数列的概念及通项公式

合集下载

数列的通项公式与部分和公式

数列的通项公式与部分和公式

数列的通项公式与部分和公式数列的通项公式是指能够表示数列中第n个数与n的关系的公式,而部分和公式则是指数列的前n项和能够表示成与n的关系的公式。

本文将分别介绍数列的通项公式和部分和公式,以及应用举例。

一、数列的通项公式数列是指按照一定规律排列的一组数,通项公式是能够表示数列中第n个数与n的关系的公式。

1. 等差数列的通项公式等差数列是指数列中相邻两项之差都相等的数列。

设等差数列的首项为a₁,公差为d,则该等差数列的通项公式为:an = a₁ + (n-1)d其中,an表示数列的第n个数。

例如,对于等差数列1,4,7,10,13,……,其首项a₁为1,公差d为3,根据通项公式可得:an = 1 + (n-1)3 = 3n - 2因此,该等差数列的通项公式为3n - 2。

2. 等比数列的通项公式等比数列是指数列中相邻两项之比都相等的数列。

设等比数列的首项为a₁,公比为q,则该等比数列的通项公式为:an = a₁ * q^(n-1)其中,an表示数列的第n个数。

例如,对于等比数列2,6,18,54,……,其首项a₁为2,公比q 为3,根据通项公式可得:an = 2 * 3^(n-1)因此,该等比数列的通项公式为2 * 3^(n-1)。

二、数列的部分和公式数列的部分和是指数列前n个数的和,部分和公式是能够表示数列前n项和与n的关系的公式。

1. 等差数列的部分和公式对于等差数列,前n项和(部分和)Sn可以表示为:Sn = (a₁ + an) * n / 2其中,a₁表示数列的首项,an表示数列的第n个数。

以等差数列1,4,7,10,13,……为例,根据通项公式3n - 2,部分和公式可表示为:Sn = (1 + (3n - 2)) * n / 2 = (3n + 1) * n / 22. 等比数列的部分和公式对于等比数列,前n项和(部分和)Sn可以表示为:Sn = a₁ * (1 - q^n) / (1 - q)其中,a₁表示数列的首项,q表示数列的公比。

数列的概念和计算

数列的概念和计算

数列的概念和计算数列是数学中常见的概念,它由一系列有序的数字组成。

数列的概念与计算对于数学的学习和应用都具有重要的意义。

本文将介绍数列的定义、常见类型和计算方法。

一、数列的概念数列是由一系列按照一定规律排列的数字组成的序列。

数列中的每个数字称为这个数列的项,用a₁,a₂,a₃,……表示。

数列中的每个项之间有着特定的关系,这种关系可以用公式、递推公式、递归式等形式来表示。

二、常见类型的数列1. 等差数列等差数列是指数列中的每一项与前一项之间的差等于同一个常数的数列。

设数列为{a₁,a₂,a₃,……},公差为d,那么有 a₂ - a₁ =a₃ - a₂ = d。

等差数列的通项公式为 an = a₁ + (n-1)d,其中n表示项数。

2. 等比数列等比数列是指数列中的每一项与前一项的比等于同一个常数的数列。

设数列为{a₁,a₂,a₃,……},公比为r,那么有 a₂/a₁ = a₃/a₂ = r。

等比数列的通项公式为 an = a₁ * r^(n-1),其中n表示项数。

3. 斐波那契数列斐波那契数列是指数列中的每一项都是前两项的和的数列。

斐波那契数列的前两项通常为1,1或0,1,根据定义可以得到后续项。

斐波那契数列的递推公式为 an = a(n-1) + a(n-2),其中n表示项数。

三、数列的计算1. 求和求和是数列计算中经常遇到的问题之一。

在数列求和时,常用的方法有以下几种:- 等差数列求和公式:Sn = n/2 * (a₁ + an),其中Sn表示前n个项的和。

- 等比数列求和公式:Sn = a₁ * (1 - r^n) / (1 - r),其中Sn表示前n 个项的和。

- 斐波那契数列求和:Sn = a(n+2) - 1,其中Sn表示前n个项的和。

2. 项数计算在一些问题中,我们需要求解数列的项数。

常用的计算方法如下:- 等差数列的项数:n = (an - a₁) / d + 1,其中n表示项数。

数列的通项公式及其应用

数列的通项公式及其应用

数列的通项公式及其应用数列是数学中常见的概念,它由一系列有规律的数字组成。

数列可以在各种数学问题中起到重要的作用,而数列的通项公式是描述数列中每一项与项数之间的关系的公式。

在本文中,我将介绍数列的通项公式的概念和应用,并通过实例来帮助读者更好地理解。

一、数列的基本概念数列是由一系列数字按照一定的顺序排列而成。

我们可以将数列记作{a₁, a₂, a₃, ...},其中a₁,a₂,a₃等表示数列中的每一项。

数列的项数可以通过小写字母n表示,即数列中的第n项记作aₙ。

数列的前n项和可以用Sn表示,即Sₙ = a₁ + a₂ + a₃ + ... + aₙ。

数列的通项公式是用来表示数列中每一项与项数之间关系的公式。

通项公式的形式因数列的类型而各异,接下来我将详细介绍一些常见的数列及其通项公式。

二、等差数列的通项公式及应用等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列的通项公式为an=a₁+(n-1)d,其中a₁为首项,d为公差。

应用举例:假设一个等差数列的首项为2,公差为3,求该数列的第10项。

按照通项公式an=a₁+(n-1)d,代入a₁=2,d=3,n=10,可得:a₁₀ = 2 + (10-1) * 3= 2 + 9 * 3= 2 + 27= 29因此,该等差数列的第10项为29。

三、等比数列的通项公式及应用等比数列是指数列中每一项与前一项之比都相等的数列。

等比数列的通项公式为an=a₁*r^(n-1),其中a₁为首项,r为公比。

应用举例:假设一个等比数列的首项为3,公比为2,求该数列的第8项。

按照通项公式an=a₁*r^(n-1),代入a₁=3,r=2,n=8,可得:a₈ = 3 * 2^(8-1)= 3 * 2^7= 3 * 128= 384因此,该等比数列的第8项为384。

四、斐波那契数列的通项公式及应用斐波那契数列是一种特殊的数列,它的每一项都等于前两项的和。

斐波那契数列的通项公式为an=an-1+an-2,其中a₁=1,a₂=1。

数列的概念

数列的概念

数列的概念(1) 定义:按一定次序排列的一列数,数列中的每一个数叫做这个数列的项,第作a n(2) 通项公式:如果数列「aj 的第n 项与项数 n 之间的函数关系,可以用一个公式a n = f(n)来表示,那么就把这个公式叫这个数列的通项公式。

注意:①数列的通项公式实际上是一种定义域特殊的函数解析式,即② 并非所有的数列都能写出他的通项公式③ 如果一个是数列有通项公式,在形式上可以不止一个。

④ 数列中的项必须是数(3) 数列不是集合,用符号「a n [表示数列,只不过是“借用”集合的符号,他们之间有本质的区别:集合中的元素是互异的,而数列中的项可以是相同的。

集合中的元素是无序的,而数列中的项必须按一定顺序排列。

(4) 数列的分类按照项数是有限还是无限来分 :有穷数列,无穷数列. ⑴关键看省略号来判断数列是否有界按照项与项之间的大小关系来分:递增数列与递减数列统称为单调数列 .⑵观察数列通项的特点,通项公式是单调函数的就是递增数列 ;通项中有_1n的一般为摆动数列;公差d=0的为常数列按照任何一项的绝对值是否都不大于某一正数来分:有界数列、无界数列.⑶判断通项的值域,值域的绝对值小于等于某正数时成为有界函数 ,否则叫做无界函数练习:1、判断下列数列的类型⑴ 1,2,3,4,5; 2,4,6,8,10,,; ⑵ a =3; 1,-1,1,-1,1,, ; 6,6,6,6,,n 项记a n = f (n)。

1a. =3 --⑶ n;a n = n2 3n _12由下列各组元素能构成数列吗?如果能构成数列是有穷数列,还是无穷数列?并说明理由。

(1)-3,-1,1,x,5,7, y,11 ( 2)无理数;(3)正有理数3下列叙述正确的是( )B 、 同一个数列在数列中可能重复出现C 、 数列的通项公式是定义域为正整数集 N *的函数D 、 数列的通项公式是唯一的。

4、 已知数列1,订3,』5,、- 7,…j2n -1,…则3•:f 5是它的() A 、第22项 B 、第23项 C 、第24项D 、第28项5、 判断下列说法正确的有 ______________ .①二的不足近似值: 3 , 3.1,3.14,3.141,……没有通项公式。

数列的极限与通项公式

数列的极限与通项公式

数列的极限与通项公式数列是数学中的一个重要概念,经常在各个领域中被使用。

数列的极限与通项公式是数列研究中的关键内容,本文将介绍数列的基本概念,探讨数列极限及其性质,最后讲解数列的通项公式及应用。

一、数列的基本概念数列是由一系列按照特定规律排列的数字组成的序列。

一般用字母表示数列的一般项,常用形式为{a_n}或(a_1, a_2, a_3, ...)。

其中,a_n表示数列的第n项,n表示项的顺序。

二、数列的极限数列的极限是指当数列中的项数趋于无穷大时,数列中的项的极限值。

记作lim(a_n)或a_n→∞。

1. 数列的极限存在若存在一个实数L,使得对于任意给定的正数ε,都存在正整数N,当n>N时,有|a_n - L| < ε,则称L为数列{a_n}的极限,并记作lim(a_n) = L。

2. 数列的极限性质(1)极限的唯一性:如果数列{a_n}有极限,则极限是唯一的。

(2)夹逼准则:若数列{a_n},{b_n},{c_n}满足a_n ≤ b_n ≤ c_n,并且lim(a_n) = lim(c_n) = L,则lim(b_n) = L。

(3)有界性:若数列{a_n}有极限,则数列是有界的。

(4)收敛数列与发散数列:若数列{a_n}有极限,则称之为收敛数列;反之,称为发散数列。

三、数列的通项公式数列的通项公式是表示数列第n项的一般形式。

通过通项公式,我们可以根据项的顺序n计算数列中的特定项的值。

1. 等差数列的通项公式等差数列是指数列中任意两个相邻项之差都相等的数列。

若等差数列的首项为a_1,公差为d,则它的通项公式为a_n = a_1 + (n-1)d。

2. 等比数列的通项公式等比数列是指数列中任意两个相邻项之比都相等的数列。

若等比数列的首项为a_1,公比为q,则它的通项公式为a_n = a_1 * q^(n-1)。

3. 斐波那契数列的通项公式斐波那契数列是指首项和第二项都为1,从第三项开始,每一项都是前两项之和的数列。

数列的通项公式和应用

数列的通项公式和应用

数列的通项公式和应用数列是数学中常见的概念,它由一系列按照一定规律排列的数字组成。

在数列中,每个数字被称为数列的项,而数列中的规律可以通过通项公式来表示和描述。

本文将介绍数列的通项公式及其应用,并探讨其中的数学理论和实际应用。

一、数列的定义和基本概念数列是一组按照特定规律排列的数,通常以 a₁, a₂, a₃,..., aₙ 的形式表示。

其中 a₁, a₂, a₃,..., aₙ 分别表示数列的第一项、第二项、第三项、...、第 n 项。

数列中的规律可以通过第 n 项与前面项之间的关系来确定。

二、等差数列的通项公式及应用等差数列是指数列中连续两个项之间都有相同的差值。

设等差数列的第一项为 a₁,公差为 d,则它的通项公式可以表示为 an = a₁ + (n-1)d,其中 an 表示数列的第 n 项。

等差数列的通项公式在实际中有广泛的应用。

例如,在财务分析中,等差数列可以用来计算投资的回报率。

此外,在物理学和工程学中,等差数列可以用来描述速度、加速度等连续变化的量。

三、等比数列的通项公式及应用等比数列是指数列中连续两个项之间的比值都相同的数列。

设等比数列的第一项为 a₁,公比为 q,则它的通项公式可以表示为 an = a₁ *q^(n-1),其中 an 表示数列的第 n 项。

等比数列的通项公式在实际中也有广泛的应用。

例如,在复利计算中,等比数列可以用来计算贷款或投资的本息总额。

此外,在生物学和经济学中,等比数列可以用来描述生长速度、复利增长等连续变化的现象。

四、斐波那契数列及其应用斐波那契数列是一种特殊的数列,它的前两项都为 1,而后面的每一项都是其前两项的和。

斐波那契数列的通项公式可以表示为 an = an-1 + an-2,其中 a₁ = 1,a₂ = 1。

斐波那契数列在实际中有广泛的应用。

例如,在自然界中,许多植物的生长规律和动物的繁殖规律都可以用斐波那契数列来描述。

此外,在计算机科学和金融学中,斐波那契数列也被广泛应用于算法设计和金融模型的建立。

初中数学知识归纳数列的概念与常见数列的计算

初中数学知识归纳数列的概念与常见数列的计算

初中数学知识归纳数列的概念与常见数列的计算数列是数学中非常重要的概念之一,它在初中数学中占有重要地位。

本文将对数列的概念进行归纳,并介绍一些常见数列的计算方法。

一、数列的概念数列是由一列有序的数按照一定规律排列而成的。

数列中的每一个数称为该数列的项,项的位置称为项号。

常用的表示数列的方法有两种:1. 通项公式:一般形式为an,表示第n项的值。

例如:an = 2n表示一个等差数列,首项为2,公差为2;2. 递推公式:一般形式为an+1 = an + d,表示第n项与第n+1项之间的关系。

例如:an+1 = an + 2表示一个等差数列,公差为2。

二、等差数列等差数列是最常见的数列之一,其中相邻两项之差都相等。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

例如,考虑等差数列1, 3, 5, 7, 9,其中a1 = 1,d = 2。

根据通项公式可以计算出该数列的第n项的值。

三、等比数列等比数列是相邻两项之比都相等的数列。

等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。

例如,考虑等比数列1, 2, 4, 8, 16,其中a1 = 1,r = 2。

根据通项公式可以计算出该数列的第n项的值。

四、斐波那契数列斐波那契数列是数列中的一种特殊形式,每一项都是前两项的和。

即F(n) = F(n-1) + F(n-2),其中F(1) = F(2) = 1。

斐波那契数列的前几项为1,1,2,3,5,8,13,21...五、算术数列与等差数列的计算算术数列的计算主要涉及到等差数列的各种性质,如首项、公差、项数等。

可以利用下列公式进行计算:1. 首项a1 = an - (n-1)d;2. 项数n = (an - a1)/d + 1;3. 求和Sn = (a1 + an) * n / 2。

例如,对于等差数列1, 3, 5, 7, 9,可以计算出该数列的首项a1 = 1,公差d = 2,项数n = 5,和Sn = 25。

数列概念知识点总结

数列概念知识点总结

数列概念知识点总结一、数列的基本概念1.数列的定义数列指的是按照一定的次序依次排列的一列数。

数列可以是有限的,也可以是无限的。

有限的数列通常用下标表示,如$a_1,a_2,a_3,\cdots,a_n$;无限的数列通常用$n$表示,如$a_1,a_2,a_3,\cdots,a_n,\cdots$。

2.数列的通项公式数列中的每一项都有特定的位置和数值,数列中的每一项都可以用某种规律或公式表示出来,这种表示每一项的公式被称作数列的通项公式。

通常用$a_n$或$u_n$表示数列的第$n$项,通项公式可以写为$a_n=f(n)$或$u_n=f(n)$。

3.数列的前n项和数列的前n项和指的是数列中从第1项到第n项的和,通常用$S_n$表示,即$S_n=a_1+a_2+\cdots+a_n$。

4.数列的递推关系数列中的每一项通常都可以通过前一项或前几项的关系来确定,这种关系被称为数列的递推关系。

数列的递推关系可以用公式表示出来,比如$a_{n+1}=a_n+2$。

5.等差数列等差数列是一种常见的数列,指的是一个数列中相邻两项的差都相等。

等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$d$为公差。

6.等比数列等比数列也是一种常见的数列,指的是一个数列中相邻两项的比都相等。

等比数列的通项公式为$a_n=a_1\cdot q^{n-1}$,其中$q$为公比。

二、常见数列1.等差数列等差数列是指一个数列中相邻两项的差都相等的数列,其中差值称为公差。

等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$为首项,$d$为公差。

2.等比数列等比数列是指一个数列中相邻两项的比都相等的数列,其中比值称为公比。

等比数列的通项公式为$a_n=a_1\cdot q^{n-1}$,其中$a_1$为首项,$q$为公比。

3.斐波那契数列斐波那契数列是指一个数列中每一项的值都是前两项的和,数列的通项公式为$a_n=a_{n-1}+a_{n-2}$,其中$a_1=1,a_2=1$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的概念及通项公式
[教学设计思想]
本课是数列的第一课,目标让学生很好理解数列的概念。

对数列概念的理解,对学生来说是没有困难的。

因此,通过对简单概念的学习,让学生体会通过自己的学习,理解数列的概念,从中培养自主学习能力。

另外,通过对概念的学习,规范数列的写法,让学生能用数学符合语言来准确描述数列
[教学目标]
1、通过创设实际情景,产生数列的概念,让学生在实际生活中感悟出数列的概念
2、通过对教材的阅读,掌握学习的技巧和方法,养成自主学习能力
3、通过例题对概念的剖析,了解数列通项的基本概念,函数概念和图像概念
4、通过对概念的学习,规范数列的写法,使得学生能用数学符合语言来准确描述数列 教学重点难点
用数学语言描述出数列的通项公式
[教学策略与方法]
1、利用多媒体,通过实际问题的引入数列的学习。

2、通过阅读教材学习数学的概念。

3、学会用符合语言表示数列的通项。

[教学过程]
【导入】
一.对半还价法
从他们的讨价还价中,我们得到一串数列: 600,300,500,350,450,380……
二.一次展览会上展出一套由宝石串联制成的工艺品,如图所示.若按照这种规律依次增
加一定数量的宝石,则第五件产品有多少颗珠宝?(1322++=n n a n )
第4件
第3件 第1件 第2件
三.兔子繁殖问题(斐波那契数列):有一天,意大利著名数学家斐波那契在外面散步,看见一个男孩在院子里养了一对可爱的白兔。

几个月后,他又去那儿散步,看见里面大大小小的兔子很多。

于是就问小孩:“你又买了一些兔子吗?”小孩回答说:“没有,小兔子都是原先一对老兔子繁殖出来的。

”经过询问之后,斐波那契知道,一对兔子每月都要生一对小兔,并且小兔子出生后两个月就可以再生一对小兔子。

这引起了他的浓厚兴趣,经过思考,他提出了一个问题:
Fibonacci数列:
1,1,2,3,5,8,13,21,…………
四.循环程序图
A=3,N=1
前5项是:3,6,30,870,756030
提问:同学们能不能再举出一两个这样的一列数,它们可能是你生活中遇到的,也可能是你最喜欢,最难忘的一列数
【过程】
1.阅读教材第二项内容(第一段到第三段)
提问1:谁能给出数列的定义
提问2:数列1,3,5,7,9与9,7,5,3,1是同一数列吗?为什么?
提问3:请同学们自我创造满足以下条件的数列
① 有穷递增(减)数列
② 无穷递增(减)数列
2.阅读第四段到第七段内容,完成以下内容
① 给出通项公式(1)12+-=n n a n (2)n
n a ⎪⎭
⎫ ⎝⎛-+=4344 要求:(1)写出前五项的值
(2)作出散点图
(3)用光滑的曲线连接散点,能否写出相应的函数解析式
② 写出下列数列的一个通项
(1)
(2)0,2,0,2,0,2
[教学反思]
这节课基本上完成了预先的教学设计,达到了预计的教学效果。

在陌生的班级上课,对学生的基本情况了解不充分,不太了解学情,能够达到这样的教学效果,我认为还是不错的一节课。

特总结以下几点:
1、完成教学任务,让学生从多方面、多角度理解数列,了解数列的概念
2、通过多个具体的实例,让学生从生活中体会数列、数列的基本表达式、数列的通项公式、递推公式。

3、基本达到教学目的,重点难点讲解到位。

4、完成二期课改的要求,让学生从最近发展区自我发现新的知识点,逐步建立新的知识框架。

以下谈几点不足之处:
1、数列的函数概念没有充分挖掘出来,始终停留在形式上,没有挖掘到本质。

需要在接下
来的课堂上继续挖掘数列的函数概念。

2、如何引入数列的函数思想,没有做好充分准备,原来打算通过数列的单调性引出函数的
思想,但是最后效果不佳,没有达到预期的效果
[专家点评]
何维安:(上海市特级教师)
1、通过课本介绍的例子,学生自己举实例,媒体介绍的实例,媒体介绍的实例,媒体介绍的实例,引入数列的概念,较为自然,对数列概念中的“序”能举例说明,帮助学生掌握概念的本质性。

能在课内几次让学生阅读讲义,既有利于对概念的理解,又有利于培养学生的数学语言能力。

通过数列“0,2,0,2,0,2”等例子,让学生说明通项公式不唯一,效果好
2、为了帮助学生形成数列概念,师生先后举11个例子,照例已水到渠成,可由学生归纳出数列的定义,可惜的是还是由老师自己下了定义。

且对通项公式表达成“数列的第几节叫通项”是不妥的,应知道数列不一定有通项公式。

因此教师没有举通项公式不存在的例子,也没有让学生举这方面的例子。

这对概念的理解是不全面的。

没有确切说明数列是特殊的函数。

因此在即将下课时布置了一个不妥的思考题:“函数可以画图,数列是否可以画图”。

a与{}n a。

{}n a与数集的区别,教师没有引导学生加以区别。

对符号
n
教师还应该注意数学语言的规范。

相关文档
最新文档