数列的概念与通项公5
人教版必修5第二章数列第一节 数列的概念及通项公式

S
n
f (n), Sn
f (an ), an
f
(Sn )
注意: n 1 是一定要单独计算;有时求出的结果可以合并,有时只能分开。
【例】①已知数列{an}的前 n 项的和 Sn 2n2 3n ,则其通项公式 an =_______________
②数列{an}的前 n 项的和满足 Sn 4an 1,则其通项公式 an =______________
的最小值为________
6、已知数列{an}的首项 a1 2, 且 (n 1)an nan1 ,则 an ________
7、数列{an}满足 a1 2, an 4an1 3(n 2) ,则此数列的通项公式 an ________
8、已知数列{an}满足 a1
1,
an1
an an
2
, bn1
(n
)( 1 an
1), b1
(1)求证:数列{ 1 1} 是等比数列。 an
(2)若数列{bn} 是递增数列,求实数 的取值范围。
9.已知数列{an}的前 n 项和 Sn=2n-3,则数列{an}的通项公式是________.
10、已知数列{an}的前 n 项和 Sn=n2+2n+1,则 an=________;
【例】①已知 a1 2, an1 an 2n ,则 an =______________ ②数列{an}中, a1 1, an an1 3n1(n 2) ,求 an 。
第1页共6页
20 :叠乘法(又称累乘法)适用 an1 an f (n) ,类似等比数列。
【例】已知数列 {an } 中,
4、特殊数列求通项公式(学完等比与等差后掌握)
(1)观察法 【例】求 1 , 4 , 9 , 16 的通项公式 2 5 10 17
等比数列的定义和通项公式

练一练
1、指出下列数列是不是等比数列,若是, 指出下列数列是不是等比数列,若是, 说明公比;若不是,说出理由. 说明公比;若不是,说出理由. (1) 1,2, 4, 16, 64, … (2)1, 9,… (2)1, 3, 9, 1, 3,9,… )1 (3) 2, -2, 2, -2, 2 (4) b, b, b, b, b, b, b, … 不是 不是 是 不一定
小结: 小结:填写下表
数 定 列 义 等 差 数 列 an+1-an=d d 叫公差 an+1=an+d an= a1+(n-1)d 等 比 数 列
an+1
an
=q
公差(比) 公差( 定义变形 通项公式
q叫公比 叫 an+1=an q an=a1qn-1
an n−m an − am 一般形式 an=am+(n-m)d d = an=amqn-m q = a n− m m
an = a1 ⋅ q 对应点坐标为(n, an )
n −1
a1 n 等比数列 an}通项公式可整理为:an == , { q q a1 x 它的图象是函数y = 的图象上的孤立点 q . q
=
课堂练习
1.已已等比数列 an }:(1) a1 能不能是零? 不能 ; 已已等比数列{ 能不能是零? 已已等比数列 : (2)公比 能不能是零? 不能;(3)公比 能不能是 ? 公比q能不能是零 公比q能不能是 能 公比 能不能是零? 公比 能不能是1? 2.用下列方法表示的数列中能确定 用下列方法表示的数列中能确定 是等比数列的是 ① ④ ⑥ . 已已a , ①已已 1=2,an=3an+1; ②1,2,4,……;× , , , ; √ ③a,a,a,……,a; × ④1,-1,1,……,(-1)n+1√ , , , , ; , , , , ; ⑤sin1,sin2,sin4,sin8,……,sin2n-1; , , , , , × ⑥2a,2a,2a,……,2a √ , 3.什么样的数列既是等差数列又是等比数列? 什么样的数列既是等差数列又是等比数列? 什么样的数列既是等差数列又是等比数列 非零的 常数列
高一数学必修5:数列(知识点梳理)

第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
5.1 数列的概念课件-2023届广东省高职高考数学第一轮复习第五章数列

一、选 择 题
1.设数列 2, 5,2 2, 11,…则 2 5是这个数列的( B )
A.第 6 项
B.第 7 项 C.第 8 项 D.第 9 项
【解析】 该数列可以看成是 2, 5, 8, 11, 14, 17, 20=2 5,
观察得,2 5为数列的第 7 项,故选 B.
2.已知数列{an}满足 an=2n2+n23,则 a5=( D )
1.已知数列{an}的通项公式是 an=3n+2,则 a5=( C )
A.14
B.15
C.17
D.34
【解析】 由题意,得 a5=3×5+2=17,故选 C.
2.已知数列{an}的前 4 项分别为:12,-13,14,-15,…则数列的通项
公式 an=( D )
1 A.n+1
B.-n+1 1
C.(-1)n·n+1 1 D.(-1)n+1·n+1 1
知识点1 知识点2 知识点3 知识点4 知识点5
4.数列的分类 按项数是否有限分为:有穷数列(项数有限)、无穷数列(项数无限). 按单调性分为:递增数列(an<an+1)、递减数列(an>an+1)、常数数 列、摆动数列. 常数数列:数列的所有项都是同一个常数.
知识点1 知识点2 知识点3 知识点4 知识点5
知识点1 知识点2 知识点3 知识点4 知识点5
3.数列的递推公式 如果已知数列的初始项(第一项或前几项),且往后的任意一项an与 前一项an-1(或前几项)(n≥2,n∈N*)的关系都可以用一个公式来表 示,那么这个公式就叫做这个数列的递推公式,如:a1=1,a2= 1,an+2=an+1+an.已知初始项和递推公式,就能确定一个数列.
例2 已知数列{an}满足 a1=3,an=-an1-1(n≥2,且 n∈N*),求 a5. 【分析】 本题考查递推公式.
等差数列的定义和通项公式

等差数列的定义和通项公式一、等差数列的定义和通项公式1、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,常用字母$d$表示。
2、等差数列的通项公式等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$为首项,$d$为公差。
注:已知等差数列$\{a_n\}$中的任意两项$a_n$,$a_m(n,m∈\mathbf{N}^*,m≠n)$,则$\begin{cases}a_n=a_1+(n-1)d,\\a_m=a_1+(m-1)d\end{cases}\Rightarrow$$a_n-a_m=$$(n-m)d\Rightarrow$$\begin{cases}d=\frac{a_n-a_m}{n-m},\\a_n=a_m+(n-m)d。
\end{cases}$即已知等差数列中的任意两项,可求得其公差,进而求得其通项公式。
3、等差中项由三个数$a$,$A$,$b$组成的等差数列可以看成最简单的等差数列。
这时,$A$叫做$a$与$b$的等差中项。
此时,$2A=a+b$,$A=\frac{a+b}{2}$。
若数列中相邻三项之间存在如下关系:$2a_n=a_{n+1}+a_{n-1}(n\geqslant2)$,则该数列是等差数列。
4、等差数列与函数的关系将等差数列的通项公式$a_n=a_1+(n-1)d$变形,整理得$a_n=nd+(a_1-d)$。
则从函数的角度来看$a_n=a_1+(n-1)d$是关于$n$的一次函数($d≠0$时)或常函数($d=0$时)。
它的图象是一条射线上的一系列横坐标为正整数的孤立的点,公差$d$是该射线所在直线的斜率。
(1)当$d>0$时,数列$\{a_n\}$是递增数列;(2)当$d=0$时,数列$\{a_n\}$是常数列;(3)当$d<0$时,数列$\{a_n\}$是递减数列;5、等差数列的性质若数列$\{a_n\}$是首项为$a_1$,公差为$d$的等差数列,则它具有以下性质(1)若$m+n=p+q(m,n,p,q∈\mathbf{N}^*)$,则$a_m+a_n=a_p+a_q$。
数列的概念

数列的概念(1) 定义:按一定次序排列的一列数,数列中的每一个数叫做这个数列的项,第作a n(2) 通项公式:如果数列「aj 的第n 项与项数 n 之间的函数关系,可以用一个公式a n = f(n)来表示,那么就把这个公式叫这个数列的通项公式。
注意:①数列的通项公式实际上是一种定义域特殊的函数解析式,即② 并非所有的数列都能写出他的通项公式③ 如果一个是数列有通项公式,在形式上可以不止一个。
④ 数列中的项必须是数(3) 数列不是集合,用符号「a n [表示数列,只不过是“借用”集合的符号,他们之间有本质的区别:集合中的元素是互异的,而数列中的项可以是相同的。
集合中的元素是无序的,而数列中的项必须按一定顺序排列。
(4) 数列的分类按照项数是有限还是无限来分 :有穷数列,无穷数列. ⑴关键看省略号来判断数列是否有界按照项与项之间的大小关系来分:递增数列与递减数列统称为单调数列 .⑵观察数列通项的特点,通项公式是单调函数的就是递增数列 ;通项中有_1n的一般为摆动数列;公差d=0的为常数列按照任何一项的绝对值是否都不大于某一正数来分:有界数列、无界数列.⑶判断通项的值域,值域的绝对值小于等于某正数时成为有界函数 ,否则叫做无界函数练习:1、判断下列数列的类型⑴ 1,2,3,4,5; 2,4,6,8,10,,; ⑵ a =3; 1,-1,1,-1,1,, ; 6,6,6,6,,n 项记a n = f (n)。
1a. =3 --⑶ n;a n = n2 3n _12由下列各组元素能构成数列吗?如果能构成数列是有穷数列,还是无穷数列?并说明理由。
(1)-3,-1,1,x,5,7, y,11 ( 2)无理数;(3)正有理数3下列叙述正确的是( )B 、 同一个数列在数列中可能重复出现C 、 数列的通项公式是定义域为正整数集 N *的函数D 、 数列的通项公式是唯一的。
4、 已知数列1,订3,』5,、- 7,…j2n -1,…则3•:f 5是它的() A 、第22项 B 、第23项 C 、第24项D 、第28项5、 判断下列说法正确的有 ______________ .①二的不足近似值: 3 , 3.1,3.14,3.141,……没有通项公式。
新版数列公式总结-新版

数列公式总结一、数列的概念与简单的表示法数列前 n 项和:对于任何一个数列,它的前 n 项和Sn 与通项 an 都有这样的关系:二、等差数列1.等差数列的概念台(1)等差中项:若三数 a 、A 、b 成等差数列(2)通项公式:an =a +(n-1)d=am+(n-m)d(3).前n 项和公式:2等差数列的.常用性质(1)若m+n=p+q(m,n,P,q ∈N+), 则am+an=ag+ag自n}的公差为d,则:(2)单调性:i) d >0 ⇔白,}为递增数列;ii) d <0 ⇔A,} 为递减数列;ii) d =0 台白,}为常数列;(3)若等差数列(白,)的前n项和S,,则S、Sa-S、Sm-S…是等差数列。
三、等比数列1.等比数列的概念(3).前n 项和公式:2.等比数列的常用性质(1)若m+n=p+q(m,n,p,q ∈N+), 则am an=ap 码(2)单调性:a₁>0,q>1 或a<0,0<q<1={an} 为递增数列;a₁>0,0<q<1 或a<0,q>1={a}为递减数列;q =1={an}为常数列;q<0={an}为摆动数列;(3)若等比数列(a,)的前n项和S₁,则S、S₂-S₁、S-S…是等比数列.四、非等差、等比数列前n项和公式的求法(1)错位相减法(2)裂项相消法常见的拆项公式有:①②(3){分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组(4)倒序相加法一、等差数列公式及其变形题型分析:1. 设S 是等差数列{an}的前n 项和,若,则A. B C. D.2. 在等差数列{an}中,若a10o3+a1004+a1os+a106=18, 则该数列的前2008项的和为( ).A. 18072B.3012C. 9036D.120483. 已知等差数列{an}中,az+ag=16,a4=1, 则a12的值是( ).A.15B. 30C. 31D. 644. 在等差数列{an}中,3(a₂+a₆)+2(a₅+ao+as)=24, 则此数列前 13项之和为()A. 26B.13C.52D. 1565. 等差数列{an}中,ai+az+ag=-24,a18+ ag+a2o=78,则此数列前20项和等于( ).A. 160B.180C.200D.220二、等比数列公式及其变形题型分析:1. 已知{an}是等比数列,a2=2, , 则a ia₂+aza₃+ …+ anan+1=( ).A.16(1-4"B. 16( 1 — 2C. D.2. 已知等比数列{an}的前10项和为32,前20项和为56,则它的前30项和为3.在等比数列{an}中,若a₁+a₂+a₃=8,a₄+as+a₆=-4, 则a₁3+a₁4+a₁5=该数列的前15项的和S15=4.等比数列a,中,a₂=9,as=243,则(a,}的前4项和为()A.81B.120C.168D.1925. √②+1与√②-1,两数的等比中项是( )A.1B.-1C.±1D.6. 已知一等比数列的前三项依次为 x,2x+2,3x+3,那么是此数列的第( ) 项A.2B. 4C. 6D. 87.在等比数列{a,}中,若a₃=3,ag=75,则a₁三、数列求和及正负项的解题思路1. 两个等差数列则2求和:(a-1)+(a²-2)+ …+(a”-n),(a≠0)3.求和:1+2x+3x²+…+nx′14.已知数列{an}的通项公式an=-2n+11,如果b₁=an(n∈N)求数列6,}的前n项和。
初中数学知识归纳数列的概念与常见数列的计算

初中数学知识归纳数列的概念与常见数列的计算数列是数学中非常重要的概念之一,它在初中数学中占有重要地位。
本文将对数列的概念进行归纳,并介绍一些常见数列的计算方法。
一、数列的概念数列是由一列有序的数按照一定规律排列而成的。
数列中的每一个数称为该数列的项,项的位置称为项号。
常用的表示数列的方法有两种:1. 通项公式:一般形式为an,表示第n项的值。
例如:an = 2n表示一个等差数列,首项为2,公差为2;2. 递推公式:一般形式为an+1 = an + d,表示第n项与第n+1项之间的关系。
例如:an+1 = an + 2表示一个等差数列,公差为2。
二、等差数列等差数列是最常见的数列之一,其中相邻两项之差都相等。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
例如,考虑等差数列1, 3, 5, 7, 9,其中a1 = 1,d = 2。
根据通项公式可以计算出该数列的第n项的值。
三、等比数列等比数列是相邻两项之比都相等的数列。
等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
例如,考虑等比数列1, 2, 4, 8, 16,其中a1 = 1,r = 2。
根据通项公式可以计算出该数列的第n项的值。
四、斐波那契数列斐波那契数列是数列中的一种特殊形式,每一项都是前两项的和。
即F(n) = F(n-1) + F(n-2),其中F(1) = F(2) = 1。
斐波那契数列的前几项为1,1,2,3,5,8,13,21...五、算术数列与等差数列的计算算术数列的计算主要涉及到等差数列的各种性质,如首项、公差、项数等。
可以利用下列公式进行计算:1. 首项a1 = an - (n-1)d;2. 项数n = (an - a1)/d + 1;3. 求和Sn = (a1 + an) * n / 2。
例如,对于等差数列1, 3, 5, 7, 9,可以计算出该数列的首项a1 = 1,公差d = 2,项数n = 5,和Sn = 25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的概念与通项公式
一、【教学目标】
1、掌握数列与通项公式的概念,了解数列的分类。
2、 掌握数列的通项的意义,并能根据通项公式写出数列的任一项。
重点:理解数列的概念;
难点:由通项公式写出前几项,会根据简单数列的前几项写出数列的通项公式。
二、【基本知识】
三、【典型例题】
例题1:已知数列的通项公式为a n =n 2
—5n +4
2、已知数列
£(n +2)}
(1)写出这个数列的第8项和第20项;
(2) 323 是不是这个数列中的项?如果是,是第几项?
3、已知数列 & h 勺通项公式为a n =n 2
—8 n +5
2 1, 4, 9, 16
(1) 18是该数列的项吗?若是,则求出是第几
项。
(2)数列中有多少项是负数?
(3) n 为何值时,a n 有最小值?并求出。
例题2、
写出下列各数列的一个
通项公式:
1
1 1 1
(1)
—
1X2
2 X
3 3X
4 4X5
(3) 0, 2, 0, 2
变题1 : 1, 3,
3
1 3
⑷
-1, _, ——
1
2 3 4
(6) 3, 33, 333, 3333 (8) 5, 0, —5, 0, 5, 0, — 5, 0,
根据数列的前几项, 1, 3
(5
)
(2) 3,5, 7, 9
变题
四、【当堂反馈】
1、写出数列的一个. 1 3 2,
48'16
(7) 11, 102, 1003, 7 15 10004
通项公式,使它的前四项分别是下列各数: (1)2, 4,6,
111111 (3) 1-
1
2
2 3
3 4
4 5
(1)写出这个数列的前 5项,并作出它的图像;
(2 )这个数列所有项中有没有最小的项?
项,最小项是第 项。
一、【教学目标】
1、 掌握数列单调性的判断方法,数列前 n 项和的求法。
2、 用函数观点看数列,提高综合运用能力。
二、【预习指导】
关系,可由s n 求出a n 。
三、【展示交流】
2、已知下列数列的通项公式,判定并证明数列的单调性。
四、【反馈练习】
2、在数列}中,日1+日2+……+a n =2n - 1,
I --
3、已知数列 £n
}中,a n = n
,其中
n - V 99
1 < n <20 (n N *,则^a j 中的最大项是第
数列概念的应用
1、设数列
的前n 项和s n =a^,且
a
4 =54,则 a 1 三
1、数列的单调性及其判定方法:
已知数列
i a n }的通项公式,要讨论这个数列的单调性,即比较
a
n 与
a n 的大小关系,可以作差比较,即证
a
n - a
n 卅>0 (或a n
- a
n 屮V 0),或作商比较, 前提条
a
件是数列各项为正,即 a n >0,则只要证 一—
a
n +
>1(或 <1),另外,由单调性可求得数列
a
冷
最大(小)项。
2、数列的前n 项和: 数列前n 项和一般用s n
表示,即s n =a 1 +a 2 + .... +a n .由于
S
n =a
1+a
2 +
+a
n 』
+a
n =s
n
」+a
n (n 昱2
),所以,可推出a
n
s
n
- s
nJ.它是数列与其前 n 项和s n 之间的
关系,它成立的前提条件是 n >2,而n=1时,
s 1=a 1,于是可得a n 荷⑴")
,利用这个
I S n —S n_1(n >2)
2 、
1、已知 s n =n +n,求 a n 。
变:若s
n =n
2
+n+1 呢?
2
n 1 +n 2
(2) a n =
J n 2
+1 -n
a
n
等差数列的概念及通项公式
一、教学目标:
(1)理解等差数列的概念,掌握等差数列的通项公式,等差中项公式;
(2)运用等差数列的通项公式解决相关问题。
重点:等差数列、等差中项的概念及等差数列通项公式的推导和应用。
难点:对等差数列“等差”特征的理解、把握和应用。
二、基本知识:
三、能力提升
若是,其首项和公差有什么特征?
例2、首项为-1的等差数列,从第10项起为正数, 求公差 d的取值范围。
四、当堂反馈:
6个实数依次构成等差数列,最小数为15,最大数为25,求其余四个数。
1
、
2、判断数列右n },a
n
=4n-3是否为等差数列。
3
、
已知a,b,c为三个互不相等的正数,且倒数成等差数列,试问a,b,c能成等差数列吗?
4、在等差数列£丿中,已知a 5=1°,a
12
=31 ,⑴ 求公差d; (2)求a
7
.
例1、在等差数列右
n
}中,是否有a n(n >2)?其逆命题是否成立?
思考:如果一个数列{an }的通项公式为a
n
=kn+b,其中k,b都是常数,那么这个数列一定是等差数列吗?
货运公司计费标准:1km内5元,以后2.5元/ km,若运送某批物资80km,需支付元运费。
3
(1)若 a
20
=40,求 d;
(2)试写出a 30关于d的关系式,并求a 30的取值范围。
设数列}与仏n }均为等差数列,且 a
1 =25, " =75, a
2
+b
2
=100,则a
37
+b
37
=
一、教学目标:
等差数列的性质
1、掌握等差数列的性质,并能熟练运用。
2、能把数列转化为等差数列,求其通项公
式。
基本知识:
能力提升:
例1、等差数列{a
n }中,a
1
=2, a 2 =3,每相邻两项间插入三个数之后和原数列仍成等差数列。
(1)原数列的第
(2)新数列的第12项是新数列的第几项?29项是原数列的第几项?
例2、在数列{a
n
}中a1=1,an + = 2an(1)求前三项;
a n +2
(2)求 a n .
2 例3、三个正方形的边 AB,BC,CD的长组成等差数列,且 AD=2 1 cm,三个正方形的面积之和为179 cm 2。
(1 )求 AB,BC,CD的长;
(2)以AB,BC,CD的长为等差数列的前三项,
以第10项为边长的正方形的面积是多少?
四、当场反馈
Rt i三角成等差数列,则最小角等于
1
、
.三边成等差数列,则三边之比为
2、
3、
4、已知数列a
1
,a2 , ,a 30 ,其中a 1 ,a 2 ,a10是首项为1,公差为1的等差数列;
a10 ,a 11 ,,a 20是公差为d的等差数列;a20 ,a 21 , ,a 30是公差为d
2的等差数列。