等差数列的概念与通项公式 (1)
等差数列的通项公式

等差数列的通项公式等差数列是数学中的一个基本概念,指的是数列中的每个数与其前一个数之差都相等。
在数学中,我们经常需要求解等差数列的通项公式,即能够表示数列任意一项的公式。
接下来,我们将介绍等差数列的定义、性质以及推导出的通项公式。
1. 等差数列的定义等差数列是指一个数列中的每个数与其前一个数之差都相等的数列。
设等差数列的首项为a_1,公差为d,则数列的通项公式可表示为:a_n = a_1 + (n-1)d其中,a_n表示数列的第n项。
2. 等差数列的性质等差数列具有以下几个重要的性质:- 公差d确定了数列的增长规律,当d>0时,数列递增;当d<0时,数列递减。
当d=0时,数列为常数数列。
- 数列的项数n与首项a_1、公差d之间存在如下关系:a_n = a_1 + (n-1)da_1 = a_n - (n-1)dd = (a_n - a_1) / (n-1)另外,等差数列的和有一个重要的性质,称为等差数列的求和公式:S_n = n/2 * (a_1 + a_n)其中,S_n表示等差数列的前n项和。
3. 推导等差数列的通项公式要推导等差数列的通项公式,我们需要利用等差数列的性质以及数学归纳法。
下面是推导的步骤:步骤一:设等差数列的首项为a_1,公差为d。
步骤二:根据等差数列的性质,可以得到第n项与第n-1项之间的关系为:a_n = a_{n-1} + d。
步骤三:利用数学归纳法,假设a_n = a_1 + (n-1)d对于任意正整数n成立。
步骤四:考虑n+1时,有a_{n+1} = a_n + d。
代入步骤三的假设,可以得到:a_{n+1} = a_1 + (n-1)d + d= a_1 + nd步骤五:通过数学归纳法,我们可以证明等差数列的通项公式成立。
因此,等差数列的通项公式为:a_n = a_1 + (n-1)d4. 应用举例利用等差数列的通项公式,我们可以快速求解等差数列的任意一项。
等差数列的概念及其通项公式

实际应用:等差数列在实际生活中也有很 多应用,如等差数列求和在实际计算中的 应用,等差数列在统计学中的应用等。
在物理中的应用
弹簧振子的周期公式:等差数列通项公式在弹簧振子的周期计算中的应用。 放射性元素的衰变:等差数列通项公式在放射性元素的衰变计算中的应用。 音阶和乐谱:等差数列通项公式在音阶和乐谱计算中的应用。 光的干涉和衍射:等差数列通项公式在光的干涉和衍射计算中的应用。
an=a1+(n-1)d, 其中d表示公差;等 比数列的通项公式
为an=a1*q^(n1),其中q表示公
比。
添加标题
性质不同:等差数 列具有对称性,即 从第一项开始每隔 两项取一项,数列 中剩下的项仍然是 一个等差数列;而 等比数列具有周期 性,即从第一项开 始每隔若干项取一 项,数列中剩下的 项仍然是一个等比
数列。
添加标题
通项公式不同:等 差数列的通项公式 为an=a1+(n-1)d, 其中d表示公差;等 比数列的通项公式 为an=a1*Hale Waihona Puke ^(n1),其中q表示公比。
添加标题
应用上的联系
等差数列与等比数列在金融领域的应用 等差数列与等比数列在计算机科学中的应用 等差数列与等比数列在物理学中的应用 等差数列与等比数列在数学教育中的应用
06
等差数列与等比数 列的区别与联系
定义上的区别
等差数列:从第二项开始,每一项与它的 前一项的差等于同一个常数
等比数列:从第二项开始,每一项与它的 前一项的比等于同一个常数
性质上的区别
定义不同:等差数 列是指相邻两项的 差相等的数列,而 等比数列是指相邻 两项的比值相等的
数列。
添加标题
符号不同:等差数 列的通项公式为
4.2.1.1等差数列得的概念和通项公式(知识梳理+变式+例题))

4.2.1.1等差数列的概念和通项公式要点一 等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d_表示. (2)符号语言:a n +1-a n =d (d 为常数,n ∈N *). 【重点概要】(1)“从第2项起”是因为首项没有“前一项”.(2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中强调“同一个常数”,即该常数与n 无关.(3)求公差d 时,可以用d =a n -a n -1来求,也可以用d =a n +1-a n 来求.注意公差是每一项与其前一项的差,且用a n -a n -1求公差时,要求n ≥2,n ∈N *. 要点二 等差中项(1)条件:如果a ,A ,b 成等差数列. (2)结论:那么A 叫做a 与b 的等差中项. (3)满足的关系式是________. 【重点概要】在等差数列{a n }中,任取相邻的三项a n -1,a n ,a n +1(n ≥2,n ∈N *),则a n 是a n -1与a n +1的等差中项. 反之,若a n -1+a n +1=2a n 对任意的n ≥2,n ∈N *均成立,则数列{a n }是等差数列.因此,数列{a n }是等差数列⇔2a n =a n -1+a n +1(n ≥2,n ∈N *).用此结论可判断所给数列是不是等差数列,此方法称为等差中项法.要点三 等差数列的通项公式以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =1(1)a n d +-【重点总结】从函数角度认识等差数列{a n }若数列{a n }是等差数列,首项为a 1,公差为d ,则a n =f(n)=a 1+(n -1)d =nd +(a 1-d). (1)点(n ,a n )落在直线y =dx +(a 1-d)上; (2)这些点的横坐标每增加1,函数值增加d. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性与公差d 有关.( )(3)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列.( )(4)一个无穷等差数列{a n }中取出所有偶数项构成一个新数列,公差仍然与原数列相等.( ) 【答案】(1)×(2)√(3)√(4)×2.(多选题)下列数列是等差数列的有( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 【答案】ABC3.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-3 【答案】C【解析】由等差数列的定义,得d =a 2-a 1=-1-1=-2.故选C. 4.在△ABC 中,三内角A 、B 、C 成等差数列,则B 等于________. 【答案】60°【解析】因为三内角A 、B 、C 成等差数列, 所以2B =A +C ,又因为A +B +C =180°, 所以3B =180°,所以B =60°.题型一 等差数列的通项公式 探究1 基本量的计算【例1】(1)在等差数列{a n }中,已知a 6=12,a 18=36,则a n =________. (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,则a 15=________.【答案】(1)2n (2)-314【解析】(1)由题意得⎩⎪⎨⎪⎧ a 1+5d =12a 1+17d =36,⎩⎪⎨⎪⎧解得d =2,a 1=2,∴a n =2+(n -1)×2=2n .(2)法一:(方程组法)由⎩⎨⎧a 3=54,a 7=-74,得⎩⎨⎧a 1+2d =54,a 1+6d =-74,解得⎩⎨⎧a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝⎛⎭⎫-34=-314. 法二:(利用a m =a n +(m -n )d 求解)由a 7=a 3+(7-3)d ,即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝⎛⎭⎫-34=-314. 探究2 判断数列中的项【例2】100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 【解析】∵a n =2+(n -1)×7=7n -5, 由7n -5=100,得n =15, ∴100是这个数列的第15项.探究3 等差数列中的数学文化 【例3】《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是( )A.116B.103C.56D.53【答案】D【解析】由题意可得中间的那份为20个面包, 设最小的一份为a 1,公差为d ,由题意可得[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53,故选D.【方法归纳】(1)已知a n ,a 1,n ,d 中的任意三个量,求出第四个量.(2)应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =aa 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式.(3)若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷. 【跟踪训练】(1)等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 等于( )A .50B .49C .48D .47 【答案】A【解析】由题得2a 1+5d =4,将a 1=13代入得,d =23,则a n =13+23(n -1)=33,故n =50.(2)等差数列{a n }中,已知a 5=10,a 12=31. ①求a 20;②85是不是该数列中的项?若不是,说明原因;若是,是第几项? 【解析】(2)①设数列{a n }的公差为d . 因为a 5=10,a 12=31,由a n =a 1+(n -1)d 得,⎩⎪⎨⎪⎧ a 1+4d =10,a 1+11d =31,解得⎩⎪⎨⎪⎧a 1=-2,d =3. 即a n =-2+3(n -1)=3n -5,则a 20=3×20-5=55. ②令3n -5=85,得n =30,所以85是该数列{a n }的第30项. 题型二 等差数列的判定与证明【例4】已知数列{a n }满足a 1=4且a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.【解析】(1)证明:∵b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎫4-4a n -2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12又b 1=1a 1-2=12∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知,b n =12+(n -1)×12=12n ∵b n =1a n -2∴a n =1b n +2=2n+2.要证{b n }是等差数列,只需证b n +1-b n =常数或b n -b n -1=常数(n ≥2).【变式探究1】将本例中的条件“a 1=4,a n =4-4a n -1”改为“a 1=2,a n +1=2a na n +2”,求a n .【解析】∵a n +1=2a na n +2∴取倒数得:1a n +1=a n +22a n =12+1a n ∴1a n +1-1a n =12,又1a 1=12,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为12的等差数列, ∴1a n =1a 1+(n -1)×12=12+n 2-12=n 2,∴a n =2n . 【方法归纳】定义法判断或证明数列{a n }是等差数列的步骤: (1)作差a n +1-a n ,将差变形;(2)当a n +1-a n 是一个与n 无关的常数时,数列{a n }是等差数列;当a n +1-a n 不是常数,是与n 有关的代数式时,数列{a n }不是等差数列.【跟踪训练】已知数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1,证明:数列{b n }是等差数列.(2)求数列{a n }的通项公式.【解析】(1)证明:因为a n +1=2a n +2n ,所以a n +12n =2a n +2n 2n =a n2n -1+1,所以a n +12n -a n2n -1=1,n ∈N *.又b n =a n2n -1,所以b n +1-b n =1.所以数列{b n }是等差数列,其首项b 1=a 1=1,公差为1. (2)由(1)知b n =1+(n -1)×1=n ,所以a n =2n -1b n =n ·2n -1,经检验,n =1时a 1=1也满足上式. 题型三 等差中项【例5】已知三个数成等差数列,其和为15,其平方和为83,则这三个数为________. 【答案】3,5,7或7,5,3【解析】设此三个数分别为x -d ,x ,x +d , 则⎩⎪⎨⎪⎧(x -d )+x +(x +d )=15(x -d )2+x 2+(x +d )2=83 解得x =5,d =±2.∴所求三个数分别为3,5,7或7,5,3.【总结】三个数成等差数列可设为x -d,x,x+d【变式探究2】已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四个数. 【解析】法一:(设四个变量)设这四个数分别为a ,b ,c ,d ,根据题意,得⎩⎪⎨⎪⎧b -a =c -b =d -c ,a +b +c +d =26,bc =40,解得⎩⎪⎨⎪⎧ a =2,b =5,c =8,d =11或⎩⎪⎨⎪⎧a =11,b =8,c =5,d =2,∴这四个数分别为2,5,8,11或11,8,5,2.法二:(设首项与公差)设此等差数列的首项为a 1,公差为d ,根据题意,得 ⎩⎪⎨⎪⎧a 1+(a 1+d )+(a 1+2d )+(a 1+3d )=26,(a 1+d )(a 1+2d )=40,化简,得⎩⎪⎨⎪⎧4a 1+6d =26,a 21+3a 1d +2d 2=40, 解得⎩⎪⎨⎪⎧ a 1=2,d =3,或⎩⎪⎨⎪⎧a 1=11,d =-3,∴这四个数分别为2,5,8,11或11,8,5,2.法三:(灵活设元)设这四个数分别为a -3d ,a -d ,a +d ,a +3d ,根据题意,得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,化简,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40,解得⎩⎨⎧a =132,d =±32.∴这四个数分别为2,5,8,11或11,8,5,2.【小结】四个数成等差数列可设为a -3d ,a -d ,a +d ,a +3d【变式探究3】已知五个数成等差数列,它们的和为5,平方和为859,求这5个数.【解析】设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有 ⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859.解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个分数分别是-13,13,1,53,73.当d =-23时,这5个数分别是73,53,1,13,-13.综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13.【方法归纳】当等差数列{a n }的项数n 为奇数时,可设中间的一项为a ,再以d 为公差向两边分别设项,即设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;当等差数列的项数n 为偶数时,可设中间两项分别为a -d ,a +d ,再以2d 为公差向两边分别设项,即设为…,a -3d ,a -d ,a +d ,a +3d ,….【易错辨析】忽视等差数列中的隐含条件致误【例6】已知{a n }为等差数列,首项为125,它从第10项开始比1大,那么公差d 的取值范围是( )A .d >875B .d <325C.875<d <325D.875<d ≤325 【答案】D【解析】由题意可得a 1=125,且⎩⎪⎨⎪⎧a 10>1a 9≤1即⎩⎨⎧125+9d >1125+8d ≤1解得875<d ≤325,故选D.【易错警示】1. 出错原因(1)错选A ,只看到了a 10>1而忽视了a 9≤1,是审题不仔细而致误; (2)错选C ,误认为a 9<1,是由不会读题,马虎造成错误. 2. 纠错心得认真审题,充分挖掘题目中的隐含条件.一、单选题1.等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则{}n a 的前2n 项2n S =( ). A .3(21)n n - B .3(21)n n + C .3(1)2n n + D .3(1)2n n - 【答案】B 【分析】根据等差数列与等比数列的性质可得数列的通项公式,进而可得2n S . 【解析】等差数列{}n a 的公差为3,且2a ,4a ,8a 成等比数列,2428a a a ∴=,()()2222618a a a ∴+=+,解得26a =,1233a a ∴=-=,{}∴n a 的前2n 项, 22(21)2332n n n S n -=⋅+⨯ 3(21)n n =+.故选:B .2.已知数列{}n a 满足()()11220n n n n a a a a ++--+=,下列结论正确的是( ) A .当11a =时,10a 的最大值258 B .当11a =时,9a 的最小值384- C .当101a =时,1a 的最小值17- D .当91a =时,1a 的最大值132【答案】C【分析】根据题干中的条件可得:12n n a a +-=或120n n a a ++=,即{}n a 是等差数列或等比数列,A 选项分别把两种情况下的10a 算出来,比较大小,求出10a 的最大值,同样的道理,其他选项也可以判断出来,进而选出正确的选项 【解析】()()11220n n n n a a a a ++--+=则120n n aa +--=或120n n a a ++=A 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,101911819a a d =+=+= 当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()9102512a =-=-,10a 的最大值为19,故A 选项错误;B 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,91811617a a d =+=+=当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()892256a =-=,9a 的最小值为17,故B 选项错误;C 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当101a =时,即1192a +⨯=,解得:117a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当101a =时,即()9112a -=,解得:11512a =-,117512<--,故1a 的最小值为17-,故选项C 正确 D 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当91a =时,1161a += ,解得:115a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当91a =时,即()8112a -=,解得:11256a =,此时1a 的最大值为1256,D 选项错误 故选:C3.记n S 为等差数列{}n a 的前n 项和,若235a a +=,728S =,则数列{}n a 的公差为( ) A .1- B .2-C .1D .2【答案】C 【分析】由等差数列性质,747S a =求得44a =,根据项与项之间的关系代入条件求得公差. 【解析】由题知,74728S a ==,则44a =,设数列公差为d ,则234424435a a a d a d d +=-+-=+-=, 解得1d =, 故选:C4.在等差数列{}n a 中,前9项和918S =,266a a +=,则3n a =( ) A .33-n B .35n + C .73n - D .213n -【答案】C 【分析】根据918S =,266a a +=,可求得公差,再利用等差数列的通项公式即可得解. 【解析】 解:()199599182a a S a ===+,52a ∴=,又26426a a a +==,43a ∴=,∴公差541d a a =-=-,()447n a a n d n =+-⋅=-,373n a n ∴=-.故选:C.5.在ABC ∆中,“π3B =”是“角A ,B ,C 成等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C 【分析】若π3B =,则2π23AC B +==,若A ,B ,C 成等差数列,则π3B =,得到答案. 【解析】在ABC ∆中,若π3B =,则2ππ23A CB B +=-==,所以A ,B ,C 成等差数列,充分性成立. 反之,若A ,B ,C 成等差数列,则2B A C =+,因为3πA B C B ++==,所以π3B =,必要性成立.所以“π3B =”是“角A ,B ,C 成等差数列”的充要条件. 故选:C.6.已知数列{}n a 的前n 项和n S ,且{}n a 满足122n n n a a a ++=+,532a a -=,若424S S =,则9a =( ) A .9 B .172C .10D .192【答案】B 【分析】根据122n n n a a a ++=+判断出{}n a 是等差数列,然后将条件化为基本量,进而解出答案. 【解析】由122n n n a a a ++=+可知,{}n a 是等差数列,设公差为d ,所以53221a a d d -==⇒=, 由()1421114642241S S a a a ⇒+=⨯+⇒==,所以9117822a =+=. 故选:B.7.等差数列{}n a 的前n 项和为n S ,若3724a a +=,840S =,则29a a +等于( ) A .44- B .14C .24D .38【答案】D 【分析】根据条件,列出方程组,求出首项和公差即可求解. 【解析】设等差数列{}n a 的公差为d ,由3724a a +=,840S =得112824,82840,a d a d +=⎧⎨+=⎩ 解得144,14,a d =-⎧⎨=⎩则2912938a a a d +=+= 故选:D8.已知等差数列{}n a 的前n 项和为n S ,43a =,1224S =,若i 0j a a +=(i ,j N *∈,且1i j ≤<),则i 的取值集合是( )A .{}1,2,3B .{}1,2,3,4,5C .{}6,7,8D .{}6,7,8,9,10【答案】B 【分析】设公差为d ,结合等差数列的通项公式和求和公式即可求出首项和公差,即可写出数列中的项,从而可选出正确答案. 【解析】设公差为d ,由4133a a d =+=-及121121112242S a d ⨯=+=,解得19a =-,2d =, 所以数列为9-,7-,5-,3-,1-,1,3,5,7,9,11,…,故i 取值的集合为{}1,2,3,4,5. 故选:B .二、多选题9.将2n 个数排成n 行n 列的一个数阵,如下图: 1112131n a a a a ⋯⋯ 2122232n a a a a ⋯⋯ 3132333n a a a a ⋯⋯ ……123n n n nn a a a a ⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知1113612,1a a a ==+,记这2n 个数的和为S .下列结论正确的有( ) A .3m =B .767173a =⨯C .1()313j ij a i -=⨯-D . (13)131(4)n S n n =-+ 【答案】ACD 【分析】根据题意,利用等差数列和等比数列的通项公式以及求和公式,对各选项进行判断,即可得到结果. 【解析】由11136121a a a ==+,,可得22131161112525a a m m a a m m ===+=+,,所以22251m m =++,解得3m =或12m =- (舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111[()][2]11333()(3)1j j j j ij i a a m a i m m i i ----==+-⋅⋅=+-⨯⨯=-⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++⋯++++⋯++⋯+++⋯+()()()11211131313...131313n n n n a a a ---=+++--- ()()()()23111 313131224n n n n n n +-=-⨯=+-,所以选项D 是正确的; 故选:ACD.10.设等差数列{a n }的前n 项和为S n .若S 3=0,a 4=8,则( )A .S n =2n 2-6nB .S n =n 2-3nC .a n =4n -8D .a n =2n【答案】AC【分析】根据已知条件求得1,a d ,由此求得,n n a S ,从而确定正确选项,【解析】 依题意3408S a =⎧⎨=⎩, 1113304,438a d a d a d +=⎧⇒=-=⎨+=⎩, 所以2148,262n n n a a a n S n n n +=-=⋅=-. 故选:AC11.已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2021是该数列的一项,则公差d 不可能是( ) A .2B .3C .4D .5【答案】BCD【分析】由已知得2021=3+(n -1)d ,即有n =2018d +1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.由此可得选项.【解析】解:由2021是该数列的一项,即2021=3+(n -1)d ,所以n =2018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.故选:BCD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.设n S 为正项数列{n a }的前n 14n a +,则通项公式n a =___________ 【答案】21()4n n N +-∈ 【分析】当1n =时,求得114a =;当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减得到112n n a a --=,结合等差数列的定义,即可求解其通项公式. 【解析】由n S 为正项数列{n a }的前n 14n a =+,当1n =114a =+,可得2111()4a a =+,解得114a =, 当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减,可得1-11()()02n n n n a a a a -+--=, 因为0n a >,所以112n n a a --=, 所以数列{n a }是以12为公差,以14为首项的等差数列, 所以1121(1)424n n a n -=+-=. 故答案为:21()4n n N +-∈. 13.在等差数列{a n }中,a 3=0.如果a k 是a 6与a k +6的等比中项,那么k =________.【答案】9【分析】根据等比数列的性质以及等差数列的通项公式求解即可.【解析】设等差数列{a n }的公差为d ,由题意得a 3=a 1+2d =0,∈a 1=-2d .又∈a k 是a 6与a k +6的等比中项,266k k a a a +∴=,即[a 1+(k -1)d ]2=(a 1+5d )·[a 1+(k +5)d ],[(k -3)d ]2=3d ·(k +3)d ,解得k =9或k =0(舍去). 故答案为:914.在等差数列{a n }中,a 1+a 5=2,a 3+a 7=8,则a 11+a 15=________.【答案】32【分析】由a 1+a 5=2,a 3+a 7=8,两式相减求得公差即可.【解析】因为a 1+a 5=2,a 3+a 7=8,所以(a 3+a 7)-(a 1+a 5)=4d =6,解得d =32, 所以a 11+a 15=(a 1+a 5)+20d =2+20×32=32. 故答案为:32四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且28S =,9411S a =. (1)求n a ;(2)若3n n S a =+2 ,求n .【答案】(1)21n a n =+(2)4n =【分析】(1)设公差为d ,根据28S =,9411S a =,列出方程组,求得首项跟公差,即可得出答案; (2)利用等差数列前n 项和的公式求得n S ,再根据3n n S a =+2 ,即可的解. (1)解:设公差为d ,由已知294811S S a =⎧⎨=⎩, 得:()11128936113a d a d a d +=⎧⎨+=+⎩,解得:132a d =⎧⎨=⎩, 所以21n a n =+;(2)解:()232122n n n S n n ++==+, 因为3n n S a =+2 ,即()223212n n n +=++,得2450n n --=,解得4n =,或1n =-(舍去), 所以4n =.16.已知等差数列{}n a 的前n 项和为n S ,1646,2a a a +==. (1)求数列{}n a 的通项公式; (2)求n S 的最大值及相应的n 的值.【答案】(1)102n a n =-(2)当4n =或5n =时,n S 有最大值是20【分析】(1)用等差数列的通项公式即可. (2)用等差数列的求和公式即可. (1)在等差数列{}n a 中,∈1646,2a a a +==, ∈1125632a d a d +=⎧⎨+=⎩, 解得182a d =⎧⎨=-⎩, ∈1(1)102n a n d a n ==--+;(2)∈18,2a d ==-,1(1)2n n n S na d -=+ ∈1(1)(1)8(2)22n n n n n S na d n --=+=+-29n n =-+ , ∈当4n =或5n =时,n S 有最大值是20。
等差数列的通项公式

等差数列的通项公式等差数列的通项公式是数学中常见的概念,用于求解等差数列中任意位置的数值。
通过本文,我们将深入探讨等差数列的概念,并详细介绍其通项公式的推导和应用。
一、等差数列的定义等差数列是指一个数列中的每个数字与它的前一个数字之间的差恒定的数列。
简而言之,就是每两个相邻数字之间的差值都是相等的。
我们可以用以下的形式来表示一个等差数列:a, a+d, a+2d, a+3d, ...其中,a为首项,d为公差,n为项数。
首项是指数列中的第一个数字,公差是指相邻两个数字之间的差值,项数表示数列中数字的个数。
二、等差数列的通项公式推导为了方便计算等差数列中任意位置的数值,我们需要推导出等差数列的通项公式。
首先,我们假设等差数列的首项为a,公差为d。
对于第n项的值,可以表示为:an = a + (n-1)d这个公式可以通过数学归纳法得到,我们不做进一步的展开。
通过这个公式,我们可以计算出等差数列中任意位置的数值。
三、等差数列通项公式的应用等差数列的通项公式在数学和实际生活中有着广泛的应用。
下面,我们将以几个具体的例子来说明应用场景。
1. 计算等差数列中某一项的值假设我们有一个等差数列:3, 7, 11, 15, 19, ...,我们想要计算该数列中的第10项的值。
根据等差数列的通项公式,我们可以计算如下:a10 = a + (10-1)d= 3 + 9*4= 3 + 36= 39所以,该数列中的第10项的值为39。
2. 求等差数列中某个位置的数字之和有时候,我们需要求等差数列中某个位置之前所有数字的和。
我们称这个和为等差数列的部分和。
通过等差数列的通项公式,我们可以得到以下的求和公式:Sn = (n/2)(2a + (n-1)d)其中,Sn表示等差数列的部分和。
例如,我们有一个等差数列:2, 5, 8, 11, 14, ...,我们想要求前5项的和。
根据求和公式,我们可以计算如下:S5 = (5/2)(2*2 + (5-1)*3)= (5/2)(4 + 12)= (5/2)(16)= 40所以,该数列前5项的和为40。
等差数列所有公式大全

等差数列所有公式大全等差数列是数学中常见的一个概念,它在数学和实际生活中都有着重要的应用。
在学习等差数列时,掌握其相关公式是非常重要的。
本文将为大家详细介绍等差数列的所有公式,希望能够帮助大家更好地理解和运用等差数列的知识。
1. 等差数列的定义。
在介绍等差数列的公式之前,我们先来回顾一下等差数列的定义。
等差数列是指一个数列,其中相邻两项之间的差值都相等。
换句话说,如果一个数列满足每一项与它的前一项之差都相等,那么这个数列就是等差数列。
2. 等差数列的通项公式。
等差数列的通项公式是等差数列中最为重要的公式之一。
通项公式可以用来表示等差数列中任意一项的值。
假设等差数列的首项为a1,公差为d,那么等差数列的通项公式可以表示为:an = a1 + (n-1)d。
其中,an表示等差数列中第n项的值。
3. 等差数列的前n项和公式。
除了通项公式之外,等差数列还有一个重要的公式,那就是前n项和公式。
前n项和公式可以用来表示等差数列前n项的和。
假设等差数列的首项为a1,公差为d,那么等差数列的前n项和公式可以表示为:Sn = (n/2)(a1 + an)。
其中,Sn表示等差数列前n项的和。
4. 等差数列的性质。
除了上述的公式之外,等差数列还有一些重要的性质。
首先,等差数列中任意三项可以构成一个等差数列。
其次,等差数列中任意一项都可以表示为它前面的项与公差的和。
另外,等差数列中任意一项与它对称的项之和都相等。
5. 等差数列的应用。
等差数列在实际生活中有着广泛的应用。
比如,等差数列可以用来表示物理学中的等加速度运动,经济学中的等差增长,以及工程学中的等差数列模型等。
掌握等差数列的公式和性质,可以帮助我们更好地理解和解决实际生活中的问题。
总结:通过本文的介绍,我们详细了解了等差数列的所有公式,包括通项公式、前n 项和公式以及等差数列的性质和应用。
希望本文能够帮助大家更好地掌握等差数列的知识,提高数学水平,同时也能够更好地应用等差数列的知识解决实际问题。
等差数列的通项公式

等差数列的通项公式等差数列是数学中常见且重要的概念,它在许多实际问题中都有广泛的应用。
在研究等差数列时,我们经常需要计算其中的某个特定位置的项,这时通项公式就起到了重要的作用。
本文将介绍等差数列的通项公式及其推导,以及一些实例应用。
一、等差数列的定义与性质等差数列是指数列中相邻两项之间的差值固定。
设等差数列的首项为a1,公差为d,则数列的通项公式可以表示为:an = a1 + (n-1)d其中,an表示数列的第n项。
根据等差数列的定义和通项公式,可以得到等差数列的一些基本性质:1. 等差数列的任意三项可以构成一个等差数列。
2. 等差数列的前n项和可以用求和公式表示为:Sn = (n/2)(2a1 + (n-1)d)。
3. 等差数列的前n项和与项数n成正比,当n趋向于无穷大时,前n项和趋向于无穷大。
二、等差数列通项公式的推导等差数列的通项公式可以通过数学归纳法来推导。
首先,我们验证当n=1时,通项公式成立:a1 = a1 + (1-1)da1 = a1,成立。
假设当n=k时,通项公式成立,即ak = a1 + (k-1)d。
接下来,我们验证当n=k+1时,通项公式也成立:ak+1 = a1 + (k+1-1)dak+1 = a1 + kd + dak+1 = a1 + (k-1)d + 2dak+1 = ak + 2d由假设可知 ak = a1 + (k-1)d,带入上式可得:ak+1 = a1 + (k-1)d + 2dak+1 = a1 + (k+1-1)d因此,假设成立,通项公式对于任意正整数n均成立。
三、等差数列通项公式的应用等差数列的通项公式在实际问题中具有广泛的应用。
以下是一些实例应用:1. 求解数列中的某一特定项根据通项公式,我们可以根据已知的首项和公差,计算出数列中的任意一项。
这在金融投资、工程建设等领域中经常用到。
2. 求解等差数列的前n项和通过等差数列的前n项和公式,我们可以快速计算等差数列的前n项的总和。
等差数列的通项公式

等差数列的通项公式等差数列是指数列中的每一个元素间的差都是相等的。
其通项公式可以用于求出数列中任意一个元素的值,也可以用于表示数列的全体元素。
本文将详细介绍等差数列的通项公式,希望对学习数学的读者有所帮助。
一、等差数列的定义和性质等差数列是数列中的每一项都与前一项之差相等的数列。
具体来说,若数列 ${\\left[a_{n}\\right]}_{n\\ge 1}$ 满足 $a_{n+1}-a_{n}=d\\ (n\\ge1)$,则称其为公差为 $d$ 的等差数列。
1. 等差数列的前 $n$ 项和公式等差数列的前 $n$ 项和可以用以下公式表示:$$S_n=\\frac{n}{2}\\left(a_{1}+a_{n}\\right)$$其中,$S_n$ 表示等差数列前 $n$ 项的和,$a_{1}$ 表示数列的首项,$a_{n}$ 表示数列的第 $n$ 项。
2. 等差数列的通项公式等差数列的通项公式是指能够求出数列中任一项 $a_{n}$ 的公式。
假设等差数列的公差为 $d$,首项为 $a_1$,则其通项公式为:$$a_{n}=a_{1}+(n-1) d\\qquad (n \\geqslant 1)$$这个公式表示了等差数列中第 $n$ 项与首项之间的差距。
更一般地,我们可以将通项公式表示为:$$a_{n}=a_{m}+(n-m) d\\qquad (m,n \\in Z)$$其中,$m$ 表示已知数列中的任意一项,而 $n$ 则表示需要求解的数列中的项数。
根据这个公式,我们可以轻松地求出等差数列中的任意一项。
3. 等差数列的性质等差数列还具有以下性质:(1)等差数列的公差决定了每一项之间的差距。
(2)等差数列的前 $n$ 项和与项数 $n$ 的关系是二次函数。
(3)等差数列经常被用于解决数学中的各种问题,如运用数列的差等于比的方法。
二、等差数列的求解在使用通项公式求解等差数列时,需要知道数列中的至少两个数。
等差数列的概念与通项公式 课件

∴an+1-an=an-an-1=…=a2-a1(常数).
∴{an}是等差数列.
【例题解析】 例 1 已知{an}为等差数列,分别根据下列条件写出
它的通项公式. (1)a3=5,a7=13; (2)前三项为:a,2a-1,3-a.
解 (1)设首项为 a1,公差为 d,则
a3=a1+2d=5, a7=a1+6d=13,
探究点一 等差数列的概念 问题 1 我们先看下面几组数列:
(1)3,4,5,6,7,…; (2)6,3,0,-3,-6,…; (3)1.1,2.2,3.3,4.4,5.5,…; (4)-1,-1,-1,-1,-1,…. 观察上述数列,我们发现这几组数列的共同特点是 __从__第__2_项__起__,__每___一__项__与__前__一__项__的__差__都__等___于__同__一__常__数__.
a3=a2+d=(a1+d)+d=a1+2d, a4=a3+d=(a1+2d)+d=a1+3d, …
由此得出:an=a1+(n-1)d.
探究 2 由等差数列的定义知:an-an-1=d(n≥2),可以采用 叠加法得到通项公式 an.
a2-a1=d
答
a3-a2=d a4-a3=d
(n-1)个
⋮
解 (1)是等差数列,a1=4,d=3; (2)是等差数列,a1=31,d=-6; (3)是等差数列,a1=0,d=0;
(4)是等差数列,a1=a,d=-b; (5)不是等差数列,a2-a1=1,a3-a2=3,∴a2-a1≠a3-a2.
探究 如何准确把握等差数列的概念?谈谈你的理解.
答 (1)等差数列{an}从第 2 项起,每一项与它的前一项的差 都是同一个常数,这一点说明一个等差数列至少有 3 项. (2)如果一个数列,不从第 2 项起,而是从第 3 项起或第 4 项 起,每一项与它前一项的差是同一个常数,那么此数列不是 等差数列,但可以说从第 2 项或第 3 项起是一个等差数列. (3)一个数列,从第 2 项起,每一项与它的前一项的差,尽管 等于常数,这个数列也不一定是等差数列,因为这些常数可 以不同,当常数不同时,当然不是等差数列,因此定义中“同 一个”常数,这个“同一个”十分重要,切记不可丢掉.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 2 页
2.2.1等差数列的概念与通项公式
学习目标: 1.知识目标:理解等差数列定义,掌握等差数列的通项公式.
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念
的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力.
3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.
学习重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;
学习难点: 理解等差数列“等差”的特点及通项公式含义;等差数列的通项公式的推导过程. 学习过程:
一、新课导学:请同学们仔细观察,看看以下四个数列有什么共同特征? ① 0,5,10,15,20,25,… ② 10,12,14,16,…
③ 5,5,5,5,5,… ④ 101,100,99,98,97,96,95,… 对于数列①,从第2项起,每一项与前一项的差都等于__________ 对于数列②,从第2项起,每一项与前一项的差都等于__________ 对于数列③,从第2项起,每一项与前一项的差都等于__________ 对于数列④,从第2项起,每一项与前一项的差都等于__________
共同点:从第2项起,每一项与前一项的差都等于 ______.
1.等差数列的定义:一般地,如果一个数列从第 项起,每一项与它前一项的差等于______常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示。
思考1:等差数列的递推公式为:
思考2:上面的四个数列都是等差数列,公差依次是______,______,______,______.
思考3:一个等差数列至少有几项,中间项与前一项、后一项有什么关系?
2.等差中项的概念:由三个数a ,A , b 组成的等差数列是最简单的等差数列,这时数A 叫做数a 和b 的 等差中项,用等式表示为A =
3.等差数列的通项公式:
思考4:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?
思考5:如果等差数列}{n a 的首项为1a ,公差为d ,你能否根据等差数列的递推公式得出通项公式
公式推导: 若一等差数列}{n a 的首项是1a ,公差是d ,则据其定义可得: 方法一(归纳法):21a a -= ,即:21a a =+ ,
32a a -= , 即:321a a d a =+=+
4
3a a -= ,即:431a a d a =+=+ ,
……
由此归纳等差数列的通项公式可得:d a a n ____1+=.
方法二(累加法):____,
___,___,......
_____,
_____,_____,12132342312=-=-=-=-=-=------n n n n n n a a a a a a a a a a a a 累加得:
结论:如果等差数列}{n a 的首项为1a ,公差为d ,则数列的通项公式为:d a a n ____1+= 反思:(1)从方程的角度考虑,等差数列通项公式未知量有 个,知三求一; (2)从函数的角度考虑:n a 是有关n 的_______函数,有2 个待定系数_____
(3)从单调性来考虑:①当d >0时,{n a }为 数列;②当d <0时,{n a }为 数列; ③当0,d ={n a }为 数列。
三.典型例题与练习: 题型1:求等差数列的通项公式
例1:(1)求等差数列8,5,2,…的通项公式和第20项。
(2)—401是不是等差数列—5,—9,—13,…的项。
如果是,是第几项?
变式1:(1)求等差数列3,7,11,……的通项公式和第10项.
(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.
第 2 页 共 2 页
题型2:等差数列的判断与证明
例2、已知数列}{n a 的通项公式为,q pn a n +=其中q p ,为常数,那么这个数列一定是等差数列吗?证明你的结论,如果是,写出首项和公差。
变式2:已知数列的通项公式为61n a n =-,那么这个数列一定是等差数列吗?证明你的结论,如果是,
写出首项和公差。
题型3:等差数列中量的求解
例3:(1)已知在等差数列中,31,1074==a a ,求n a ;(2)已知2,21,31===d a a n ,求n.
练习3:在等差数列{an}中,(1)已知,2,185=-=a a ,求n a ;(2)已知7,12571==+a a a ,求n a .
四、学习小结
1. 等差数列定义式: 1n n a a d
--= (n ≥2); 递推公式:1(2)n n a a d n -=+≥;
通项公式:1(1)n
a a n d =+-; 等差中项:2
2
1
+++=n n n a a a
2.等差数列的通项公式,为关于n 的一次函数,能熟练解决“1,,,n a a n d 知二求二”的问题
五.课后作业:
1. 等差数列1,-1,-3,…,-89的项数是________.
2. 等差数列的第1项是7,第7项是-1,则它的第5项是________.
3.如果,,1)()1(*
∈+=+N n n f n f 且,2)1(=f 则=)100(f ________ 4. 在△ABC 中,三个内角A ,B ,C 成等差数列,则B = .
5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .
6. 在等差数列{}n a 中,
⑴已知12a =,d =3,n =10,求n a ; (2)已知39129,3,a a a ==求 (3)已知158a =,6023a =,求n a .
7已知等差数列{}n a 的首项为1a ,公差为d ,数列{}n b 中 34n n b a b =+,证明:数列{}n b 也是等差数列,写出首项和公差。
8、等差数列}{n a 的首项为a ,公差为d ;等差数列}{n b 的首项为b ,公差为e ,如果数列}{n c 满足n n n b a c +=,
(1)求证:}{n c 是等差数列;(2)若8,421==c c ,求数列}{n c 的通项公式。
9.已知数列{an}的通项公式qn pn a n +=2
(p 、q 为常数),当p 、q 满足什么条件时,数列}{n a 为等差数列.。