高中数学第二章数列2.1.1数列的概念与通项公式练习(含解析)新人教A版必修5
高中数学第二章数列2.1.1数列的概念与通项公式课件新人教A版必修

解析:(1)该数列的第 10 项 a10=21× 0+102=53. (2)令 an=194,即n2+n2=194,解得 n=7. 所以194是数列中的项,且是数列的第 7 项.
|素养提升|
1.与集合中元素的性质相比较,数列中的项也有三个性质 (1)确定性:一个数在不在数列中,即一个数是不是数列中 的项是确定的. (2)可重复性:数列中的数可以重复出现. (3)有序性:一个数列不仅与构成数列的“数”有关,而且 与这些数的排列次序也有关.
跟踪训练 2 根据以下数列的前 4 项写出数列的一个通项 公式.
(1)2×1 4,3×1 5,4×1 6,5×1 7; (2)-3,7,-15,31; (3)2,6,2,6.
解析:(1)均是分式且分子均为 1,分母均是两因数的积,第 一个因数是项数加上 1,第二个因数比第一个因数大 2,
所以 an=n+11n+3. (2)正负相间,且负号在奇数项,故可用(-1)n 来表示符号, 各项的绝对值恰是 2 的整数(项数加 1)次幂减 1,所以 an=(- 1)n(2n+1-1). (3)此数列为摆动数列,一般求两数的平均数2+2 6=4,而 2 =4-2,6=4+2,中间符号用(-1)n 来表示.
【课标要求】 1.通过实例,了解数列的概念. 2.掌握数列的两种分类,能对具体数列作出判断. 3.理解数列通项公式的概念,能根据数列的前几项写出数列 的通项公式. 4.能根据数列的通项公式研究数列中有关项的问题.
自主学习 基础认识
|新知预习|
1.数列的概念 按照一定顺序排列的一列数称为数列.数列中的每一个数叫 做这个数列的项.数列的一般形式可以写成 a1,a2,a3,…,an,…, 简记为{an}.
解析:由
an=2
高中数学第二章等比数列第1课时等比数列的概念与通项公式达标检测含解析新人教A版必修5

新人教A 版高中数学必修5:等比数列的概念与通项公式A 级 基础巩固一、选择题1.下列数列为等比数列的是( ) A .0,0,0,0,… B .22,42,62,82,…C .q -1,(q -1)2,(q -1)3,(q -1)4,… D .1a ,1a 2,1a 3,1a4,…解析:A 选项中,由于等比数列中的各项都不为0,所以该数列不是等比数列;B 选项中,4222≠6242,所以该数列不是等比数列;C 选项中,当q =1时,数列为0,0,0,…,不是等比数列;D 选项中的数列是首项为1a ,公比为1a的等比数列,故选D.答案:D2.(多选)已知等比数列{a n }中,满足a 1=1,公比q =-2,则( ) A .数列{2a n +a n +1}是等比数列 B .数列{a n +1-a n }是等比数列 C .数列{a n a n +1}是等比数列 D .数列{log 2|a n |}是递减数列解析:因为{a n }是等比数列,所以a n +1=-2a n ,2a n +a n +1=0,故A 项错.a n =a 1·q n -1=(-1)n -1·2n -1,a n +1=(-1)n ·2n ,于是a n +1-a n =(-1)n·2n-(-1)n -1·2n -1=3(-2)n -1,故{a n +1-a n }是等比数列,故B 项正确.a n a n +1=(-1)n -1·2n -1·(-1)n ·2n =(-2)2n -1,故C 项正确.log 2|a n |=log 22n -1=n -1,是递增数列,故D 项错.答案:BC3.已知等比数列{a n }的前三项依次为a -1,a +1,a +4, 则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫32n -1C .4×⎝ ⎛⎭⎪⎫23nD .4×⎝ ⎛⎭⎪⎫23n -1解析:由题意得(a +1)2=(a -1)(a +4),解得a =5, 故a 1=4,a 2=6,所以q =32,a n =4×⎝ ⎛⎭⎪⎫32n -1.答案:B4.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D.1解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1, 所以2a 1+a 22a 3+a 4=4a 116a 1=14.答案:A5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:因为log 3a n +1=log 3a n +1,所以a n +1=3a n , 又a n ≠0.所以数列{a n }是以3为公比的等比数列. 所以a 2+a 4+a 6=a 2(1+q 2+q 4)=9.所以a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3·(1+q 2+q 4)=35. 所以log 1335=-5.答案:A 二、填空题6.等比数列{a n }中,a 4=2,a 5=4,则数列{lg a n }的通项公式为____________.解析:因为a 5=a 4q ,所以q =2,所以a 1=a 4q 3=14,所以a n =14·2n -1=2n -3,所以lg a n =(n -3)lg 2.答案:lg a n =(n -3)lg 27.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 解析:因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),所以a 6=a 2q 4=1×22=4.答案:48.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值为________.解析:因为-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,因为-1,b 1,b 2,b 3,-4成等比数列, 所以b 22=(-1)×(-4)=4, 所以b 2=±2.若设公比为q ,则b 2=(-1)q 2, 所以b 2<0,所以b 2=-2, 所以a 2-a 1b 2=-1-2=12. 答案:12三、解答题9.在等比数列{a n }中. (1)已知a 1=3,q =-2,求a 6; (2)已知a 3=20,a 6=160,求a n . 解:(1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96.(2)设等比数列的公比为q ,那么⎩⎪⎨⎪⎧a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1qn -1=5×2n -1.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827.(1)求证:{a n }是等比数列,并求出其通项. (2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.(1)证明:因为2a n =3a n +1, 所以a n +1a n =23. 又因为数列{a n }的各项均为负数, 所以a 1≠0,所以数列{a n }是以23为公比的等比数列.所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1.所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1,又因为a 2·a 5=23a 1·1681a 1=827,所以a 21=94.又因为a 1<0,所以a 1=-32.所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *).(2)解:令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681,则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项.B 级 能力提升1.(多选)已知数列{a n }是公比为q (q ≠1)的等比数列,则以下一定是等比数列的是( )A .{2a n }B .{a 2n } C .{a n +1·a n }D .{a n +1+a n }解析:因为数列{a n }是公比为q (q ≠1)的等比数列,则a n +1a n=q , 对于A 项,2a n +12a n=2a n +1-a n ,因为a n +1-a n 不是常数,故A 项错误.对于B 项,a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2,因为q 2为常数,故B 项正确.对于C 项,a n +2·a n +1a n +1·a n =a n +2a n +1·a n +1a n=q 2,因为q 2为常数,故C 项正确.对于D 项,若a n +1+a n =0,即q =-1时,该数列不是等比数列,故D 项错误. 答案:BC2.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)= 10a n +1,则公比q =________.解析:因为等比数列{a n }为递增数列,且a 1=-2<0, 所以0<q <1,又因为3(a n +a n +2)=10a n +1,两边同除a n , 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13.而0<q <1,所以q =13.答案:133.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最大值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n,αβ=1an.代入题设条件6(α+β)-2αβ=3, 得6a n +1a n -2a n=3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0, 所以a n ≠23,即a n -23≠0.所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列.(3)解:当a 1=76时,a 1-23=12,所以数列⎩⎨⎧⎭⎬⎫a n -23是以首项为12,公比为12的等比数列.所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n, 所以a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,…,即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,….由函数y =⎝ ⎛⎭⎪⎫12x在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。
2021年高中数学 2.2.1等差数列的概念与通项公式练习 新人教A版必修5

2021年高中数学 2.2.1等差数列的概念与通项公式练习新人教A版必修5►基础梳理1.(1)等差数列的定义:____________________.定义的数学式表示为__________________________.(2)判断下列数列是不是等差数列.①2,4,6,8,10;②1,3,5,8,9,10.2.(1)首项为a1公差为d的等差数列{a n}的通项公式为____________.(2)写出下列数列的通项公式:①2,4,6,8,10;②0,5,10,15,20,….3.(1)等差中项的定义:______________________.(2)求下列各组数的等差中项:①2,4;②-3,9.4.(1)等差数列当公差______时,为递增数列;当公差______时,为递减数列.(2)判断下列数列是递增还是递减数列.①等差数列3,0,-3,…;②数列{a n}的通项公式为:a n=2n-100(n∈N*).5.等差数列的图象的特点是________________.基础梳理1.(1)从第二项起,每一项与它前一项的差等于同一个常数a n-a n-1=d (与n无关的常数),n≥2,n∈N*(2)①是②不是2.(1)a n=a1+(n-1)d,n∈N*(2)①a n=2n,n=1,2,3,4,5②a n=5n-5,n∈N*3.(1)如果a,A,b成等差数列,则A叫a与b的等差中项(2)①所求等差中项为3 ②所求等差中项为34.(1)d>0 d<0(2)①递减数列②递增数列5.一条直线上的一群孤立点►自测自评1.下列数列不是等差数列的是( )A.a-d,a,a+dB.2,4,6,…,2(n-1),2nC.m,m+n,m+2n,2m+n(m≠2n)D.数列{a n}满足a n-1=a n-12(n∈N*,n>1)2.等差数列a-2d,a,a+2d,…的通项公式是( )A.a n=a+(n-1)d B.a n=a+(n-3)dC.a n=a+2(n-2)d D.a n=a+2nd3.已知数列{a n}对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上,则{a n}为( ) A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列自测自评1.解析:利用定义判断,知A,B,D是等差数列;对于C,m+n-m=n,(2m+n)-(m+2n)=m-n,且n≠m-n,∴该数列不是等差数列.故选C.答案:C2.解析:数列的首项为a-2d,公差为2d,∴a n=(a-2d)+(n-1)·2d=a+2(n-2)d.答案:C3.A►基础达标1.有穷等差数列5,8,11,…,3n+11(n∈N*)的项数是( )A.n B.3n+11C.n+4 D.n+31.解析:在3n+11中令n=1,结果为14,它是这个数列的第4项,前面还有5,8,11三项,故这个数列的项数为n+3.故选D.答案:D2.若{a n }是等差数列,则由下列关系确定的数列{b n }也一定是等差数列的是( )A .b n =a 2nB .b n =a n +n 2C .b n =a n +a n +1D .b n =na n2.解析:{a n }是等差数列,设a n +1-a n =d ,则数列b n =a n +a n +1满足:b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d .故选C.答案:C3.已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A. 3 B. 2 C.13 D.123.解析:a ,b 的等差中项为12×⎝ ⎛⎭⎪⎫13+2+13-2=12×(3-2+3+2)= 3. 答案:A4.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个4.C5.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( )A .49B .50C .5D .525.解析:由2a n +1=2a n +1得a n +1-a n =12, ∴{a n }是等差数列,且公差为d =12,又a 1=2, ∴a 101=a 1+(101-1)d =2+100×12=52.故选D. 答案:D►巩固提高6.若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 2-a 1b 2-b 1=( )A.34B.43C.23D .不能确定 6.解析:a 2-a 1=13(y -x ),b 2-b 1=14(y -x ), ∴a 2-a 1b 2-b 1=43.故选B. 答案:B7.已知函数f (x )=2x ,等差数列{a n }的公差为 2.若f (a 2+a 4+a 6+a 8+a 10)=4,则log 2[f (a 1)·f (a 2)·f (a 3)·…·f (a 10)]=________.7.解析:∵f (a 2+a 4+a 6+a 8+a 10)=2a 2+a 4+a 6+a 8+a 10=4,∴a 2+a 4+a 6+a 8+a 10=2.又∵a 1+a 3+a 5+a 7+a 9=(a 2-d )+(a 4-d )+…+(a 10-d )=2-5d =-8,∴a 1+a 2+…+a 10=2+(-8)=-6.∴log 2[f (a 1)·f (a 2)·…·f (a 10)]=log 2(2a 1+a 2+…+a 10)=a 1+a 2+…+a 10=-6. 答案:-68.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.8.解析:利用等差数列的通项公式求解.设等差数列公差为d ,则由a 3=a 22-4,得1+2d =(1+d )2-4,∴d 2=4,∴d =±2.由于该数列为递增数列,∴d =2.∴a n =1+(n -1)×2=2n -1(n ∈N *).答案:2n -1(n ∈N *)9.有四个数成等差数列,它们的平方和等于276,第一个数与第四个数之积比第二个数与第三个数之积少32,求这四个数.9.解析:设四个数依次为a -3d ,a -d ,a +d ,a +3d ,∴⎩⎪⎨⎪⎧(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=276,(a -d )(a +d )-(a -3d )(a +3d )=32. ∴⎩⎪⎨⎪⎧a 2+5d 2=69,d 2=4.∴a =±7,d =±2. ∴所求的四个数依次为:1,5,9,13或13,9,5,1或-13,-9,-5,-1或-1,-5,-9,-13.10.已知函数f (x )=x ax +b(a ,b 为常数,a ≠0)满足f (2)=1,且f (x )=x 有唯一解. (1)求f (x )的表达式;(2)若数列{x n }由x n =f (x n -1)(n ≥2,n ∈N *)且x 1=1.①求证:数列⎩⎨⎧⎭⎬⎫1x n 是等差数列; ②求数列{x n }的通项公式.10.(1)解析:由f (2)=1,得22a +b=1,即2a +b =2. 由f (x )=x ,得x ax +b=x ,即ax 2+(b -1)x =0有唯一解, ∴Δ=(b -1)2=0,∴b =1.∴a =12. ∴f (x )=2x x +2. (2)①证明:当n ≥2时,x n =f (x n -1)=2x n -1x n -1+2. 又x 1=1>0,∴x n >0,即x n ≠0.∴1x n =x n -1+22x n -1=1x n -1+12,即1x n -1x n -1=12. 故数列⎩⎨⎧⎭⎬⎫1x n 是首项为1,公差为12的等差数列. ②解析:由①得1x n =1+12(n -1)=n +12, ∴x n =2n +1(n ∈N *).1.用好等差数列的定义与掌握好等差数列的通项公式是关键,写数列通项公式时注意n 的取值范围.2.注意等差数列与一次函数间的关系,如自测自评中第3题.3.题设中有三个数成等差数列时,一般设这三个数为a -d 、a 、a +d .若五个数成等差一般设为a -2d 、a -d 、a 、a +d 、a +2d .有时也直接设为等差数的通项形式,具体问题具体分析,设的目的是便于计算,要灵活选择设的方法.4.等差中项有广泛应用,要准确理解其含义.5.证明数列为等差数列的方法有:定义法、通项公式法、等差中项法.K29753 7439 琹35196 897C 襼.D27967 6D3F 洿40023 9C57 鱗34218 85AA 薪}l !I24395 5F4B 彋E。
2020_2021学年高中数学第二章数列2.1.1数列的概念与通项公式课件新人教A版必修5

数列
2.1 数列的概念与简单表示法
第1课时 数列的概念与通项公式
[目标] 1.知道数列的定义,理解数列的顺序性;2.知道数列 的几种分类;3.知道数列是特殊的函数,体会数列的项与序号间 的关系,并能根据数列的前几项写出数列的通项公式.
[重点] 数列的定义,根据数列的前几项写出数列的通项公 式.
[变式训练 3] 黑、白两种颜色的正六边形地面砖按下图的 规律拼成若干个图案,则第 n 个图案中有白色地面砖 4n+2 块.
解析:第 1 个图案中有白色地面砖 6 块,第 2 个图案中有白 色地面砖 10 块,第 3 个图案中有白色地面砖 14 块,…,后一个 图案总比前一个图案多 4 块白色地面砖,从而第 n 个图案中有 4n +2 块白色地面砖.
(3)证明:∵an=33nn-+21=3n3+n+1-1 3=1-3n3+1, 又 n∈N*,∴0<3n3+1<1, ∴0<an<1. 即数列中的各项都在区间(0,1)内.
1.数列的通项公式给出了第 n 项 an 与它的位置序号 n 之间的 关系,只要用序号代替公式中的 n,就可以求出数列的相应项.,2. 判断某数值是否为该数列的项,需先假定它是数列中的项,列方 程求解.若方程的解为正整数,则该数值是数列中的项;若方程 无解或解不是正整数,则该数值不是此数列的项.
[分析] 通过题中给出的图形计数,探索项与项数 n 的关系, 猜想通项公式求解,或者根据图形变化规律,将小石子的个数逐 个写出,直到第 10 个.
[解析] 方法一(计数探规律):三角形数依次为: 1,3,6,10,15,…;从第 2 项起,规律为:3=1+2(第 2 个);6=1 +2+3(第 3 个);10=1+2+3+4(第 4 个);…;第 10 个三角形 数为:1+2+3+4+…+10=55.
高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5

高中数学第二章数列2.2.1等差数列的概念与通项公式教材分析新人教A版必修5
等差数列的观点及通项公式教材剖析
本节课主要研究等差数列的观点、通项公式及其应用,是本章的要点内容之一。
而所处章节《数列》又是高中数学的重要内容,而且在实质生活中有着宽泛的应用,它起着承上启下的
作用。
一方面 , 数列与前方学习的函数等知识有亲密的联系 ; 另一方面 , 学习数列又为进一步学习数列的极限等内容作好了准备。
同时也是培育学生数学能力的优秀题材。
学习数列要常常察看、剖析、概括、猜想,还要综合运用前方的知识解决数列中的一些问题。
等差数列是学生研究特别数列的开始,它对后续内容的学习,不论在知识上,仍是在方法上都拥有踊跃的意义。
课后反省
1.从生活中的数列模型导入,有助于发挥学生学习的主动性,加强学生学习数列的兴趣.在研
究的过程中,学生经过剖析、察看,概括出等差数列定义,而后由定义导出通项公式,加强了由
详细到抽象,由特别到一般的思想过程,有助于提升学生剖析问题和解决问题的能力.
2.环环相扣、简短了然、要点突出,指引剖析仔细、到位、适量.如:判断某数列能否成等
差数列,这是促使观点理解的好素材;别的,用方程的思想指导等差数列基本量的运算等等.学生在经历过程中,加深了对观点的理解和稳固.。
2022年高中数学第二章数列1-1数列的概念与简单表示法练习含解析新人教A版必修
课时训练5 数列的概念与简单表示法一、数列的概念及分类1.下列叙述正确的是( )A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n}C.数列0,1,0,1,…是常数列D.数列{n n+1}是递增数列答案:D解析:数列中的项是有序的,故A错;B中通项为{n-1};C中数列为摆动数列,故选D.2.数列5,4,3,m,…是递减数列,则m的取值范围是( )A.(-∞,3)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案:A解析:依据递减数列的定义,只要后面的项比它的前一项小即可,所以m的取值范围是(-∞,3).3.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.sinπ7,sin2π7,sin3π7,…C.-1,-12,-14,-18,…D.1,√2,√3,…,√21答案:C4.下面的数列中,哪些是递增数列、递减数列、常数列、摆动数列?(1)1,2,3,4,5,6,7,…;(2)10,8,6,4,…;(3)1,0,1,0,1,0,…;(4)a,a,a,a,….解:(1)递增数列,因为从第2项起,每一项都大于它的前一项;(2)递减数列,因为从第2项起,每一项都小于它的前一项;(3)摆动数列,因为从第2项起,数列中有些项大于它的前一项,有些项小于它的前一项;(4)常数列.二、数列的通项公式及应用5.(2015河南南阳高二期中,1)已知数列√5,√11,√17,√23,√29,…,则5√5是它的第( )项.A.19B.20C.21D.22答案:C解析:数列√5,√11,√17,√23,√29,…中的各项可变形为√5,√5+6,√5+2×6,√5+3×6,√5+4×6,…,∴通项公式为a n=√5+6(n-1)=√6n-1,令√6n-1 =5√5,得n=21.故选C.6.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( )A.27B.28C.29D.30答案:B解析:由已知从第二项起,每一项与前一项的差是这一项的项数,即a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,以此规律得a6-a5=6,∴a7-a6=7.∴a7=7+a6=7+6+a5=13+15=28.7.数列{a n}的通项公式a n=则√10-3是此数列的第 项.√n+√n+1答案:9√n+1−√n,解析:a n=√n+√n+1令n=9,则a 9=√10−√9=√10-3.∴√10-3是数列中第9项.8.已知数列的通项公式为a n =2n 2-n.(1)求这个数列的第8项,第10项;(2)试问:45是否是{a n }中的项?3是否是{a n }中的项?解:(1)∵a n =2n 2-n ,∴当n=8时,a 8=2×82-8=120;当n=10时,a 10=2×102-10=190.(2)a n =2n 2-n ,令a n =45,则有2n 2-n-45=0,解得n=5或n=-92(舍去),∴45是该数列的第5项.令a n =3,则有2n 2-n-3=0.该方程不存在正整数解,故3不是该数列中的项.9.写出数列的一个通项公式,使它的前几项分别是下列各数.(1)a ,b ,a ,b ,…;(2)22-12,32-13,42-14,52-15,…;(3)-11×2,12×3,-13×4,14×5,…;(4)12,2,92,8,252,….解:(1)数列的奇数项为a ,偶数项为b ,因此通项公式可用分段形式来表示,记为a n ={a ,n ,为奇数b ,n ,为偶数也可记为a n =a +b 2+(-1)n+1·a -b 2.(2)这个数列的前4项分别为22-12,32-13,42-14,52-15,其分母都是序号n加上1,分子都是分母的平方减去1,故a n=(n+1)2-1n+1.(3)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,故a n=(-1)nn(n+1).(4)该数列的项中有的是分数,有的是整数,将各项都统一成分数为12,42,92,162,252,…,观察可知各项分母都是2,分子都是序号的平方,所以a n=n 22.(建议用时:30分钟) 1.数列√2,√5,2√2,√11,…,则2√5是该数列的( )A.第6项B.第7项C.第10项D.第11项答案:B解析:由a n=√3n-1=2√5,解得n=7.2.数列0,13,12,35,23,…的通项公式为( )A.a n=n-2n B.a n=n-1nC.a n=n-1n+1D.a n=n-2n+2答案:C解析:原数列可变形为02,13,24,35,46,…,∴a n =n -1n +1.3.已知数列的通项公式a n ={3n +1,n ,为奇数2n -2,n ,为偶数则a 2a 3等于( )A.70B.28C.20D.8答案:C解析:由a n ={3n +1,n ,为奇数2n -2,n ,为偶数得a 2a 3=2×10=20.∴选C.4.已知数列{a n }满足:a 1>0,a n +1a n =12,则数列{a n }是( )A.递增数列B.递减数列C.摆动数列D.不确定答案:B解析:由已知数列各项为正,且从第二项起每一项是前一项的12,则数列{a n }是递减数列.5.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( )A.2B.6C.7D.8答案:C解析:数字为1的有1个,数字为2的有2个,数字为3的有3个,∴按照此规律.当数字为6时,共有1+2+3+4+5+6=21项,当数字为7时,共有1+2+3+4+5+6+7=28项.∴第25项为7.6.已知数列{a n },a n =a n +m (a<0,n ∈N *),满足a 1=2,a 2=4,则a 3= .答案:2解析:∵{2=a +m ,4=a 2+m ,∴{a =-1,m =3,∴a n =(-1)n +3,∴a 3=(-1)3+3=2.7.下列叙述中正确的为 .①数列a n=2是常数列;②数列{(-1)n·1n}是摆动数列;③数列{n2n+1}是递增数列;④若数列{a n}是递增数列,则数列{a n a n+1}也是递增数列.答案:①②③解析:①中每一项均为2,是常数列.②中项的符号由(-1)n调整,是摆动数列.③n2n+1可变形为12+1n,为递增数列.④中若a n=n-3,则a n a n+1=(n-3)(n-2)=n2-5n+6,不是递增数列.8.黑白两种颜色的正六边形地面砖按下图的规律拼成若干个图案,则第n个图案中有白色地面砖 块.答案:4n+2解析:第1个图案有白色地面砖6块,第2个图案有10块,第3个图案有14块,可以看出每个图案较前一个图案多4块白色的地面砖.∴第n个图案有6+4(n-1)=(4n+2)(块).9.根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…;(2)1,3,6,10,15,…;(3)7,77,777,….分析:(1)注意前4项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母依次相差3,因而有a n=43n+2.(2)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×2 2,2×32,3×42,4×52,5×62,…,因而有a n=n(n+1)2.(3)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,…,因而有a n=79(10n-1).解:(1)a n=43n+2;(2)a n=n(n+1)2;(3)a n=79(10n-1).10.已知数列{a n}的通项公式a n=n+6n.(1)求a10.(2)5350是否是这个数列中的项?(3)这个数列中有多少整数项?(4)是否有等于序号的项?若有,求出该项;若没有,说明理由.解:(1)a10=10+610= 8 5.(2)令n+6n =5350,得n=100,故5350是这个数列的第100项.(3)∵a n=1+6n,∴当n=1,2,3,6时,a n为整数,故这个数列中有4项是整数项.(4)令n+6n=n得n2-n-6=0,解得n=3或n=-2(舍去),故该数列中有等于序号的项,即a3=3.。
人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公
1.已知数列{an}的前 n 项和 Sn 2n2 n 1,求 an 2.已知数列{an}的前 n 项和 Sn 1 3n ,求 an
答案 第1题
4 n 1 an 4n 1 n 2
第2题
an 2 3n1, n N
隐藏 Sn ,求 an
【例 2】已知数列{an}中, a1 2a2 2n1an n2 n ,求 an
(2)由(1)
1 Sn
2n ,
Sn
1 2n
,nN
(又回到了类型一)
①当
n
1 时,
a1
S1
1 2
②当 n 2 时, an Sn Sn1
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2n 2n 2
1 2n2 2n
n2 n (n 1)2 (n 1) 2n 对于 bn 2n ,当 n 1 时, b1 2
所以: bn 2n, n N
又 bn 2n1 an , 则2n1 an 2n
所以: an
n 2n2
,n N
处理方法
换元转换为类型一
3. 已知数列{an}中, a1 3a2 (2n 1)an n(n 1)(n 2) ,求 an
(1)求 an :与类型一的处理方法一样,消去 Sn ,
得到 an 与 an1 的递推关系,再求 an
(2)求 Sn :消去 an ,得到 Sn 与 Sn1 的递推关系,
进而求出 Sn
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2 0即 1 1 2
高中数学第二章数列2.1.1数列的概念与通项公式课时作业含解析新人教A版必修52020082111
第二章 数列课时作业7 数列的概念与通项公式时间:45分钟——基础巩固类——一、选择题1.已知数列{a n }的通项公式为a n =1+(-1)n +12(n ∈N *),则该数列的前四项依次为( A )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0解析:把n =1,2,3,4代入通项公式计算即可.2.已知数列{a n }前三项分别为-1,0,1,下列各式:①a n =n -2;②a n =(-1)n -12;③a n=(n -2)5;④a n =(n -2)+(n -1)(n -2)(n -3).其中能作为数列{a n }的通项公式的有( C )A .1个B .2个C .3个D .4个解析:把n =1,2,3代入各通项公式进入检验.3.已知数列的通项公式a n =⎩⎪⎨⎪⎧3n +1,n 为奇数,2n -2,n 为偶数,则a 2a 3等于( C )A .70B .28C .20D .8解析:把a n =⎩⎪⎨⎪⎧3n +1, n 为奇数2n -2, n 为偶数,得a 2a 3=2×10=20.故选C.4.在数列1,2,7,10,13,…中,219是这个数列的( C ) A .第16项 B .第24项 C .第26项 D .第28项 解析:数列各项可化为1,3×1+1,3×2+1,3×3+1,3×4+1,…,故a n =3n -2(n ∈N *),由3n -2=219可得n =26,即219是这个数列的第26项.5.已知数列{a n }的通项公式为a n =n2n -1,按项的变化趋势,该数列是( B )A .递增数列B .递减数列C .摆动数列D .常数列解析:∵a n +1-a n =n +12n +1-n2n -1=-1(2n +1)(2n -1)<0,n ∈N *,∴a n +1<a n .故该数列是递减数列.6.数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项解析:当n =143时,a n 最小;又n ∈N *,故n =5时,a n =3n 2-28n 最小.二、填空题7.已知数列{a n },a n =a n +m (a <0,n ∈N *),满足a 1=2,a 2=4,则a 3=2.解析:∵⎩⎪⎨⎪⎧ 2=a +m ,4=a 2+m ,∴⎩⎪⎨⎪⎧a =-1,m =3.∴a n =(-1)n +3.∴a 3=(-1)3+3=2.8.已知数列{a n }的前4项为11,102,1 003,10 004,…,则它的一个通项公式为a n =10n+n .解析:由于11=10+1,102=102+2, 1 003=103+3,10 004=104+4,…, 所以该数列的一个通项公式是a n =10n +n .9.如图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,按图中结构第n 个图有化学键5n +1个.解析:每个结构简图去掉最左边的一个化学键后,每个环上都有5个化学键,故第n 个结构简图有5n +1个化学键.三、解答题10.根据数列的前几项,写出下面各数列的一个通项公式: (1)45,12,411,27,…; (2)23,-1,107,-179,2611,…; (3)1,3,6,10,15,…;(4)7,77,777,….解:(1)注意前4项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母依次相差3,因而有a n =43n +2.(2)数列可写为23,-55,107,-179,2611,…,奇数项为正,偶数项为负,且分母是奇数,分子是n 2+1,所以它的一个通项公式可写为(-1)n +1n 2+12n +1.(3)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n (n +1)2.(4)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,…,因而有a n =79(10n -1).11.根据数列的通项公式,用列表法和图象法表示下列数列(n ≤5且n ∈N *). (1)a n =(-1)n +2; (2)a n =n +1n.解:用列表法分别表示出这两个数列.n 1 2 3 4 5 a n =(-1)n +2 1 3 1 3 1 a n =n +1n232435465它们的图象如图(1)(2)所示.——能力提升类——12.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( C ) A .2 B .6 C .7 D .8解析:∵已知数列中数字为1的有1项,数字为2的有2项,数字为3的有3项,∴按照此规律.当数字为6时,共有1+2+3+4+5+6=21项,当数字为7时,共有1+2+3+4+5+6+7=28项.∴第25项为7.13.下列叙述中正确的个数为( C )①数列a n =2是常数列;②数列⎩⎨⎧⎭⎬⎫(-1)n ·1n 是摆动数列;③数列⎩⎨⎧⎭⎬⎫n 2n +1是递增数列;④若数列{a n }是递增数列,则数列{a n ·a n +1}也是递增数列.A .1个B .2个C .3个D .4个解析:①②③正确,④是错误的,④中若a n =n -3,则a n a n +1=(n -3)(n -2)=n 2-5n +6,它不是递增数列.14.已知数列{a n }的通项公式是a n =n 2-8n +12,那么该数列中为负数的项一共有3项. 解析:令a n =n 2-8n +12<0,解得2<n <6,又因为n ∈N *,所以n =3,4,5,一共有3项. 15.已知数列{a n }的通项公式a n =n +6n .(1)求a 10.(2)5350是否是这个数列中的项? (3)这个数列中有多少整数项?(4)是否有等于序号的项?若有,求出该项;若没有,说明理由. 解:(1)a 10=10+610=85.(2)令n +6n =5350,得n =100.故5350是这个数列的第100项.(3)∵a n =1+6n ,∴当n =1,2,3,6时,a n 为整数.故这个数列中有4项是整数项. (4)令n +6n=n 得n 2-n -6=0, 解得n =3或n =-2(舍去).故该数列中有等于序号的项,即a 3=3.。
高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教
第1课时 等比数列的概念及通项公式[学生用书P105(单独成册)][A 基础达标]1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36D .18解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54. 2.在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( )A .±4 B.4 C .±14D .14解析:选A.由题意得(±a 6)2=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6=±4.3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B.因为b 是-1,-9的等比中项,所以b 2=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2=ac ,即ac =9.4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A. 2B.4 C .2D .12解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则{a n }的通项公式a n =( ) A .22n -1B.2nC .22n +1D .22n -3解析:选A.由a 2n +1-3a n +1a n -4a 2n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.故选A.6.下面四个数列:①1,1,2,4,8,16,32,64;②在数列{a n }中,已知a 2a 1=2,a 3a 2=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,a n +1a n=q (q ≠0),其中n ∈N *. 其中一定是等比数列的有________.解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *,有a n +1a n=q (q ≠0),那么{a n }是等比数列.答案:④7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4=8,所以⎩⎪⎨⎪⎧-1+3d =8,-1·q 3=8,所以⎩⎪⎨⎪⎧d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=22=1.答案:18.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________.解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化简得a 1q 3=2=a 4. 因为a 4与a 6的等差中项为54,所以a 4+a 6=2×54,所以a 4(1+q 2)=52.所以q 2=14,解得q =±12.则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±169.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =12,求n .解:(1)因为a 5=a 1q 4=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫12n -3=28-n ;当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫-12n -3.所以a n =28-n或a n =32×⎝ ⎛⎭⎪⎫-12n -3.(2)当a n =12时,即28-n=12或32×⎝ ⎛⎭⎪⎫-12n -3=12,解得n =9.10.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9①2(q 2+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列,所以a 1=q =2,所以a n =2n.[B 能力提升]11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n-1 B.2n -1-1C .2n -1D .2(n -1)解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n-1.12.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18D .21解析:选D.ka 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k=a 1q k -12=a 1q 10,因为a 1>0,q ≠1,所以k -12=10,所以k =21,故选D.13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则b n b n -1=2a n 2a n -1=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.(2)由已知,得⎩⎪⎨⎪⎧a 1+d =3,a 1+3d +3(a 1+4d )=56,解得⎩⎪⎨⎪⎧a 1=-1,d =4,于是b 1=2-1=12,公比q =2d =24=16,所以数列{b n }的通项公式b n =12·16n -1=24n -5.14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *). (1)求a 1,a 2;(2)求数列{a n }的通项公式.解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-12.又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=14.(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-12,所以数列{a n }是首项为-12,公比为-12的等比数列,所以a n =⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第二章数列2.1.1数列的概念与通项公式练习(含解析)新人教A 版必修5知识点一 根据数列的前几项求通项公式1.数列-1,3,-7,15,…的一个通项公式可以是( ) A .a n =(-1)n ·(2n-1) B .a n =(-1)n·(2n -1) C .a n =(-1)n +1·(2n-1) D .a n =(-1)n +1·(2n -1)答案 A解析 数列各项正、负交替,故可用(-1)n 来调节,又1=21-1,3=22-1,7=23-1,15=24-1,…,所以通项公式为a n =(-1)n ·(2n-1).2.根据数列的前4项,写出下列数列的一个通项公式. (1)0.9,0.99,0.999,0.9999,…; (2)112,245,3910,41617,…;(3)12,34,78,1516,…; (4)3,5,9,17,…. 解 (1)0.9=1-0.1=1-10-1,0.99=1-10-2,0.999=1-10-3,0.9999=1-10-4,故a n =1-10-n(n ∈N *).(2)112=1+112+1,245=2+2222+1,3910=3+3232+1,41617=4+4242+1,故a n =n +n2n 2+1(n ∈N *).(3)12=21-121=1-121,34=22-122=1-122, 78=23-123=1-123,1516=24-124=1-124, 故a n =2n-12n =1-12n (n ∈N *).(4)3=1+2,5=1+22,9=1+23,17=1+24, 故a n =1+2n(n ∈N *).知识点二 数列通项公式的应用3.数列23,45,67,89,…的第10项是( )A .1617B .1819C .2021D .2223 答案 C解析 由题意知数列的通项公式是a n =2n 2n +1,∴a 10=2×102×10+1=2021.故选C .4.若数列a n =1n +1+1n +2+ (12),则a 5-a 4=( ) A .110 B .-110 C .190 D .1990 答案 C解析 依题意知,a 5-a 4=15+1+15+2+…+12×5-14+1+14+2+…+12×4=19+110-15=190.故选C . 5.已知数列3,3,15,21,33,…,32n -1,…,则9是这个数列的( )A .第12项B .第13项C .第14项D .第15项 答案 C解析 依题意,该数列的通项公式为a n =32n -1.令a n =9,得n =14,故选C .6.已知数列{a n }的通项公式,a n =⎩⎪⎨⎪⎧3n -1n 为奇数,2n -2n 为偶数,则a 2a 3的值是( )A .70B .28C .20D .16 答案 D解析 a 2=2×2-2=2,a 3=3×3-1=8,a 2a 3=16.故选D .知识点三 数列的单调性7.已知数列{a n }的通项公式是a n =2nn +1,那么这个数列是( ) A .递增数列 B .递减数列 C .摆动数列 D .常数列 答案 A 解析 a n =2n n +1=2-2n +1单调递增.故选A . 8.已知数列{a n }满足a 1<0,a n +1a n=2(n ∈N *),则数列{a n }是________数列(填“递增”或“递减”).答案 递减解析 由已知a 1<0,a n +1=2a n (n ∈N *),得a n <0(n ∈N *).又a n +1-a n =2a n -a n =a n <0,所以{a n }是递减数列.易错点一 忽视数列与函数的区别9.设函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________.易错分析 本题易错把数列单调递增等同于所在函数递增,忽视二者区别错算出a ∈⎝ ⎛⎭⎪⎫94,3,事实上数列单调递增,所在函数不一定单调.答案 (2,3)解析 由题意,得点(n ,a n )分布在分段函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7的图象上.因此当3-a >0时,a 1<a 2<a 3<…<a 7; 当a >1时,a 8<a 9<a 10<…; 为使数列{a n }递增还需a 7<a 8. 故实数a 满足条件⎩⎪⎨⎪⎧3-a >0,a >1,f 7<f 8,解得2<a <3,故实数a 的取值范围是(2,3).易错点二 审题不细心,忽略细节10.已知数列{a n }的通项公式为a n =-2n 2+21n ,则该数列中的数值最大的项是( ) A .第5项 B .第6项C .第4项或第5项D .第5项或第6项易错分析 本题易不注意n =5和n =6,哪一个距离n =214更近而错选D .答案 A解析 a n =-2⎝⎛⎭⎪⎫n -2142+4418,因为n ∈N *,5<214<6,且a 5=55,a 6=54,所以数值最大的项为第5项.故选A .一、选择题1.下列说法正确的是( )A .数列1,-2,3,-4,…是一个摆动数列B .数列-2,3,6,8可以表示为{-2,3,6,8}C .{a n }和a n 是相同的概念D .每一个数列的通项公式都是唯一确定的 答案 A解析 对于A ,摆动数列是指从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列,故A 正确;数列与数集是不同的,故B 错误;{a n }和a n 是不同的概念,{a n }表示数列a 1,a 2,a 3,…,a n ,…,而a n 表示的是这个数列的第n 项,故C 错误;每一个数列的通项公式并不都是唯一确定的,故D 错误.故选A .2.数列7,9,11,…,2n -1的项数是( ) A .n -3 B .n -2 C .n -1 D .n 答案 A解析 数列通项公式为2n +5,而2n -1=2(n -3)+5,所以项数为n -3.故选A . 3.已知数列{a n }的前四项分别为1,0,1,0,则下列通项公式可以作为数列{a n }的通项公式的个数有( )①a n =12[1+(-1)n +1] ②a n =sin 2n π2 ③a n =1-cos n π2 ④a n =⎩⎪⎨⎪⎧1n 为奇数,0n 为偶数⑤a n =12[1+(-1)n +1]+(n -1)(n -2)A .1个B .2个C .3个D .4个 答案 D解析 要判别某一公式不是数列的通项公式,只要把适当的n 代入a n ,其不满足即可,若要确定它是通项公式,必须加以一定的说明.由三角公式知,②③实质相同,容易验证前四项均符合;①④前四项显然符合,对于⑤,将n =3代入不符合.所以有4个可作为数列{a n }的通项公式.4.数列-13×5,25×7,-37×9,49×11,…的通项公式a n 为( )A .(-1)n +112n +12n +3B .(-1)n +1n2n +12n +3 C .(-1)n12n +12n +3 D .(-1)nn2n +12n +3答案 D解析 观察式子的分子为1,2,3,4,…,n ,…,分母为3×5,5×7,7×9,…,(2n +1)(2n +3),…,而且正负间隔,故通项公式a n =(-1)nn2n +12n +3.5.设a n =1n +1+1n +2+1n +3+ (12)(n ∈N *),那么a n +1-a n 等于( ) A .12n +1 B .12n +2C .12n +1+12n +2D .12n +1-12n +2 答案 D 解析 ∵a n =1n +1+1n +2+1n +3+…+12n, ∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2. 二、填空题6.已知一组数1,1,2,3,5,8,x ,21,34,55,按这组数的规律,x 应为________. 答案 13解析 由题意得1+1=2,1+2=3,2+3=5,3+5=8.∴x =5+8=13.7.23,415,635,863,1099,…的一个通项公式是________. 答案 a n =2n 2n -12n +1解析23=21×3,415=2×23×5,635=2×35×7,863=2×47×9,1099=2×59×11,…,∴a n =2n 2n -12n +1.8.数列{a n }满足a n =n -2014n -2015,若a p 最大,a q 最小,则p +q =________.答案 89 解析 a n =n -2014n -2015=1+2015-2014n -2015.由于44<2015<45,则当n ≤44时,a n =1-2015-20142015-n<1且递减;当n ≥45时,a n =1+2015-2014n -2015>1且递减.所以a 44最小,a 45最大,即p =45,q =44,故p +q =45+44=89. 三、解答题9.已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,试求a 1+a 100和a 1-a 2+a 3-a 4+…+a 99-a 100的值.解 ∵a 1=1-1=0,a 100=100.∴a 1+a 100=100. 又a 1=0,a 3=2,a 5=4,…,a 99=98,而a 2=2,a 4=4,a 6=6,…,a 98=98,a 100=100, ∴a 1-a 2+a 3-a 4+…+a 99-a 100 =0-2+2-4+4-…+98-100 =-100.10.数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项;(2)求证:此数列的各项都在区间(0,1)内; (3)区间13,23内有无数列的项?若有,有几项?解 (1)a 7=7272+1=4950.(2)证明:∵a n =n 2n 2+1=1-1n 2+1, ∴0<a n <1,故数列的各项都在区间(0,1)内. (3)∵13<n 2n 2+1<23,∴12<n 2<2. 又n ∈N *,∴n =1,即在区间13,23内有且只有一项a 1.。