2010-2011数值分析试题

合集下载

2010级数值分析试题

2010级数值分析试题
3 4 3 3.已知 A 1 2 5 ,求 A 以及 1 4 1 1
A ;
4.已知 f ( x ) 2 x 3 4 x 5 ,写出以 2, 0, 1 为插值节点的二次拉格朗日插值多项式; 5.写出用变步长梯形求积公式计算积分 f ( x )dx的计算公式.
a xk
3
r
产生的序列 x k 收敛到 4
a ,使其收敛阶尽可能高,
并说明该迭代公式的收敛阶.
10 a 0 五、(本题满分15分)设 A b 10 b ( A 的行列式 0 a 5
2 det( A) 0),给定方程组 AX 1 1
要求:(1)写出计算公式;(2)画出算法框图. 七、(本题满分10分)确定求积公式

3
1
f ( x )dx A0 f (0) A1 f (1) A2 f (2)
中的待定参数 A0 , A1 ,与 A2,使其代数精度尽可能高, 并指明该求积公式所具有的代数精度.
八、(本题满分5分)
给定等距节点
a b
二、(本题满分10分) 用高斯消去法求解方程组
a11 x1 a12 x 2 a13 x 3 a1n x n b1 a x a x a x a x b 21 1 22 2 23 3 2n n 2 a n1 x1 a n 2 x 2 a n 3 x 3 a nn x n bn
1.根据迭代法收敛的充分必要条件确定a,b的取值范围, 使求解上述方程组的雅可比迭代法收敛.
. 2.写出求解上述方程组的雅可比迭代公式.
3.若用高斯—塞德尔迭代法求解上述方程组,画出高斯 —塞德尔迭代法的算法框图.

光机所2010数值分析试题

光机所2010数值分析试题

光机所2010数值分析试题一、(24分)(1) 设x j 为互异节点,试证明()∑=≡n j k j k j x x l x 0,k =0, …, n(2) 证明 ()()()∑==≡-n j j kj n k x l x x0,,1,0 (3) 求一个次数不高于4的多项式()x p 4,使它满足()()00044='=p p ,()()11144='=p p ,()124=p .二、(24分)(1) 什么叫求积公式的m 次代数精度?(2) 确定下述数值积分的参数a ,使其代数精度尽量高,并说明该公式有几次代数精度()()()()h f A f A h f A dx x f h h 101220++-=--⎰(3) 已知411=x ,212=x ,433=x ,推导以这三个点作为求积节点在[0, 1]上的插值型求积函数,并用所求公式计算⎰102dx x 三、(12分) 已知函数1, x, 312-x 在[-1, 1]上两两正交,并求一个三次多项式,使其与这三个函数两两正交。

四、解下列线性方程组(用某种方法解方程组,貌似主要考的是矩阵计算)五、(10分) 已知 ||x || = ||y ||, x ≠y ,证明存在初等反射阵变换H ,使Hx = y ,若x = (1, 1, 0),y =(此处缺一系数) ||x|| e 1,从计算效果考虑应该取正号还是负号,并计算相应的矩阵H六、(8分) 证明1 – x - sin x = 0在[0, 1]内有一个根,使用二分法求误差不大于41021-⨯的解需迭代二分多少次?七、(12分) 设有迭代格式 ()()g Rx x k k +=-1, k = 1, 2, … 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=05.02/15.005.02/15.00R ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=5.015.0g 试证该迭代格式收敛。

取初始向量为 (0, 0, 0) ,计算x。

2011级数值分析试卷

2011级数值分析试卷

菏泽学院数学系2011级 2013-2014学年第一学期数学与应用数学专业《数值分析和计算方法》期末试卷(A )(110分钟)题号 一 二 三 四 五 总分得分 阅卷人一.选择题(将正确选项前的代号写在题号前的括号内,每小题3分,共15分)( )1.若用最小刻度为0.5mm 的刻度尺测量物体,其误差限为( )A.0.25mmB.1.0mmC.0.5mmD.0mm ( )2.下列具有最高代数精度的求积公式是( )A.龙贝格求积公式B.复合辛普森求积公式C.牛顿-科特斯求积公式D.高斯求积公式( )3.已知2,1,0,,1)(==-=i i x x x f i i i 。

则函数)(x f 的插值多项式为( )A. 145412-+x x B.1-xC.-145412-+x x D.2+-x( )4.下列给出的是用不动点迭代法求032=-x 的根3*=x 的迭代函数,则相应的迭代方法局部收敛的是A.x x 3=)(ϕ B.3)(2-+=x x x ϕC.2321)(2-+=x x x ϕD.)3(21)(xx x +=ϕ( )5.线性方程组AX=b 能用高斯消元法求解的充要条件是( )A.A 为对称矩阵B.A.为实矩阵C.A 的各阶顺序主子式不为零D.0≠A得分 阅卷人二.填空题(请将正确答案填写在每小题的横线上,每空4分,共20分)1.计算积分⎰b adx x f )(的梯形公式为 。

2.设向量T n x )2,1,0( =,则=∞x 。

3.用牛顿法求方程0)(=x f 的根的公式为 。

4.已知n=3时的牛顿-科特斯系数83,83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。

5.已知点,5,4,3,2,1,1=-=i i x i 则二阶差分=∆32x 。

三.判断题(对的在题前括号内划√,错的划×,每题2分,共10分)( )1.高斯求积公式的系数都是正的,故计算总是稳定的。

福州大学2010-2011年数值分析考题及答案1

福州大学2010-2011年数值分析考题及答案1
得分 评卷人
1、若向量 x (4, 2,3) ,则
T
x 2 =___ 29 _________
=____ 6 ____,A 的
2、
1 1 A , 则 A 的谱半径 -5 1
=____6____
3、 确定求积公式 尽量高,则 A0=_

1
1
f ( x)dx A0 f (1) A1 f (0) A2 f '(1) 中的待定参数,使其代数精度
0 2 0 5、设 B 2 1 2 ,试用平面旋转矩阵对矩阵 A 进行 QR 分解,其中 Q 为正交 0 2 1
矩阵,R 为上三角阵(8 分)
4
记A1 A, 先将A的第一列变得与e1平行 cos = 0 2 0,sin = 1 04 04 0 1 0 0 1 0 0 P A 2 P A1 1 12 12 0 0 0 1
3、
h 用二步法 yn1 yn [ f ( xn , yn ) f ( xn1 , yn1 )] 求解一阶常微分方程初值问题 2
y f ( x, y ) 问:如何选择参数 , 的值,才使该方法的阶数尽可能地高?写出 y ( x0 ) y0
此时的局部截断误差主项,并说明该方法是几阶的。 证明:局部截断误差为:
( x x )l ( x) 等于
i 0 i i
4
( a ) 1 (c) 2 (d) 4
(a)
0
(b)
3、设 f ( x) 3x5 4 x 4 x 2 1 和节点 xk k / 2, k 0,1 则差商 f [ x0 , x1 x5 ] (a) 4 (b) 2 (c) 3 (d) 1 ( ( c ) c )

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B(总分:28.00,做题时间:90分钟)一、填空题(总题数:6,分数:12.00)1.填空题请完成下列各题,在各题的空处填入恰当的答案。

(分数:2.00)__________________________________________________________________________________________ 解析:2.设|x|>>1______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:3.求积分∫ a b f(x)dx的两点Gauss公式为______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:4.设∞ =______,‖A‖ 2 =______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:5.给定f(x)=x 4,以0为三重节点,2为二重节点的f(x)的Hermite插值多项式为______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:x 4)解析:6.己知差分格式r≤______时,该差分格式在L ∞范数下是稳定的.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:二、计算题(总题数:2,分数:4.00)7.给定方程lnx-x 2+4=0,分析该方程存在几个根,并用迭代法求此方程的最大根,精确至3位有效数字.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:令f(x)=lnx-x 2 +4,则f"(x)= -2x,当x= 时,f"(x)=0. 注意到f(0.01)=-0.6053<0,f(1)=3>0,f(3)=-3.9014<0,而当时,f"(x)>0,当时,f"(x)<0,所以方程f(x)=0有两个实根,分别在(0.01,1)和(1,3)内.方程的最大根必在(1,3)内,用Newton迭代格式取x 0 =2,计算得x 1 =2.1980,x 2 =2.1)解析:8.用列主元Gauss(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =3,x 2 =1,x 3 =5.)解析:三、综合题(总题数:6,分数:12.00)9.设α,β表示求解方程组.Ax=b的Jacobi迭代法与Gauss-Seidel迭代法收敛的充分必要条件.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:Jacobi迭代格式的迭代矩阵特征方程为展开得500λ3—15αβλ=0或者λ(500λ2—15αβ)=0,解得λ=0或λ2 = 则Jacobi格式收敛的充要条件为|αβ|<Gauss-Seidel格式迭代矩阵的特征方程为展开得500λ3—15αβλ2 =0或者λ2(500λ-15αβ)=0,解得λ=0或λ则Gauss-Seidel格式收敛的充)解析:10.设x 0,x 1,x 2为互异节点,a,b,m为已知实数.试确定x 0,x 1,x 2的关系,使满足如下三个条件p(x 0 )=a, p"(x 1 )=m,p(x 2 )=b的二次多项式p(x)存在且唯一,并求出这个插值多项式p(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由条件p(x 0 )=a,p(x 2 )=b确定一次多项式p 1 (x),有所以p(x)-P 1(x)=A(x—x 0 )(x—x 2 ),p"(x)=p" 1 (x)+A(x—x 0 +x—x 2 ),p"(x 1+A(2x 1 -x 0 -x 2) 解析:11.求y=|x|在[-1,1]上形如c 0 +c 1 x 2的最佳平方逼近多项式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:取φ0 (x)=1,φ1 (x)=x 2,则(φ0,φ0)=∫ -11 =2,(φ0,φ1)=∫ -11 x 2)1 x 2,(φ1,φ1)=∫ -1解析:12.已知函数f(x)∈C 3 [0,3],试确定参数A,B,C,使下面的求积公式数精度尽可能高,并给出此时求积公式的截断误差表达式.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:当f(x)=1时左=∫ 03 1dx=3,右=A+B+C,当f(x)=x时左=∫ 03 xdx= ,右=B+2C 当f(x)=x 2时左=∫ 03 x 2 dx=9,右=B+4C.要使公式具有尽可能高的代数精度,则而当f(x)=x 3时,左=∫ 03 x 3)解析:13.给定常微分方程初值问题取正整数n,并记h=a/n,x i =a+ih,0≤i≤n.证明:用梯形公式求解该初值问题所得的数值解为且当h→0时,y n收敛于y(a).(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:梯形公式应用于方程有y i+1=y i+ (-y i—y i+1),即有所以i=1,2,….当h→0时,n→∞我们有而由方程知解析解y=e -x则y(a)=e -a,所以)解析:14.Ω={0<x<3,0<y<3).试用五点差分格式求u(1,1),u(1,2),u(2,1),u(2,2)的近似值.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:五点差分格式为根据要求,可取h= ,将(1,1),(2,1),(1,2),(2,2)处的差分格式列成方程组有或者解得u 11=15.8750,u 21=22.6250,u 12=15.8750,u 22 =22.6250.)解析:。

数值分析试题及答案

数值分析试题及答案

数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。

8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

11.牛顿下山法的下山条件为|f(xn+1)|<|f(xn)| 。

12.线性方程组的松弛迭代法是通过逐渐减少残差r i (i=0,1,…,n)来实现的,其中的残差r i=(b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。

数值分析计算方法试题集及答案

数值分析计算方法试题集及答案

数值分析复习试题第一章 绪论 一. 填空题 1.*x 为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差.3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6位和 7 1.73≈(三位有效数字)-211.73 10 2≤⨯。

4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 .5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0。

01 。

6、 已知近似值 2.4560A x=是由真值T x 经四舍五入得到,则相对误差限为 0。

0000204 。

7、 递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取01.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 。

8、 精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。

9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10—5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档