2 由②得 a1= ,代入①得 2q2-5q+2=0, q 1 ∴q=2,或 q=2. 当 q=2 时,a1=1,an=2n-1; 1 当 q=2是,a1=4,an=23-n.
第二章
2.4
第1课时
成才之路 ·数学 ·人教A版 · 必修5
第二章
2.4
第1课时
成才之路 ·数学 ·人教A版 · 必修5
高中数学第2章数列2.4等比数列第1课时等比数列的概念与通项公式aa高二数学

12/8/2021
第二十二页,共三十九页。
[解析] (1)证明:∵an+1=2an+1,∴an+1+1=2(an+1),即 bn+1=2bn, ∵b1=a1+1=2≠0.∴bn≠0,∴bbn+n 1=2,∴{bn}是等比数列. (2)由(1)知{bn}是首项 b1=2,公比为 2 的等比数列, ∴bn=2×2n-1=2n,即 an+1=2n,∴an=2n-1.
12/8/2021
第五页,共三十九页。
1.等比数列的定义 如 果 一 个 数 列 从第_2_项_______ 起 , 每 一 项 与 它 的 前 一 项 的 比 都 等 于
同_一__个__常__数__(ch_á_ng_sh_ù)_,那么这个数列叫做等比数列,这个常数(chángshù)叫做等比数列的
12/8/2021
第九页,共三十九页。
2.如果-1,a,b,c,-9成等比数列,那么(nàme)a-bc2=7 ________. [解析] 由题意知b2=(-1)×(-9)=9,∴b=±3. 又b<0,∴b=-3,而b2=ac.∴ac=9.∴abc=-27. 3.在等比数列{an}中,a2 020=8a2 017,则公比q的值为2_____. [解析] a2 020=a2 017q3,∴q3=8,q=2. 4.已知等比数列{an}中,a1=-2,a3=-8,则an=__-__2_n_或__(-__2_)n______. [解析] 设公比为 q,则 a3=a1q2,∴q2=--82=4,∴q=±2. ∴an=(-2)×2n-1=-2n 或 an=(-2)×(-2)n-1=(-2)n.
12/8/2021
第二十八页,共三十九页。
∵1-q3=(1-q)(1+q+q2),∴由②除以①,得 q(1-q)=14. ∴q=12,∴a1=12-42124=96.∴a6=a1q5=96×(12)5=3. ∵a5、a7 的等比中项为 a6,∴a5、a7 的等比中项为 3. [误区警示] 错误的原因在于认为 a5,a7 的等比中项是 a6,忽略了同号两数 的等比中项有两个且互为相反数.
2.4.1 等比数列的概念及通项公式

栏目 导引
第二章
数
列
新知初探·思维启动
1.等比数列的定义
第2项 起,每一项与它的 如果一个数列从________ 同一常数 ,那么这个数 前一项的比都等于__________ 列叫做等比数列,这个常数叫做等比数列的 公比 __________ ,公比通常用字母q(q≠0)表示.
栏目 导引
第二章
数
列
想一想
1.常数列一定为等比数列吗? 提示:不一定,当常数列为非零数列时,此 数列为等比数列,否则不是. 做一做
1.试写出两个等比数列.
答案:1,2,4,8,„ 1,-1,1,-1„
栏目 导引
第二章
数
列
2.等比数列的递推公式与通项公式
已知等比数列{an}的首项为a1,公比为 q(q≠0):
递推公式
n- 1
(2)由(1)知 an+1=(a1+1)q =2· 2n 1=2n, 10 分
-
∴an=2n-1.
12 分
栏目 导引
第二章
数
列
【名师点评】 证明一个数列是等比数列的常 用方法: an+ 1 an (1) 定 义 法 : = q( 常 数 ) 或 = q( 常 an an- 1 数)(n≥2)⇔{an}为等比数列. (2)等比中项法:a2 an+2 且(an≠0, n+ 1= an· n∈N+)⇔{an}为等比数列. (3)通项法: an=a1qn 1(其中 a1、 q 为非零常数,
【答案】
D
栏目 导引
第二章
数
列
G 【名师点评】 由等比中项的定义可知: = a b ⇒G2=ab⇒G=± ab.这表明: 只有同号的两 G 项才有等比中项, 并且这两项的等比中项有两 个,它们互为相反数.异号的两数没有等比中 G b 项.反之,若 G =ab,则 = ,则 a,G,b a G
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1, 20,202 , 203, …
思考:
① 1 , 2, 4 , 8, …
1 1 1 1 „ ② 1, , , , , 2 4 8 16
③ 1, 20,202 , 203, …
上面的数列①、②、③有什么共同特点? 2 对于数列①,从 第2项起,每一项与前一项的比都等于_______; 1 从 第2项起,每一项与前一 对于数列②,从 第2项起,每一项与前一项的比都等于 _______; 2 项的比都等于同一个常数 . 20 对于数列③,从 第2项起,每一项与前一项的比都等于_______;
an 的首项为a1,公比为q, 若等比数列
an=a1
n-1 q
(a1,q≠0 )
例1: 在等比数列 an 中,
(1)a4 27, q 3, 求a7 ; (2)若a2 18, a4 8, 求a1与q;
(3)a5 4, a7 6, 求a9 ;
(4)若a1 a2 a3 7, a1 a2 a3 8, 求an
7,a1a2 a3 8,求an
an ,若an 0, a2a4 例4:已知等比数列
2a3 a5 a4a6 25,求a3 a5
二、等比中项
如果在a与b中间插入一个数G,使a, G,b成等比数列,那么G叫做a与b的等比 中项。
即G ab
2
G ab
例如3与9的等比中项为: 3 3 5与80的等比中项为: 20 2与8的等比中项为: 不存在
思考:等比数列的通项公式是什么?
三、等比数列的通项公式:
则其通项公式为:
思 考 : 我 们 知 道 , 等数 差列 的 通 项 公 式 可 看 作 一 次 函 数 或 常函 数数 的 解 析 式 , 那 么 等 比 数 列 的 通 项式 公与 什 么 函 数 有 联系呢?
例如:若数列{an}的首项是a1=3,公比q=2,则 用通项公式表示是: n1
an 3 2
3、当q<0时,等比数列是摆动数列。
a n1 1、定义法: q (q为非零常数) an a n 或 q , ( n 2) a n 1
2、等比中项法:
五、等比数列的判定方法
a
2 n1
an an 2 , an 是等比数列
(其中an , an1 , an 2 0)
后 2、注意等比数列求公比的顺序性: 前
3、等比数列的每一项都不为0,公比不为0
思考:数列a, a, a, a, …(a∈R)是否为等比数 列?如果是,a必须满足什么条件? (1) a=0时, 它只是等差数列。
(2) a≠0时, 它既是等差数列又是等比数列。
思考:观察如下的两个数之间,插入一个什 么数后三个数就会成为一个等比数列: ( 1) 1 , ±3 , 9 (3)-12, ±6,-3 (2)-1, ±2 ,-4 (4)1, ±1 ,1
课题引入:
庄子 曰:“一尺之棰,日取其半,万世不竭.”
意思:“一尺长的木 棒,每日取其一半, 永远也取不完” 。
如果将“一尺之棰”视为一份, 则每日剩下的部分依次为:
1 1 1 1 1, , , , , „ 2 4 8 16
一种计算机病毒可以查找计算机中的地 址本,通过邮件进行传播。如果把病毒制造 者发送病毒称为第一轮,邮件接收者发送 病毒称为第二轮,依此类推。假设每一轮 每一台计算机都感染20台计算机,那么在 不重复的情况下,这种病毒每一轮感染的 计算机数构成的数列是:
即等比 数列的通项 公式 与指数 型复合函数 有 联系
四、等比数列与指数型复合函数的关系
因为an a1q 所以
n 1
a1 n q a q 8
n
7
·
·
6 1、当q>0且q≠1时,等比数列可 5 以看作是一种特殊的指数型复合 4 函数; 3
2
2、当q=1时,等比数列是常数列; 1
0
·
1
·
2 3 4 n
一.等比数列的定义:
一般地,如果一个数列从第二项起每一项与它 的前一项的比等于同一个常数,那么这个数列就 叫做等比数列. 这个常数叫做等比数列的公比, 公比通常用字母q表示(q≠0) 。
即
an1 q an
(q为非零常数)
an q , ( n 2) 或 a n 1
注意:1、“等比”是等比数列的整体特征;
3、通项公式法:
n
a n cq a n 是等比数列
(其中c , q为非零常数)
已知数列a n 满足a1 1, a n1 2a n 1.
Hale Waihona Puke 例2.(2)求数列a n 的通项公式。
an 1是等比数列; (1)求证:数列
an ,若a1 a2 a3 例3:已知等比数列