2020学年度第一学期期中质量检测七年级数学试卷及答案二
人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、精心选择,相信自己判断力!(共10小题,每小题2分,满分20分)1.(2分)计算:﹣2+5的结果是( ) A .﹣7 B .﹣3 C .3D .72.(2分)有理数a 、b 在数轴上的位置如图所示,则a 、b 的大小关系是( )A .a <bB .a >bC .a=bD .无法确定3.(2分)在﹣(﹣3)、﹣|﹣3|、(﹣3)2、(﹣3)3四个数中,负数有( )个. A .1 B .2 C .3 D .74.(2分)下列对整式说法不正确的是( )A .单项式﹣5xy 的系数为﹣5B .单项式﹣5xy 的次数为2C .多项式x 2﹣x ﹣1的次数为3D .多项式x 2﹣x ﹣1的常数项为﹣15.(2分)下列说法正确的是( )A .0的倒数是0B .若a 为有理数,则a 2>0C .有理数可分为整数,0,分数D .当a ≤0时,则|a |=﹣a 6.(2分)下列计算正确的是( ) A .2a +3b=5ab B .﹣2(a ﹣b )=﹣2a +b C .﹣3a +2a=﹣a D .a 3﹣a 2=a7.(2分)x 与y 差的平方,正确列式是( ) A .x ﹣y 2 B .(x ﹣y )2 C .x 2﹣yD .x 2﹣y 28.(2分)计算=( )A .B .C .D .9.(2分)如图所示:两个圆的面积分别为19、11,两个空白部分的面积分别为a 、b (a >b ),则a ﹣b 的值为( )A .5B .6C .7D .810.(2分)小华在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示﹣3的点重合,若数轴上A 、B 两点之间的距离为2017(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数为( )A .﹣1007.5B .﹣1008.5C .﹣1009.5D .﹣2010.5题号一 二 三 总分 得分得 答 题二、耐心填空,试试自己的身手!(共6小题,每小题3分,满分18分)11.(3分)我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么﹣1场表示: . 12.(3分)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为55 000 000千米,这个数据用科学记数法可表示为 .13.(3分)计算:3÷(﹣)×(﹣2)= . 14.(3分)观察下面的一列单项式:2x 2,﹣4x 3,8x 4,﹣16x 5,…根据其中的规律,得出第5个单项式是: .15.(3分)已知四部互不相等的整数,a 、b 、c 、d ,且满足abcd=4.则a +b +c +d= .16.(3分)若a <b ,ab <0:则﹣a +b= (用含|a |和|b |的式子表示)三、用心解答,相信自己能行!(本大题共9题,满分62分) 17.(12分)计算:(1)﹣4+13﹣(﹣6)﹣(﹣7) (2)16÷(﹣8)﹣(﹣)×(﹣4) (3)﹣14﹣(﹣4)2﹣|3﹣7|÷(﹣) 18.(8分)计算:(1)3a ﹣2+(4a ﹣5)(2)x 2﹣2(x 2﹣y )﹣(x 2﹣y ) 19.(5分)阅读下面的解题过程并回答问题 计算:8a 2﹣[3a +2(a ﹣4a )2]解:原式=8a 2﹣3a ﹣2a ﹣8a 2=(8﹣8)a 2+(﹣2﹣3)a=﹣① ② ③回答问题:(1)上面解题过程中错误的步骤是: (填上面序号)(2是(3)请给出正确的计算过程.20.(5分)先化简,再求值:﹣4y +6x 2+3(y ﹣x 2),其中x=,y=﹣1.21.(5分)若a 、b 互为相反数,c 、d 互为倒数,|x |=3,求式子: 3a +b ﹣(x ﹣b )﹣(cd )2017的值.22.(6分)下(单位:千米)+5,﹣3,﹣8,﹣6,+10,﹣6,+11,﹣9(1)将最后一名乘客送到目的地时,小刘在下午出车地点密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题的东面还是西面?离点A 的距离是多少千米?(2)在下午营运开始前出租车油箱内有(58a ﹣a 2﹣1)升汽油,汽车耗油量a 升/千米,问:小刘这个下午从营运开始到送完最后一位乘客,途中是否需要加油?23.(7分)定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减运算与整式的加、减运算类似.复数的乘方意义与有理数的乘方的意义类似,例如: (1)i 3=i•i•i=i 2•i=﹣i(2)(2﹣i )+(5+3i )=(2+5)+(﹣1+3)i=7+2i 根据以上信息,完成下列问题:(1)填空:(﹣1+i )(1﹣i )= ;i ﹣4= . (2)化简:i +i 2+i 3+i 4+…+i 2017.24.(6分)如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 . (2)请用两种不同的方法表示图②中阴影部分的面积. 方法① ;方法② .(3)观察图②,请写出(m +n )2、(m ﹣n )2、mn 这三个代数式之间的等量关系: .(4)若a +b=6,ab=5,则求a ﹣b 的值.25.(8分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中点A 到点B 的距离为3,点C 到点B 的距离为7,如图所示:设点A ,B ,C 所对应的数的和是m .(1)若以B 为原点,则点C 所对应的数是 ;若以C 为原点,则m 的值是.(2)若原点O 在图中数轴上,且点C 到原点O 的距离为4,求m 的值.(3)动点P 从A 点出发,以每秒2个单位长度的速度向终点C 移动,动点Q 同时从B 点出发,以每秒1个单位的速度向终点C 移动,当几秒后,P 、Q 两点间的距离为2?请直接写出答案.参考答案 一、选择题1.C.2.B.3.B.4.C.5.D.6.C.7.B.8.B.9.D.10.C得 二、填空题 11.中国队输1场. 12.5.5×107. 13.12. 14.32x 6 15.0 16.|a |+|b |. 三、解答题17.解:(1)原式=﹣4+13+6+7 =﹣4+26 =22;(2)原式=﹣2﹣ =﹣2;(3)原式=﹣1﹣16﹣4÷(﹣) =﹣17+6 =﹣11.18.(1)解:原式=(3a +4a )+(﹣2﹣5) =7a ﹣7;(2)原式=x 2﹣2x 2+y ﹣x 2+y=(x 2﹣2x 2﹣x 2)+(y +y ) =﹣2x 2+y .19.解:(1)①.(2)加法交换律、加法结合律、乘法分配律; (3)原式=8a 2﹣[3a +2(﹣3a )2] =8a 2﹣3a ﹣2(9a 2) =8a 2﹣3a ﹣18a 2 =(8﹣18)a 2﹣3a =﹣15a 2﹣3a .20.解:﹣4y +6x 2+3(y ﹣x 2) =﹣4y +6x 2+3y ﹣2x 2 =4x 2﹣y ,当x=,y=﹣1时,原式=4×()2﹣(﹣1)=2.21.解:由题意得:a +b=0,cd=1,x=±3;当x=3时,原式=3×0﹣3﹣(﹣1)2017=0﹣3+1=﹣2; 当x=﹣3时,原式=3×0+3﹣(﹣1)2017=0+3+1=4.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题22.解:(1)5﹣3﹣8﹣6+10﹣6+11﹣9=﹣6(千米)所以小刘在出发点的A 西面,离A 的距离是6 千米. (2)|5|+|﹣3|+|﹣8|+|﹣6|+|+10|+|﹣6|+|+11|+|﹣9|=58(千米)(58a ﹣a 2﹣1)﹣58a=﹣a 2﹣1<0,所以需要加油.23.解:(1)原式=﹣(1﹣i )2=﹣1+2i +1=2i ;原式==1;故答案为:2i ;1;(2)原式=(i ﹣1﹣i +1)×504+i=i .24.解:(1)图②中的阴影部分的小正方形的边长=m ﹣n ; (2)方法①(m +n )2﹣4mn ; 方法②(m ﹣n )2; (3)这三个代数式之间的等量关系是: (m ﹣n )2=(m +n )2﹣4mn ; (4)(a ﹣b )2=(a +b )2﹣4ab , ∵a +b=6,ab=5, ∴(a ﹣b )2=36﹣20=16, ∴a ﹣b=±4.故答案为m ﹣n ;(m +n )2﹣4mn (m ﹣n )2;(m +n )2﹣4mn=(m ﹣n )2.25.解:(1)当B 为原点时,点C 对应的数是7;当以C 为原点时,A 、B 对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O 在C 的左边时,A 、B 、C 三点在数轴上所对应的数分别为﹣6、﹣3、4,则 m=﹣6﹣3+4=﹣5,当O 在C 的右边时,A 、B 、C 三点在数轴上所对应的数分别为﹣14、﹣11、﹣4, 则m=﹣14﹣11﹣4=﹣29, 综上所述:m=﹣5或﹣29;(3)假如以C 为原点,则A 、B 、C 对应的数为﹣10,﹣7,0,Q 对应的数是﹣(7﹣t ),P 对应的数是﹣(10﹣2t ), 当P 在Q 的左边时,[﹣(7﹣t )]﹣[﹣(10﹣2t )]=2, 解得:t=1当P 在Q 的左边时,[﹣(10﹣2t )]﹣[﹣(7﹣t )]=2, 解得:t=5,即当1秒或5秒后,P 、Q 两点间的距离为2.密人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:120分 时间: 120分钟)一、选择题(共10小题,每题3分,共30) 1.的倒数是( ) A .2 B .﹣2 C.D .﹣2.下列计算正确的是( )A .a 3+a 3=a 6B .a 3+a 3=2a 3C .a 3+a 3=2a 6D .a 3+a 3=a 9 3.2019年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是( )城市 温州 上海 北京 哈尔宾 广州 平均气温6﹣9﹣1515A .广州B .哈尔滨C .北京D .上海 4.下列各式计算正确的是( ) A .﹣5﹣7=﹣12 B .﹣42×=10 C .3x 2﹣2x 2=1 D .2x ﹣(x ﹣1)=x+1 5.下列各对数中,互为相反数的是( )A .2和B .﹣0.5和C .﹣3和D .和﹣26.x ﹣(2x ﹣y )的运算结果是( ) A .x ﹣y B .﹣x+y C .﹣x ﹣y D .3x ﹣7.﹣2的绝对值等于( ) A .2 B .﹣2 C . D .±2 8.下列各式:,,﹣25,中单项式的个数有( )A .4个B .3个C .2个D .1个 9.下列各组数中,相等的是( ) A .(﹣3)2与﹣32 B .|﹣3|2与﹣32 C .(﹣3)3与﹣33 D .|﹣3|3与﹣3310A .相等 B .都是0C .互为相反数D .相等或互为相反数 二、填空题(共5小题,每空3分,共1811.观察规律并填空:…,第5个数是 ,第n 个数是 .12.单项式﹣πa 3b 2的系数是 ,次数是13.在,0,﹣1.5,﹣|﹣8|,,﹣22中,负数有 个.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题14.2020年某市启动了中心城区南北大街、凤凰路、人民路的人防工程建设,工程建筑总面积为42万平方米.这个数用科学记数法表示应为 平方米.15.多项式﹣3xy+5x 3y ﹣2x 2y 3+5的次数是 .最高次项系数是 ,常数项是 . 三、计算题(共5小题,共72分)16.计算下列各题①(﹣7)+5﹣(﹣3)+(﹣4); ②4×(﹣3)﹣|﹣|×(﹣2)+6; ③(﹣+)×(﹣42); ④﹣1+5÷(﹣)×4. 17.计算:.18.计算:(1)﹣3﹣(﹣9)+8 (2)(1﹣+)×(﹣48)(3)﹣14×(﹣2)+(﹣5)×2+4× (4)×[﹣32×(﹣)2+0.4]÷(﹣1) 19.计算:(1)x 2y ﹣2x 2y (2)(3a ﹣2)﹣3(a ﹣5) (3)3x 2﹣3x 2﹣y 2+5y+x 2﹣5y+y 2(4)(4a 2b ﹣5ab 2)﹣(3a 2b ﹣4ab 2)20.先化简再求值:﹣(x 2﹣y 2)﹣[3xy ﹣(x 2﹣y 2)],其中x=﹣1,y=2.参考答案与试题解析一、选择题(共10小题,每题3分,共30) 1.【解答】解:的倒数是2, 故选:A .2.【解答】解:a 3+a 3=2a 3,只有B 正确. 故选B .3.【解答】解:因为﹣15<﹣9<0<6<15,所以当天平均气温最低的城市是哈尔滨.故选B .4.【解答】解:A 、﹣5﹣7=﹣12,故本选项错误, B 、﹣42×=﹣10,故本选项错误, C 、3x 2﹣2x 2=x 2,故本选项错误, D 、2x ﹣(x ﹣1)=x+1,故本选项正确, 故选:D .5.【解答】解:只有符号不同的两个数互为相反数, 且互为相反数两个数相加得0,线 内﹣0.5+=0. 故选B .6.【解答】解:x ﹣(2x ﹣y ) =x ﹣2x+y =﹣x+y . 故选B .7.【解答】解:根据绝对值的性质, |﹣2|=2. 故选A .8.【解答】解:根据单项式的定义知,单项式有:﹣25, a 2b 2. 故选:C .9.【解答】解:A 、(﹣3)2=9,﹣32=﹣9,故选项错误; B 、|﹣3|2=9,﹣32=﹣9,故选项错误; C 、(﹣3)3=﹣27,﹣33=﹣27,故选项正确; D 、|﹣3|3=27,﹣33=﹣27,故选项错误. 故选C .10.【解答】解:如果两个数的绝对值相等,那么这两个数相等或互为相反数; 故选D .二、填空题(共5小题,每空3分,共18分)11.【解答】解:根据题意可知第n 个数的整数部分是n 子是1,分母是2n .据此规律可推出第5个数和第n 个数分别是5,n+. 12.【解答】解:单项式﹣πa 3b 2的系数是﹣π,次数是513.【解答】解:是负数,0既不是正数也不是负数,﹣1.5是负数, ﹣|﹣8|=﹣8是负数, 是正数, ﹣22=﹣4是负数, 综上所述,共有4个负数. 故答案为:4.14.【解答】解:将42万用科学记数法表示为:4.2×105故答案为:4.2×105. 15.【解答】解:多项式﹣3xy+5x 3y ﹣2x 2y 3+5的次数是5高次项系数是﹣2,常数项是5. 故答案为:5,﹣2,5.三、计算题(共5小题,共72分)16.【解答】解:①原式=﹣7+5+3﹣4=8﹣11=﹣3; ②原式=﹣12+1+6=﹣5;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题③原式=﹣7+30﹣28=﹣5;④原式=﹣1﹣80=﹣81.17.【解答】解:原式=6×﹣×4 =8﹣6=2.18.【解答】解:(1)原式=﹣3+9+8=14;(2)原式=1×(﹣48)﹣×(﹣48)+×(﹣48) =﹣48+8﹣36 =﹣76;(3)原式=(1﹣5+4)× =0;(4)原式=×[﹣9×+0.4]÷(﹣1) =×(﹣)×(﹣) =.19.【解答】解:(1)原式=(1﹣2)x 2y =x 2y ;(2)原式=3a ﹣2﹣3a+15 =13;(3)原式=x 2;(4)原式=4a 2b ﹣5ab 2﹣3a 2b+4ab 2=a 2b ﹣ab 2.20.【解答】解:原式=﹣x 2+y 2﹣3xy+x 2﹣y 2 =﹣3xy ;当x=﹣1,y=2时, 原式=﹣3×(﹣1)×2 =6.。
2020学年七(上)数学期中测试卷参考答案及评分意见

2020学年七(上)数学期中素质测试卷参考答案及评分意见一、选择题(每小题3分,共36分) A C C B B D A C B C B D二、填空题(每小题3分,共30分)13). 2 14).2a +1 15).15℃16).0 17).5.3- 18).1222-或19). 千分 ; 2 ; 2,5(每空一分) 20).2-21).4- 22).600元三、解答题(共56分)23.数轴上画点,3分(每个点0.5分); 5.3--<327-<0<41<()2--<()22- ……………( 1分) 24.解:(1)(2) 原式 = 2-98+-2 ................... (2分) = 928-........................ (1分) (3) 原式 =24 81⨯41243124⨯+⨯-...............(2分) =683+-= 1 ………………………………………(1分)(4) 原式4(2)26=----= 6224--+ ………………………(2分)= 2- ……………………………………(1分)25.解:(1) 24)1046(3=++-⨯;24]10)36[(4=⨯÷--;244)6(310=--⨯- (答案不唯一, 写出一个得1分)(2) 原式=y x xy xy y x 22223515---=22612xy y x - 当1,12x y =-=时,原式=6331)21(61)21(122=+=⨯-⨯-⨯-⨯ (化简正确得3分,代入正确得2分)分)(分)(原式1....................................542..................-5143=-+-=26.解:(1) 纸片剩余部分的面积:24x ab - (2分)(2)当a =6,b =4时,462142⨯⨯=x (2分), 1242=x ,32=x ,因为x >0 所以 3=x (1分) 答:小正方形的边长为3.27.解:(1) =-+-+++-++-)3()4(68)9(741(千米)答:收工时检修小组在A 地东面1千米处 (3分)(2) 第一次距A 地44=-千米; 第二次:374=+-千米;第三次:6974=-+-千米; 第四次: 28974=+-+-千米; 第五次:868974=++-+-千米; 第六次:千米;4468974=-++-+- 第七次:千米;13468974=--++-+-所以距A 地最远的是第5次. (3分)(3)从出发到收工汽车行驶的总路程:千米413468974=-+-+++++-+++-;从出发到收工共耗油:5.205.041=⨯(升)答:从出发到收工共耗油20.5升. (3分)28.(8分)解:a 1=26;..............(2分)a 2=65;.............. (2分)a 3=122;............. (2分)a 2008=26............. (2分)29.解:(1) (5x+60) ; (72+4.5x) ............. (每空2分)(2)方案一:都在甲店购买;当X=10时,60+5X=60+510=110 .......... (1分) 方案二:都在乙店购买;当X=10时,72+4.5X=72+4.510=117.......... (1分) 方案三:在甲店购买4副乒乓球拍,在乙店购买6盒乒乓球; 420+650.9=107 ........ ...... (1分)因为107<110<117,所以方案三最合算。
2020-2021学年七年级数学上学期期中测试卷02(华师大版,河南专用)(解析版)

2020-2021学年七年级数学上学期期中测试卷02(华师大版,河南专用)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.下列各式中,符合代数式书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷【答案】A【解析】A 、符合代数式书写规则.B 、不符合代数式书写规则,应该为14a ;C 、不符合代数式书写规则,应该为136p -; D 、不符合代数式书写规则,应改为2yz;故选:A . 2.如图,数轴上被墨水遮盖的数可能为( )A .1-B . 1.5-C .3-D . 4.2-【答案】C【解析】由数轴上墨迹的位置可知,该数大于4-,且小于2-,因此备选项中,只有选项C 符合题意,故选:C .3.2019年10月1日上午,庆祝中华人民共和国成立70周年在北京天安门广场隆重举行阅兵活动.由人民解放军、武警部队和民兵预备役部队约15000名官兵接受检阅.将15000用科学记数法可表示为( ) A .50.1510⨯ B .41.510⨯C .31510⨯D .215010⨯【答案】B【解析】415000 1.510=⨯,故选:B .4.若代数式23x y -=,则代数式22(2)421x y y x -+-+的值为( )A .7B .13C .19D .25【答案】B【解析】23x y -=,22(2)421x y y x ∴-+-+22(2)2(2)1x y x y =---+ 223231=⨯-⨯+ 1861=-+ 13=.故选:B .5.把算式:(5)(4)(7)(2)---+--+写成省略括号的形式,结果正确的是( )A .5472--+-B .5472+--C .5472-+--D .5472-++-【答案】C【解析】(5)(4)(7)(2)---+--+5472=-+-- 10=-,故选:C .6.检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,哪个球更接近标准( ) A . 2.5- B .0.8+C . 3.2-D .0.7-【答案】D【解析】通过求4个排球的绝对值得:| 2.5| 2.5-=,|0.8|0.8+=,| 3.2| 3.2-=,|0.7|0.7-=,0.7-的绝对值最小.所以第四个球是最接近标准的球.故选:D .7.|2||1|0a b -++=,则2()a b +等于( )A .1-B .1C .0D .2-【答案】B【解析】|2||1|0a b -++=,20a ∴-=,10b +=, 2a ∴=,1b =-,22()(21)1a b ∴+=-=.故选:B .8.下列运算中正确的是( )A .22a a a +=B .220x y yx -=C .235347y y y +=D .21x x -=【答案】B【解析】A .2a a a +=,故本选项不合题意;B .220x y yx -=,故本选项符合题意;2.3C y 与34y 不是同类项,所以不能合并,故本选项不合题意; .2D x x x -=,故本选项不合题意.故选:B .9.已知无论x ,y 取什么值,多项式22(212)(36)x my nx y -+-+-的值都等于定值18,则m n +等于() A .5 B .5-C .1D .1-【答案】D【解析】22(212)(36)x my nx y -+-+-2221236x my nx y =-+--+2(2)(3)18n x m y =-+--+,无论x ,y 取什么值,多项式22(212)(36)x my nx y -+-+-的值都等于定值18, ∴2030n m -=⎧⎨--=⎩,得32m n =-⎧⎨=⎩,321m n ∴+=-+=-,故选:D . 10.观察下列按一定规律排列的图标:则第2020个图标是( ) A .B .C .D .【答案】D【解析】观察图形发现:每4个图标为一组,20204505÷=,∴第2020个图标是第505组的第4个图标,故选:D .二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.已知在数轴上,位于原点左边的点A 到原点的距离是5,那么点A 所表示的数是 .【答案】5-【解析】根据题意得:A 点表示的数为5-.故答案为:5-. 12.计算:(3)|5|--+-= .【答案】8【解析】(3)|5|358--+-=+=.故答案为:8.13.某网店以a 元一包的价格购进500包太谷饼,加价20%后全部卖出,则可获得利润 元. 【答案】100a【解析】由题意可得,可获得利润为20%500100a a ⨯=(元),故答案为:100a . 14.若关于x ,y 的单项式2m b x y +和单项式2xy 是同类项,则20192020m b +=.【答案】0【解析】由关于x ,y 的单项式2m b x y +和单项式2xy 是同类项,可得21m +=,1b =,解得1m =-,1b =,2019201920192019(1)1110m b ∴+=-+=-+=.故答案为:0.15.若7x y +=,8y z +=,9z x +=,则x y z ++= .【答案】12【解析】7x y +=①,8y z +=②,9z x +=③,∴①+②+③得:789x y y z z x +++++=++,即22224x y z ++=,12x y z ∴++=,故答案为:12.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,12-,2()3--,( 4.5)+-,0,(3)-+解:4的相反数是4-; 12-的相反数是12; 2()3--的相反数是23-;( 4.5)+-的相反数是4.5;0的相反数是0;(3)-+的相反数是3;(6分)(8分)17.(9分)如图所示,其中长方形的长为a ,宽为b .(1)图中阴影部分的面积是多少?(2)你能判断它是单项式或多项式吗?它的次数是多少?解:(1)由图形可知:222113()4228b S ab b ab b πππ=--=-阴影.(6分)(2)是多项式,次数为二次.(9分)18.(9分)已知关于x 、y 的单项式2m ax y 与233m bx y -的和是单项式.(1)求2020(825)m -;(2)已知其和(关于x 、y 的单项式)的系数为2,求2019(233)a b +-的值. 解:(1)关于x 、y 的单项式2m ax y 与233m bx y -的和是单项式; 23m m ∴=-,解得3m =,∴原式2020(8325)1=⨯-=;(6分)(2)根据题意得232a b +=,所以原式2019(23)1=-=-.(9分)19.(9分)“发展脐橙产业,加快脱贫的步伐”.某脐橙种植户新鮮采摘了20筐脐橙,以每筐25千克为标准重量,超过或不足千克数分别用正,负数来表示,记录如下:(1)与标准重量比较,20筐脐橙总计超过或不足多少千克? (2)若脐橙毎千克售价6.5元,则出售这20筐脐橙可获得多少元? 解:(1)由题意得:(3)1(2)4( 1.5)20312 2.588-⨯+-⨯+-⨯+⨯+⨯+⨯= 答:20箱脐橙的总质量比标准质量超过8千克;(6分) (2)由题意得:(25208) 6.53302⨯+⨯=(元),(8分) 答:出售这20筐脐橙可获得3302元.(9分)20.(9分)已知有理数a 、b 、c 在数轴上的位置如图所示:(1)判断正负,用“>”、“ <”或“=”填空:a b + 0,a b - 0,a b c ++ 0; (2)化简:||||||a c a b c a b +-+++-.解:(1)根据数轴可知:01a <<,10b -<<,1c <-,且||||a b <, 则0a b +<,0a b ->,0a b c ++<;故答案为:<,>,<.(3分) (2)||||||a c a b c a b +-+++-a c abc a b =--++++-a =.(9分)21.(10分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323(763)(363103)a a b a b a a b a b a -+---++-写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2017b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?解:原式3323323763363103a a b a b a a b a b a =-+++--+3333322(7310)(66)(33)3a a a a b a b a b a b =+-+-++-+ 3=,(7分)则结果与a 、b 的取值无关,故我相信.(9分)22.(10分)如图①,在数轴上有一条线段AB ,点A ,B 表示的数分别是2-和11-.(1)线段AB = .(2)若M 是线段AB 的中点,则点M 在数轴上对应的数为 .(3)若C 为线段AB 上一点,如图②,以点C 为折点,将此数轴向右对折;如图③,点B 落在点A 的右边点B '处,若15AB B C '=',求点C 在数轴上对应的数是多少?解:(1)线段2(11)9AB =---=.(2分) (2)M 是线段AB 的中点,∴点M 在数轴上对应的数为(211)2 6.5--÷=-.(6分)(3)设AB x '=,因为15AB B C '=',则5B C x '=.所以由题意5BC B C x ='=, 所以4AC B C AB x ='-'=,所以9AB AC BC AC B C x =+=+'=, 即99x =,所以1x =,所以由题意4AC =, 又因为点A 表示的数为2-,246--=-,所以点C 在数轴上对应的数为6-.故答案为:9; 6.5-.(10分)23.(11分)对于题目:“已知2210x x --=,求代数式2362020x x -+的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设22x x y -=,则2362020x x -+= (用含y 的代数式表示). (2)根据2210x x --=,得到1y =,所以2362020x x -+的值为 . (3)用“整体代入”的方法(换元法),解决下面问题: 已知150a a +-=,求代数式241a a a-+的值.解:(1)22x x y -=,223620203(2)202032020x x x x y ∴-+=-+=+;故答案为:32020y +;(3分) (2)1y =,2362020320203120202023x x y ∴-+=+=⨯+=;故答案为:2023;(6分)(3)设1a b a +=,则241144a a a b a a -+=-+=-.(9分) 150a a +-=, 50b ∴-=,解得:5b =.∴2414541a a b a-+=-=-=.(11分)。
人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( ) A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q题号一 二 三 四 五 六 总分 得分密 题二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数; C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;得答B、2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2d,故本选项不符合题意;C、3x2﹣3(x+6)=3x2﹣3x﹣18,故本选项符合题意;D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴或, ∴a+b=6或2, 故答案为:6或2.18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.密 封 内 不 得 23.【解答】解:∵由图可知,a <﹣1<0<b <1, ∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0, ∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。
人教版数学七年级上学期《期中考试试卷》(含答案解析)

一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格
元
元
元
家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;
2020年七年级数学上期中试卷带答案

A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>0
4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( )
A.|a|>|b|B.|ac|=acC.b<dD.c+d>0
5.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()
(1)计算: ;
(2)若请推算 □内的符号;
(3)在“ ”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
25.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数进行加减乘除运算(每个数只能用一次),使其结果为24.例如,1,2,3,4可做如下运算:(1+2+3)×4=24,1×2×3×4=24,等等.
解析:3
【解析】
【分析】
不含有xy项,说明整理后其xy项的系数为0.
【详解】
解:整理只含xy的项得:(k-3)xy,
∴k-3=0,k=3.
故答案为3.
【点睛】
本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0.
14.【解析】【分析】直接根据已知数据变化规律进而将原式变形求出答案【详解】解:===故答案为:【点睛】此题主要考查了数字变化规律正确将原式变形是解题关键
B、∠DOC和∠AOE互余,说法正确;
C、∠AOD和∠DOC互补,说法正确;
D、∠AOE和∠BOC互补,说法错误;
故选D.
【点睛】
本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.
2020学年第一学期期中考试七年级数学试题卷

2020学年第一学期期中考试七年级数学试题卷满分120分,考试时间:90分钟一、选择题(每小题3分,共36分)1.54的倒数是(▲). A .54 B .45 C .54- D .45-2.下列实数中是无理数的是(▲).A .3B .9C .72D .3.143.下列各式计算结果为负数的是(▲).A .()1--B .)1(+-C .21-D .1-- 4.近日,投资达50亿的阳明古镇一期滨水商业街正式开始营业,其中50亿用科学计数法表示为(▲).A .5×109B .5×108C .0.5×1010D .50×108 5.64的算术平方根是(▲).A .±4B .4C .±8D .8 6.与27最接近的整数是(▲).A .5B .6C .7D .8 7.下列表述中,正确的个数是(▲).①存在绝对值最小的数; ①任何数都有相反数;①绝对值等于本身的数是正数; ①0是最小的有理数;⑤绝对值是同一个正数的数有两个,它们互为相反数.A .1个B .2个C .3个D .4个 8.若a 2=9,b 2=4,且ab <0,则a −b 的值为(▲).A .5B .−2C .±5D .±29.以下说法,正确的是(▲).A .数据475301精确到万位可表示为480000.B .王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的. C .近似数1.5046精确到0.01,结果可表示为1.50. D .小林称得体重为42千克,其中的数据是准确数. 10.如图,面积为3的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若AD =AE ,则数轴上点E 所表示的数为(▲).A .−3B .1−3C .−1−3D .251--11.数轴上A 、B 、C 三点所代表的数分别是a 、b 、2,且b a b a -=---22.下列四个选项中,有(▲)个能表示A 、B 、C 三点在数轴上的位置关系. ① ② ③④A .1个B .2个C .3个D .4个12.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =(▲).A .64B .65C .66D .67 二、填空题(每小题3分,共18分) 13.3-的相反数是 ▲ .14.如果收入100元记作+100元,则支出50元记作 ▲ 元. 15.若规定一种运算:a *b =a −b+ab ,则3*(−2)= ▲ .16.某粮店出售的两种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ▲ kg .17.1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:1248165222213−→−−→−−→−−→−−−→−÷÷÷÷+⨯如果正整数m 最少经过6步运算可得到1,则m 的值为 ▲ .18.七巧板被西方人称为“东方魔术”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图1)边长为a (cm ).若图2的“小兔子”图案中的阴影部分面积为12cm 2,那么a = ▲ cm .三、解答题(共66分)19.(8分)把下列各数之前的序号填在相应的大括号内:①32,②−0.31,③−(−2),④327-,⑤3,⑥0,⑦3π,⑧1.1010010001…(每两个1之间依次多一个0),⑨1.732(1)正分数集合:{ ▲ } (2)负有理数集合:{ ▲ }(3)无理数集合:{ ▲ } (4)非负整数集合:{ ▲ } 20.(9分)计算:(1)3×2−(−8)÷2(2))94()211(222-⨯-+-(3)21581691273-+⨯-21.(8分)把下列实数表示在数轴上,并比较它们的大小(用“<”连接).(−2)2,38-,0,−1,3822.(9分)(1)如果|m −4|+(n +5)2=0,求(m +n )2021+m 3的值;(2)已知实数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求3721e d c ab +++⨯的值.23.(10分)在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出2的近似值,得出1.4<2<1.5.利用“逐步逼近“法,请回答下列问题:(1)19介于连续的两个整数a 和b 之间,且a <b ,那么a = ▲ ,b = ▲ . (2)x 是19+2的小数部分,y 是19−1的整数部分,则x = ▲ ,y = ▲ . (3)在(2)的条件下,求(19−x )y 的平方根.24.(10分)有8筐杨梅,以每筐5千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下(单位:kg):+0.3 +0.1 −0.2 −0.3 +0.2 −0.4 +0.5 +0.3回答下列问题:(1)这8筐杨梅中,最接近5千克的那筐杨梅为多少千克?(2)以每筐5千克为标准,这8筐杨梅总计超过多少千克或者不足多少千克?(3)若杨梅每千克售价40元,则出售这8筐杨梅可卖多少元?25.(12分)有依次排列的3个数:6,8,3,对任意相邻的两个数,都用左边的数减去右边的数,所得之差写在两个数之间,可产生一个新数串①:6,−2,8,5,3,这称作第一次操作;对数串①进行同样的操作后也可产生一个新的数串①:6,8,−2,−10,8,3,5,2,3……依次操作下去.(1)数串①的所有数之和为▲ ,数串①的所有数之和为▲ .(2)第3次操作以后所产生的数串①为6,▲ ,8,10,−2,8,−10,−18,8,5,3,-2,5,3,2,−1,3.所有数之和为▲ .(3)请列式计算:操作第2020次产生的新数串的所有数字之和是多少?参考答案满分120分,考试时间:90分钟一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分)三、解答题(共66分)19.(8分)正分数集合:{ ①⑨ } 负有理数集合:{ ②④ } 无理数集合:{ ⑤⑦⑧ } 非负整数集合:{ ③⑥ } (每空漏答错答均不给分)20.(9分)(1)10;(2)−5;(3)2(每小题3分)21.(8分)数轴略,38-<−1<0<38<(−2)2 22.(9分)(1)63(4分)(2)215-或217(5分)23.(10分)解:(1)a = 4 ,b = 5 .(各2分)(2)x y = 3 .(各2分)(3)±8.(2分)24.(10分)(1)最接近5千克的那筐杨梅的质量为:5+0.1=5.1(千克);(3分)(2) +0.3+0.1−0.2−0.3+0.2−0.4+0.5+0.3=0.5,答:这8筐杨梅总计超过0.5千克.(4分) (3)(5×8+0.5)×40=1620(元),答:出售这8筐杨梅可卖1620元.(3分)25.(12分)(1)20,23(各2分)(2)−2,26(各2分)(3)(6+8+3)+3×2020=6077(4分)。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020学年度第一学期期中质量检测七年级数学试卷及答案二
七年级数学试卷
一.选择题(每小题3分,共30分)
1.在-3,0,2,-1这四个数中,最小的数是( ) A .-3
B .0
C . 2
D .-1
2.当2-=a 时,下列各式不成立的是( )
A .22)(a a -= ;
B .33)(a a -=-;
C .||22a a -=- ;
D .-||33a a -= 3.若|x|=7,|y|=5,且x+y<0,那么x+y 的值是( ) A .2或12
B .2或-12
C .-2或12
D .-2或-12
4.下列计算正确的是( )
A .x 2y+2xy 2=2x 2y 2
B .2a+3b=5ab
C .-a 3+a 2=a 5
D .﹣3ab ﹣3ab=﹣6ab
5.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是( ).
A .2n -1
B .2n+1
C .n 2+2n
D .n 2+2
6.神州十一号飞船成功飞向浩瀚宇宙,并在距地面约389500米的轨道上与天宫二号交会对接.将389500用科学记数法表示(要求精确到万位)正确的是( ) A .3.80×104 B . 3.8×105 C .3.9×104 D . 3.90×105 7.在(-1)2018,-32,-|-4|,0,3π
,-2.13484848…中,负有理数共有( ) A .4个
B .3个
C .2个
D .1个
8.如图,数轴上点P 对应的数为a ,则数轴上与数-a 最接近的数是( )
A .-1
B .-1.2
C .-1.4
D .-1.5
9.下列各方程变形错误的有( ) ①从5x=7-4x,得5x-4x=7;
②;从2y-1=3y+6, 得3y-2y=-1+6
③从331=-x ,得1-=x ;④从2
312x x =-+,得x x 3)1(26=-+.
A .1个
B .2个
C .3个
D .4个
10.某商品的进价为200元,标价为300元,折价销售时的利润率为5%,问此商品是按( )折销售的.[进价(或成本)
利润
利润率=]
A .5
B .6
C .7
D .8
二.填空题(每小题3分,共30分)
11.某班5名学生在一次数学测验中的成绩以80分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:-1,+6,0,-2,+7,则他们的平均成绩是 分. 12.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .
13.已知|a -2|+|b+1|=0,则(a+b )-(b-a )= .
14.如果代数式51y x a -与1233+-b y x 的和是53y kx ,那么|a-(2b -3k )|的值是 . 15.已知:2x ﹣y=5,求﹣2(y ﹣2x )2+3y ﹣6x 的值为 .
16.有理数1x ,2x 表示在数轴上得到点A,B ,两点A,B 之间的距离可用数1x ,2x 表示为 . 17.已知1x 51+=
m ,4
1
2+=
x n ,且m 、n 互为相反数,则x 的值为 . 18.已知梯形的下底为cm 6,高为cm 5,面积为225cm ,则上底的长等于 19.要锻造横截面直径为16厘米、高为5厘米的圆柱形毛坯,设需截取横截面为正方
形边长为6厘米的方钢x 厘米,可得方程为 .
20.观察下列一组数:
21,41,83,163,,32564
5
,…,它们是按一定规律排列的一列数,已知这组数第n 个是1024
m
,那么m+n= .
数学答题卷
一、选择题(每题3分,共30分)
二、填空题(每题3分,共30分)
11. . 12. .13. .14. 15. 16. .17. .18. 19. .20. 三.解答题(共40分)
21.计算与求值(每小题5分,共15分) (1))4.04(525.0)8
5(42-⨯⨯--⨯-
(2))43(2)1(2----+x x x
(3)先化简,再求值:3x 2y-[2x 2y-(xy 2-x 2y )-4xy 2],其中x=-4,y=1
2
.
22.解方程(满分5分):
x x -+=+-
4
1
26110x 1
23.(满分10分)张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”,当学生人数为多少人时,两家旅行社的收费一样多?
24.(满分10分)将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.
(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=,S2=;(2)求a,b满足的关系式,写出推导过程.
七年级数学参考答案
一、选择题(每题3分,共30分)
二、填空题(每题3分,共30分)
11.82. 12.-11 13. 4 . 14. 6 15. -65 16.||21x x - 17. 14
25
-
18.4cm 19.56436⨯=πx 20.19 三.解答题(共40分)
21.计算与求值(每小题5分,共15分) (1)解:)4.04(525.0)8
5(42-⨯⨯--⨯-
6.3525.0)8
5
(16⨯⨯--
⨯-=……2 分 5.55.410=-=……5 分
(2)解:)43(2)1(2----+x x x 8622+---=x x x ……3分 67+-=x ……5分
(3)先化简,再求值:3x 2y-[2x 2y-(xy 2-x 2y )-4xy 2],其中x=-4,y=12
. 解:3x 2y-[2x 2y-(xy 2-x 2y )-4xy 2] =3x 2y-(3x 2y-5xy 2)……2分 =3x 2y-3x 2y+5xy 2=5xy 2……4分
当x=-4,y=12时,原式=5×(-4)×.541
-= ……5分
22.解方程(满分5分):
解:去分母,得12-2(10x+1)=3(2x+1)-12x ……2 分 去特号,得12-20x -2=6x+3-12x ……3分 合并同类项,得-14x=-7 ……4 分
所以.2
1
=x ……5 分
23.(满分5分)张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老
师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”,当学生人数为多少人时,两家旅行社的收费一样多?
解:设全票价为a 元,学生人数x 人时,两家旅行社的收费一样多.……1 分
由题意,得)1(6.02
1
+=⨯
+x a ax a ……3 分 解得,4=x
答:学生人数4人时,两家旅行社的收费一样多.……5分
24.(1)S 1=)2(4b x b +,S 2=a a x )(+;
(2))2(4)(21b x b a x a S S +-+=-
228)4(b a x b a -+-=为常数
所以,04=-
b a 即.4 b a =。