理科数学周测9答案解析

合集下载

高考理科数学试题及答案2024

高考理科数学试题及答案2024

高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析

四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析

四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析(考试时间:120分钟全卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.设集合{}23100,{33}A xx x B x x =+-<=-<<∣∣,则A B ⋂=()A.{32}x x -<<∣B.{52}x x -<<∣C.{33}x x -<<∣D.{53}xx -<<∣2.已知i 为虚数单位,且32i1i z =+,则z =()A.1i- B.1i + C.1i-+ D.1i --3.设函数()()()121log 2(1)31x x x f x x +⎧-<⎪=⎨⎪⎩,则()()32log 8f f -+=()A.8B.9C.22D.264.712x x ⎛⎫- ⎪⎝⎭的二项式展开式中x 的系数为()A.560B.35C.-35D.-5605.已知点(,)x y 满足不等式组21400x y y x y ⎧⎪⎨⎪≥≥+--+⎩≤,则2z x y =+的最小值为()A.3- B.1- C.5D.76.华为在过去几年面临了来自美国政府的封锁和限制,但华为并没有放弃,在自主研发和国内供应链的支持下,成功突破了封锁,实现了5G 功能.某手机商城统计了最近5个月华为手机的实际销量,如下表所示:若y 与x 线性相关,且线性回归方程为2ˆ0.4ˆyx a =+,则下列说法不正确的是()A.样本中心点为()3,1.0 B.由表中数据可知,变量y 与x 呈正相关C.ˆ0.28a =D.预测7x =时华为手机销量约为1.86(万部)7.已知n S 是数列{}n a 的前n 项和,若11a =,112n n S a +=,则()A.数列{}n a 是等比数列B.数列{}n a 是等差数列C.数列{}n S 是等比数列D.数列{}n S 是等差数列8.函数24()exx xf x -=的图象大致是()9.将函数()cos()(0)6f x x πωω=+>的图像向左平移2π个单位长度后得到曲线C ,若C 关于原点对称,则ω的最小值是()A.23B.32 C.53D.11310.某校举办中学生乒乓球运动会,高一年级初步推选3名女生和4名男生参赛,并从中随机选取3人组成代表队参赛,在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A.12 B.715C.713D.111511.漏刻是中国古代科学家发明的一种计时系统,“漏”是指带孔的壶,“刻”是指附有刻度的浮箭.《说文解字》中记载:“漏以铜壶盛水,刻节,昼夜百刻.”某展览馆根据史书记载,复原唐代四级漏壶计时器.如图,计时器由三个圆台形漏水壶和一个圆柱形受水壶组成,水从最上层的漏壶孔流出,最终全部均匀流入受水壶.当最上层漏水壶盛满水时,漂浮在最底层受水壶中的浮箭刻度为0当最上层漏水壶中水全部漏完时,漂浮在最底层受水壶中的浮箭刻度为100.已知最上层漏水壶口径与底径之比为5:2,则当最上层漏水壶水面下降至其高度的三分之一时,浮箭刻度约为(四舍五入精确到个位)()A.88B.84C.78D.7212.已知函数()(),f x g x 的定义域为()R,g x 的图像关于1x =对称,且()22g x +为奇函数,()()()11,31g f x g x ==-+,则下列说法正确的个数为()①(3)(5)g g -=;②(2024)0g =;③(2)(4)4f f +=-;④20241()2024n f n ==∑.A.1B.2C.3D.4二、填空题:本大题共4个小题,每小题5分,共20分13.若函数()212ln 2f x x ax x =-+-在1x =处的切线平行于x 轴,则a =__________.14.已知(2,1)AC = ,(1,)AB t = ,且3AC AB ⋅=,则t =__________.15.已知等差数列{}n a 的公差为23π,集合{}*sin |n S a n =∈N ,若{},S a b =,则22a b +=__________.16.正方体1111ABCD A B C D -的校长为1,点P 为线段1CC 的中点,则三棱锥1P BDD -外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,且279a a +=,945S =.(1)求数列{}n a 的通项公式;(2)若2nn n b a =,求数列{}n b 的前n 项和n T .18.(12分)如图所示,△ABC 是正三角形,AE ⊥平面ABC ,AE CD ∥,2AE AB ==,1CD =,且F 为BE 的中点.(1)求证:DF ∥平面ABC ;(2)求平面BDE 与平面ABC 所成二面角的正弦值.19.(12分)自1996年起,我国确定每年3月份最后一周的星期一为全国中小学生“安全教育日”.我国设立这一制度是为全面深入地推动中小学生安全教育工作,大力降低各类伤亡事故的发生率,切实做好中小学生的安全保护工作,促进他们健康成长.为了迎接“安全教育日”,某市将组织中学生进行一次安全知识有奖竞赛,竞赛奖励规则如下,得分在[70,80)内的学生获三等奖,得分在[80,90)内的学生获二等奖,得分在[90,100]内的学生获一等奖,其他学生不获奖.为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,统计如下:(1)若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获一等奖的概率;(2)若该市所有参赛学生的成绩X 近似服从正态分布(65,100)X N ~,利用所得正态分布模型解决以下问题:(i )若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过85分的学生数(结果四舍五入到整数);(ii )若从所有参赛学生中(参赛学生数大于100000)随机抽取4名学生进行访谈,设其中竞赛成绩在65分以上的学生数为Y ,求随机变量Y 的分布列及数学期望.附参考数据:若随机变量X 服从正态分布()2,N μσ,则:()6827.0≈+<<-σμσμX P ,()9545.022≈+<<-σμσμX P ,()9973.033≈+<<-σμσμX P .20.(12分)已知抛物线()()200:2(0),4,0E y px p P y y =>>为E 上一点,P 到E 的焦点F 的距离为5.(1)求E 的标准方程;(2)设O 为坐标原点,A ,B 为抛物线E 上异于P 的两点,且满足PA PB ⊥.判断直线AB 是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.21.(12分)已知()ln 1f x x x x =--,记()f x 在1ex =处的切线方程为()g x .(1)证明:()()g x f x(2)若方程()f x m =有两个不相等的实根()1212,x x x x <,证明:12122x x m e e->+--.(二)选做题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.22.(10分)[选修44-:坐标系与参数方程]在平面直角坐标系xOy 中,射线l 的方程为(0)y x x =≥,曲线C 的方程为2214x y +=.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求射线l 和曲线C 的极坐标方程;(2)若射线l 与曲线C 交于点P ,将射线OP 绕极点按逆时针方向旋转2π交C 于点Q ,求△POQ 的面积.23.(10分)[选修45-:不等式选讲]已知函数()2121f x x x =-++.(1)求不等式()3f x ≥的解集;(2)记函数()f x 的最小值为m ,若a ,b ,c 均为正实数,且23a b c m ++=,求11a cb c+++的最小值.参考答案一、选择题1.A 解析:∵{}{}2501032<<-=<-+=x x x x x A ,∴{}23<<-=x x B A .2.B解析:由题意:()i i i i i i i z +-=+=+=-=1212122.3.C 解析:()()[]222log 221-=--=-f .∵18log 3>,∴()243338log 24log 3log 8log 18log 33333====++f ,∴()()222428log 23=+-=+-f f .4.D 解析:由题意知712⎪⎭⎫ ⎝⎛-x x 的展开式()()rr r r rr rr xC x x C T 27777712112---+-=⎪⎭⎫ ⎝⎛-=,令127=-r ,得3=r ,∴x 的系数为()5602137373-=--C .5.B解析:作出可行域如图,当目标函数y x z +=2的图象经过点()1,1-A 时,z 有最小值,此时1min -=z .6.D解析:由表格数据可以计算出3554321=++++=x ,0.155.12.10.18.05.0=++++=y ,则样本中心点为()0.1,3,即A 说法正确;从表格数据可得:y 随着x 的增加而增加,∴变量y 与x 正相关,即B 说法正确;将样本中心点为()0.1,3代入a x yˆ24.0ˆ+=,可得28.0ˆ=a ,即C 说法正确;由C 可知线性回归方程为28.024.0ˆ+=x y,将7=x 代入可得96.128.0724.0ˆ=+⨯=y,则D 说法不正确.7.C解析:因121+=n n a S ①可得,当2≥n 时,n n a S 211=-②,①-②得:n n n n a a S S 212111-=-+-,即n n n a a a 21211-=+,可得31=+n n a a ,因11=a ,在121+=n n a S 中,取1=n ,可得2212==S a ,即3212≠=a a ,故数列{}n a 不是等比数列,选项A ,B 错误;又因当*∈N n 时,都有n n n S S a -=++11,代入121+=n n a S 中,可得()n n n S S S -=+121,整理得:31=+nn S S ,故数列{}n S 是等比数列,即选项C 正确,D 错误.8.A解析:令()0>x f ,得4>x 或0<x ;令()0<x f ,得40<<x ,故排除CD,又当+∞→x 时,()042→-=xexx x f ,故排除B.9.A解析:由题意可知:函数()()06cos >⎪⎭⎫ ⎝⎛+=ωπωx x f 的图象关于点⎪⎭⎫⎝⎛02,π对称,则Z k k ∈+=+,262πππωπ,且0322>+=k ω,解得31->k ,即N k k ∈+=,322ω∴当0=k 时,ω取到最小值是32.10.B解析:用A 表示事件“代表队既有男生又有女生”,B 表示事件“女生甲被选中”,则在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A B P .∴()30333437=--=C C C A n ,()1468241412=+=+=C C C AB n ,∴()()()1573014===A n AB n A B P .11.B解析:有题意可知:最上层漏水壶所漏水的体积与浮箭刻度成正比,设最上层漏水壶的口径与底径分别为a a 25,,高为h ,则体积为()()()()h a h a a a a V 2222213252531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,当最上层漏水壶水面下降到高度的三分之一时,设此时浮箭刻度为x ,∵已漏下去的水组成以上下口径为a a 3,5,高为h 32的圆台,体积为()()()()h a h a a a a V 22222199832353531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,可得1001399822x h a ha =ππ,解得84≈x .12.C解析:∵()22+x g 为奇函数,∴()()2222+-=+-x g x g ,则()()22+-=+-x g x g ,∴()x g 对称中心为()0,2,又∵()x g 对的图象关于1=x 对称,则()()x g x g =+-2,∴()()x g x g =+-2,则()()()x g x g x g =+-=+24,∴()x g 的周期4=T ,①()()()5833g g g =+-=-,∴①正确;②∵()11=g ,()()x g x g =+-2,()x g 对称中心为()0,2,∴()()020==g g ,∴()()002024==g g ,∴②正确;③∵()()13+-=x g x f ,∴()()2112=+=g f ,∵()()x g x g =+-2,∴()()11g g -=-,则()()()011114=+-=+-=g g f ,∴()()242=+f f ,∴③错误;④∵()()13+-=x g x f 且()x g 周期4=T ,∴()()()()x f x g x g x f =+-=++-=+131434,则()x f 的周期为4=T ,∵()()1121=+=g f ,()22=f ,()()1103=+=g f ,()04=f ,∴()()()()44321=+++f f f f ,∴()()()()()[]20244506432150620241=⨯=+++=∑=f f f f n f n ,∴④正确.二、选择题13.3解析:∵()x ax x x f ln 2212-+-=,∴()xa x x f 2-+-=',则()0211=-+-='a f ,解得3=a .14.1解析:32=+=⋅t AB AC ,解得1=t .15.45(1.25)解析:∵等差数列{}n a 的公差为32π,∴ππ23233+=⨯+=+n n n a a a ,∴()()n n n a a a sin 2sin sin 3=+=+π,∴数列{}n a sin 是周期为3的数列,又{}b a S ,=,故1sin a ,2sin a ,3sin a 中必有两者相等,不妨设()31sin sin ≤<≤=j i a a j i ,则Z k k a a j i ∈+=,2π(舍)或Z k k a a j i ∈+=+,2ππ,而π32=+-j i a a 或π34=+-j i a a ,若π32=+-j i a a ,则Z k k a i ∈+=,6ππ,Z k k a j ∈+=,65ππ,连续三个中第三数为Z k k a i ∈+=,23ππ或Z k k a i ∈+-=,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .若π34=+-j i a a ,则Z k k a i ∈+-=,6ππ,Z k k a j ∈+=,67ππ,此时这两个数的中间数Z k k ∈+,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .综上,4541122=+=+b a .16.825π解析:以D 为坐标原点,DA ,DC ,1DD 方向分别为z y x ,,轴建立如图所示空间直角坐标系.则()()()⎪⎭⎫ ⎝⎛21101000110001,,,,,,,,,,,P D B D ,M 为线段1BD 的中点,则⎪⎭⎫⎝⎛21,21,21M ,显然点M 为1BDD ∆的外接圆圆心.则()()⎪⎭⎫ ⎝⎛-===0,21,210111001PM DB DD ,,,,,,,∴,,0212101=-=⋅=⋅DB PM DD PM 即PM 为平面1BDD 的一个法向量,即⊥PM 平面1BDD .则三棱锥1BDD P -外接球的球心O 在直线PM 行,连接OD ,则设R OP OD ==.设⎪⎭⎫⎝⎛-==0,2,2λλλPM OP ,即⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=-=21,21,20,2,22110λλλλ,,OP DP DO .=,即222222121222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛λλλλ,解得45-=λ,则⎪⎭⎫ ⎝⎛=21,83,85DO ,∴32252183852222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=R .则三棱锥1BDD P -外接球的表面积为82542ππ=R .三、解答题17.解:(1)设数列{}n a 的公差为d ,则⎩⎨⎧=+=+++4536996111d a d a d a ,解得⎩⎨⎧==111d a ,∴n a n =.(2)由(1)得nn n b 2⋅=,nn n T 2222121⋅++⨯+⨯= ,132222212+⋅++⨯+⨯=n n n T ,两式相减得:()()()2212121222222211132-⋅-=⋅---=⋅-++++=-+++n n n n nn n n n T ∴()2211+-=+nn n T .18.解:(1)证明:取AB 中点M ,连接MF 、MC ,则MF ∥AE ,且CD AE MF ===121.又∵AE ∥CD ,∴MF ∥CD ,即四边形MFDC 为平行四边形,∴DF ∥MC .又有⊄DF 平面ABC ,⊂MC 平面ABC ,∴DF ∥平面ABC .(2)延长ED 、AC 相交于点N ,连接BN ,则BN 为平面BDE 与平面ABC 的交线.∵AE ∥CD ,CD AE 2=,则DC 为ABC ∆的中位线,∴42==AC AN ,即BC CN AC ==,∴BN AB ⊥,∴3222=-=AB AN BN .而5222=+=AN AE EN ,2222=+=AB AE BE ,∴222EN BNBE =+,即BNBE ⊥∴EBA ∠即为平面BDE 与平面ABC 所成二面角的平面角.∴22222sin ===∠BE AE EBA 故平面BDE 与平面ABC 所成二面角的正弦值为22.19.解:(1)从该样本中随机抽取两名学生的竞赛成绩,基本事件总数为2100C ,设抽取的两名学生中恰有一名学生获一等奖为事件A ,则事件A 包含的基本事件的个数为190110C C ,∵每个基本事件出现的可能性都相等,∴()1122100190110==C C C A P 故抽取的两名学生中锋恰有一名学生获一等奖的概率为112.(2)(i )∵852=+σμ,∴()02275.029545.0185=-≈>X P ,∴参赛学生中成绩超过85分的学生数约为22802275.010000≈⨯人.(ii )由65=μ,得()2165=>X P ,即从所有参赛学生中随机抽取1名学生,该生竞赛成绩在65分以上的概率为21,∴随机变量Y 服从二项分布Y ~⎪⎭⎫ ⎝⎛214,B ,∴()161210404=⎪⎭⎫ ⎝⎛==C Y P ;()41211414=⎪⎭⎫ ⎝⎛==C Y P ;()83212424=⎪⎭⎫ ⎝⎛==C Y P ;()41213434=⎪⎭⎫ ⎝⎛==C Y P ;()161214444=⎪⎭⎫ ⎝⎛==C Y P .∴随机变量Y 的分布列为:∴期望为()216144138324111610=⨯+⨯+⨯+⨯+⨯=Y E.20.解:(1)∵()0,4y P 在抛物线E :()022>=p px y 上,且P 到E 的焦点F 的距离为5,即5=PF ,∴524=+p,解得2=p .∴E 的标准方程为x y 42=.(2)由(1)得P 点坐标为()4,4,由题知直线AB 斜率不为0,设直线AB 为b my x +=,联立⎩⎨⎧+==bmy x x y 42,得0442=--b my y ,()()01616424422>+=-⨯⨯--=∆b m b m ,即02>+b m ,m y y 421=+,b y y 421-=,∴()b m b y y m x x 24222121+=++=+,()22212116b y y x x ==,∵()4,411--=y x P A ,()4,422--=y x PB ,()()324421212121++-++-=⋅y y y y x x x x PB P A ()32161216324442442222=+---=+⨯--+-=m b m b m b b m b ∴41616361222++=+-m m b b ,即()()22246+=-m b ,当6-b 与24+m 同号时,246+=-m b ,即84+=m b ,此时()04284222>++=++=+m m m b m ,∴直线AB 的方程()8484++=++=y m m my x 过定点()48-,,当6-b 与24+m 异号时,246+=-m b ,即44+-=m b ,此时()0244222≥-=+-=+m m m b m ,∴直线AB 的方程()4444+-=--=y m m my x 过定点()44,,则此时与点B A P ,,中任意两点不重合矛盾,故直线AB 过定点,定点坐标为()48-,.21.解:(1)证明:()1ln --=x x x x f 的定义域为()∞+,0,∵()()x x x f ln 1ln 1-=+-=',∴11=⎪⎭⎫ ⎝⎛'e f ,121111-=-+=⎪⎭⎫ ⎝⎛ee e ef ,∴()e x e xg 112-=⎪⎭⎫⎝⎛--,即()11-+=e x x g .令()()()()x x ex x e x x f x g x F ln 11ln 11+=----+=-=,()+∞∈,0x ,()x x F ln 1+=',令()0='x F ,解得ex 1=,∴当e x 10<<时,()0<'x F ,()x F 在⎪⎭⎫⎝⎛e 10,单调递减,当e x 1>时,()0>'x F ,()x F 在⎪⎭⎫⎝⎛+∞,1e 单调递增,∴()01min =⎪⎭⎫⎝⎛=e F x F ,∴()0≥x F 恒成立,即()()x f x g ≥.(2)由(1)知()x x f ln -=',令()0='x f ,得1=x .∴当10<<x 时,()0>'x f ,()x f 在()1,0单调递增,当1>x 时,()0<'x f ,()x f 在()∞+,1单调递减,∴()()01max ==f x f ,当0→x 时,()1-→x f ;当e x >时,()()1-=<e f x f ,∵方程()m x f =有两个不相等的实根()2121,x x x x <,∴01<<-m 且e x x <<<<2110,∵()1-='e f ,()1-=e f ,∴函数()x f 在e x =处的切线方程为()()e x y --=--1,即1-+-=e x y .下证:()1-+-≤e x x f 令()()e x x x x f e x x h ++-=--+-=ln 21,()+∞∈,0x ∵()x x x h ln 11ln 2+-=++-=',令()0='x h ,解得e x =,∴当e x <<0时,()0<'x h ,()x h 在()e ,0单调递减,当e x >时,()0>'x h ,()x h 在()∞+,e 单调递增,∴()()0min ==e h x h ∴()0≥x h 恒成立,即()1-+-≤e x x f ,当且仅当e x =时等号成立.∵e x <<21,∴()122-+-<=e x x f m ,即12+->-e m x ,由(1)知,()()11-+=≤e x x g x f ,∵101<<x ,∴()1111-+≤=e x x f m ,即111+-≥em x ,∴ee m x x 12221--+>-.22.解:(1)将θρcos =x ,θρsin =y 代入()0≥=x x y 得θρθρcos sin =,∴1tan =θ,∴射线l 的极坐标方程为04≥=ρπθ,,将θρcos =x ,θρsin =y 代入1422=+y x 得()()1sin 4cos 22=+θρθρ,∴曲线C 的极坐标方程为θρ22sin 314+=(2)由题可知,可以设⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛43,4,21πρπρQ P ,,则584sin 314221=+=πρ,5843sin 314222=+=πρ,∴510221==ρρ,∴542sin 2121==∆πρρPOQ S .23.解:(1)由题意可得()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<--≤-=21,42121,221,4x x x x x x f ,不等式()3≥x f 等价于⎪⎩⎪⎨⎧-≤≥-2134x x 或⎪⎩⎪⎨⎧≥≥2134x x ,解得43-≤x 或43≥x .即不等式()3≥x f 的解集为⎪⎭⎫⎢⎣⎡∞+⎥⎦⎤ ⎝⎛-∞-,,4343 .(2)由(1)可知,函数()x f 在⎥⎦⎤ ⎝⎛-∞-21,上单调递减,在⎪⎭⎫⎢⎣⎡∞+,21上单调递增,且22121=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-f f ,即函数()x f 在最小值2=m ,即232=++c b a .()()c b c b c b c c b c b c a +++-=+++--=+++222211322111()()()[]c b c b c b c b +++-⎥⎦⎤⎢⎣⎡+++-=121121,∵()022>+-=+c b c a ,∴10<+<c b .令()1,0,∈+=t c b t ,则()t t t t c b c a +-⎪⎭⎫⎝⎛+-=+++12112111()()2231212321121321+=⎪⎪⎭⎫ ⎝⎛-⋅-+≥⎪⎭⎫ ⎝⎛-+-+=t t t t t t t t ,当且仅当()t t t t -=-121,即22-=t 时,取等号.即c b c a +++11的最小值为223+.。

2023届陕西省渭南市高三下学期教学质量检测(Ⅰ)理科数学试题(解析版)

2023届陕西省渭南市高三下学期教学质量检测(Ⅰ)理科数学试题(解析版)
A. B. C. D.
【答案】A
【解析】
【分析】根据线线平行可得 或其补角是异面直线 与 所成的角,利用三角形三边关系,由余弦定理即可求解.
【详解】如图,在棱 上取一点 ,使得 ,取 的中点 ,连接 , ,
由于 分别是棱 的中点,所以 ,故四边形 为平行四边形,进而 ,
又因为 是 的中点,所以 ,所以 ,则 或其补角是异面直线 与 所成的角.
A. B. C. D.
【答案】B
【解析】
【分析】设人交谈时的声强为 ,从而得到 ,求出火箭发射时的声强为 ,代入解析式求出答案.
【详解】设人交谈时的声强为 ,则火箭发射时的声强为 ,
则 ,解得: ,
则火箭发射时的声强为 ,将其代入 中,得:
,故火箭发射时的声强级约为 .
故选:B
6.如图,在直三棱柱 中, ,且 分别是棱 的中点,则异面直线 与 所成角的余弦值是()
【详解】对②:由 ,可得 ,则 ( 与 为常数),
令 ,则 ,所以 ,则 ,
故 关于直线 对称,②正确;
对①:∵ 为偶函数,则 ,
∴ ,则 为奇函数,
故 ,即 ,则 是以4为周期的周期函数,
由 ,令 ,则 ,可得 ,
故 ,①正确;
由 ,令 ,则 ,即 ,
令 ,则 ,即 ,
故 ,则 ,
对③:由 ,即 ,则 ,
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)先证四边形CDNM为平行四边形,进而可得CM//DN,又中位线定理得GF//DN,则GF//CM,再由线面平行的判定定理即可证结论.
(2)过B作BH⊥AC交AC于H,由多面体ABCDE体积最大得BH最大,可知 , 为 的中点,从而建立空间直角坐标系,求面ABE与面DBE的法向量,应用空间向量夹角的坐标表示即可求二面角A BE D的正弦值.

广东省东莞市常平中学2012届高三9月月考理科数学试卷

广东省东莞市常平中学2012届高三9月月考理科数学试卷

常平中学高三理科9月月考试卷一.选择题(共8小题,每小题5分,在给出的四个选项中,只有一个是符合要求的) 1.设A 、B 是非空集合,定义A ×B ={B A x x ⋃∈且B A x ⋂∉},己知}20{≤≤=x x A , }0{≥=x x B ,则A ×B 等于 ( )A .(2,+∞)B .[0,1]∪[2,+∞) C .[0,1)∪(2,+∞) D .[0.1]∪(2,+∞) 2.复数2)13(ii z +-=在复平面上对应的点位于( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是( )A.外切 B.相离 C.相交 D.内切4.右面的程序框图输出S 的值为( )A. 62B. 126C. 254D. 510 5.设323log ,log 3,log 2a b c π===,则A. a b c >>B. a c b >>C. b a c >>D. b c a >>6.一物体A 以速度232v t =+(t 的单位:s ,v 的单位:m/s ),在一直线上运动,在此直线上在物体A 出发的同时,物体B 在物体A 的正前方8m 处以8v t =(t 的单位:s ,v 的单位:m/s )的速度与A 同向运动,设n s 后两物体相遇,则n 的值为( )A .3104+ B .210+ C .5 D .4 7. 若关于x 的不等式|x +2|+|x -1|<a 的解集为 φ,则a 的取值范围是 ( )A.(3,+∞)B.[)+∞,3C.(]3,∞- D )3,(-∞8.函数2(0)y x x =>的图象在点2(,)n n a a 处的切线与x 轴交点的横坐标为*1()n a n N +∈,若116a =,则数列{}n a 的通项公式为 ( )A .*()n a n n N =∈ B .5*2()n n a n N -=∈C .2*2()n n a n N -=∈D .)(2*3N n a n n ∈=+二.填空题(共6小题,每小题5分,其中9-13小题为必做题,14-15为选做题)9. 右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是俯视图 正(主)视图 侧(左)视图 2 3 2 2开始1,0n S ==6?n ≤否2n S S =+1n n =+是输出S结束P FDEO10. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.x 3 456y 2.53 4 4.5请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程是: ;已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.根据上面求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低 吨标准煤?(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=,25.205.4,86654322222==+++)(用最小二乘法求线性回归方程系数公式1221ni ii ni i x y nx ybx nx==-=-∑∑ , ay bx =- ) 11.在平面直角坐标系xoy 中,不等式组⎪⎩⎪⎨⎧≤--≥+≤0201y x y x y 确定的平面区域为D ,在D 中任取一点),(b a P ,则P点满足1≤-b a 的概率为 。

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。

南海中学分校2014届高三第二学期理科数学每周一测9 答案

南海中学分校2014届高三第二学期理科数学每周一测9 答案

南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.31 10.2- 11.4312.3y x =± 13.①③ 14.27 15. 63三、解答题(2)设平面BED 与平面RQD 的交线为DG .由BQ=23FE,FR=23FB 知, ||QR EB . 而EB ⊂平面BDF ,∴||QR 平面BDF ,而平面BDF 平面RQD = DG , ∴||||QR DG EB .由(1)知,BE ⊥平面BDF ,∴DG ⊥平面BDF ,而DR ⊂平面B D F , BD ⊂平面B D F ,∴,D G D R D G D Q⊥⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角.在Rt BCF ∆中,2222(5)2C F B F B C a a a =-=-=,22sin 55FC a RBD BF a ∠===,21cos 1sin 5RBD RBD ∠=-∠=.5222935sin 29293a RDB a ⋅∠==. 故平面BED 与平面RQD 所成二面角的正弦值是22929.5222935sin 29293a RDB a ⋅∠==.故平面BED 平面RQD 所成二面角的正弦值是22929.南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.31 10.2- 11.4312.3y x =± 13.①③ 14.27 15. 63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63。

2023年全国统一高考数学试卷(理科)(乙卷)(解析版)

2023年全国统一高考数学试卷(理科)(乙卷)(解析版)

2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。

2023年内蒙古呼和浩特市高考数学第二次质检试卷(理科)+答案解析(附后)

2023年内蒙古呼和浩特市高考数学第二次质检试卷(理科)+答案解析(附后)

2023年内蒙古呼和浩特市高考数学第二次质检试卷(理科)1. 已知全集,集合,则( )A. B. C.D. 2. 已知复数z 满足,则z 的虚部为( )A.B. 2iC.D. 23. 如图是近十年来全国城镇人口、乡村人口的折线图数据来自国家统计局根据该折线图,下列说法错误的是( )A. 城镇人口与年份呈现正相关B. 乡村人口与年份的相关系数r 接近1C. 城镇人口逐年增长率大致相同D. 可预测乡村人口仍呈现下降趋势4. 函数在上的图象大致为( )A. B.C. D.5. 执行如图所示的程序框图,若输入k 的值为1,则输出n 的值( )A. 3B. 2C. 5D. 46. 若双曲线:的右焦点与抛物线;的焦点重合,则实数( )A. B. C. 3 D.7. 意大利数学家斐波那契,以兔子繁殖为例,引入“兔子数列”:即1、1、2、3、5、8、13、21、34、55、89、144、233、…,在实际生活中,很多花朵如梅花,飞燕草,万寿简等的瓣数恰是斐波那契数列中的数,斐波那契数列在物理及化学等领域也有着广泛的应用.已知斐波那契数列满足:,,,若,则( )A. 2025B. 2026C. 2028D. 20248. 已知向量,,若,且,则实数( )A. 3B.C. 5D.9. 已知角,且点在直线上,则( )A.B.C.D.10. 已知三棱锥中,,,,,且平面平面ABC ,则该三棱锥的外接球的表面积为( )A. B. C. D.11. 用五种不同颜色颜色可以不全用完给三棱柱的六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色种数有( )A. 840B. 1200C. 1800D. 192012. 已知函数,若关于x的方程恰有3个不同的实数解,则实数m的取值范围是( )A. B.C. D.13. 若的展开式中的系数为,则______.14. 已知和均为等差数列,,,,则数列的前60项的和为______ .15. 一组数的分位数指的是满足下列条件的一个数值:至少有的数据不大于该值,且至少有的数据不小于该值.直观来说,一组数的分位数指的是,将这组数按照从小到大的顺序排列后,处于位置的数.例如:中位数就是一个分位数年3月,呼和浩特市为创建文明城市,随机从某小区抽取10位居民调查他们对自己目前生活状态的满意程度,该指标数越接近10表示满意程度越高.他们的满意度指标数分别是8,4,5,6,9,8,9,7,10,10,则这组数据的分位数是______ .16. 2021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新如图所示,设计师的灵感来源于曲线C:当,,时,下列关于曲线的判断正确的有______ .①曲线C关于x轴和y轴对称;②曲线C所围成的封闭图形的面积小于8;③曲线C上的点到原点O的距离的最大值为;④设,直线交曲线C于P、Q两点,则的周长小于8.17.如图,在直三棱柱中,,,,点D为AB的中点.求证平面;求二面角的余弦值.18. 在中,内角A,B,C的对边分别为a,b,c,已知外接圆的半径为1,且求角A;若,AD是的内角平分线,求AD的长度.19. 文化月活动中,某班级在宣传栏贴出标语“学好数学好”,可以不同断句产生不同意思,“学/好数学/好”指要学好的数学,“学好/数学/好”强调数学学习的重要性,假设一段时间后,随机有N个字脱落.若,用随机变量X表示脱落的字中“学”的个数,求随机变量X的分布列及期望;若,假设某同学捡起后随机贴回,求标语恢复原样的概率.20. 已知函数,若,判断函数的单调性;当时,求函数的最小值,并证明:21. 已知抛物线T:和椭圆C:,过抛物线T的焦点F的直线l 交抛物线于A,B两点,线段AB的中垂线交椭圆C于M,N两点.若F恰是椭圆C的焦点,求p的值;若,且MN恰好被AB平分,求的面积.22. 在平面直角坐标系xOy中,曲线的参数方程为为参数以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为求曲线的普通方程与曲线的直角坐标方程;设直线l:为参数与曲线,的交点从上到下依次为P,M,N,Q,求的值.23. 已知函数求不等式的解集;设的最小值为M,若正实数a,b满足,证明:答案和解析1.【答案】B【解析】解:,,所以故选:先化简集合A,再求其补集即可.本题主要考查补集及其运算,属于基础题.2.【答案】C【解析】解:,则,其虚部为故选:根据已知条件,结合复数的四则运算,以及虚部的定义,即可求解.本题主要考查复数的四则运算,以及虚部的定义,属于基础题.3.【答案】B【解析】解:对于A选项,由折线图可知,城镇人口与年份呈现正相关,故A正确;对于B选项,因为乡村人口与年份呈负线性相关关系,且线性相关性很强,所以r接近,故B错误;对于C选项,城镇人口与年份呈现正相关,且线性相关性很强,相关系数r接近1,故城镇人口逐年增长率大致相同,故C正确;对于D选项,由折线图可知,乡村人口与年份呈负线性相关关系,可预测乡村人口仍呈现下降趋势,故D正确.故选:根据折线图判断乡村人口与年份、城镇人口与年份的相关关系以及线性相关关系的强弱,逐项判断可得出合适的选项.本题主要考查折线图的应用,属于基础题.4.【答案】C【解析】解:根据题意,,,则,则函数为奇函数,其图象关于原点对称,排除D,,排除B,在区间上,,,有,函数图象在x轴上方,排除A,故选:根据题意,先分析函数的奇偶性排除D,求出的值排除B,进而可得在区间上,有,排除A,即可得答案.本题考查函数的图象分析,一般用间接法分析,属于基础题.5.【答案】A【解析】解:模拟执行程序框图的运行过程,如下:,,,,,,,,,,,,终止循环,输出故选:模拟执行程序框图的运行过程,即可得出程序运行后输出n的值.本题考查了程序框图的应用问题,模拟执行程序框图的运行过程是解题的常用方法,是基础题.6.【答案】D【解析】【分析】根据双曲线的右焦点与抛物线的焦点重合知的焦点在x轴上,对双曲线表达式进行变形,求出,再令即可求解.本题主要考查双曲线与抛物线的综合,考查运算求解能力,属于中档题.【解答】解:双曲线的右焦点与抛物线的焦点重合,所以双曲线的方程可化为,所以,,所以,所以,所以平方得故选:7.【答案】D【解析】解:已知斐波那契数列满足:,,,则,即故选:先阅读题意,然后结合数列的递推式求解即可.本题考查了数列的递推式,重点考查了阅读理解能力,属基础题.8.【答案】B【解析】解:,,则,解得故选:计算,根据垂直得到,解得答案.本题主要考查向量垂直的性质,属于基础题.9.【答案】A【解析】解:点在直线上,将坐标代入直线方程得:,即,可得,解得,又,,则故选:由点在直线上,将点的坐标代入直线方程,再利用二倍角公式,将所求式子分母“1”利用同角三角函数间的基本关系化为,分子利用二倍角的正弦、余弦函数公式化简,分子分母同时除以,利用同角三角函数间的基本关系弦化切,可求的值,进而根据两角和的正切公式即可求解.此题考查了二倍角公式,两角和的正切公式以及同角三角函数间的基本关系在三角函数求值中的应用,熟练掌握公式及基本关系是解本题的关键,属于基础题.10.【答案】B【解析】解:在中,由余弦定理得,又,为直角三角形,,又平面平面ABC且交于AB,平面PAB,设的外接圆的圆心为M,半径为r,则,,且三棱锥的外接球的球心在过点M的平面PAB的垂线上,如图所示:,因为平面PAB,所以几何体的外接球的球心到平面PAB的距离为,即,设几何体的外接球半径为R,在中,则,所求外接球的表面积,故选:先求出AB,得到为直角三角形,所以平面PAB,所以几何体的外接球的球心到平面PAB的距离为,再利用正弦定理求出的外接圆半径为r,利用勾股定理即可求出几何体的外接球半径为R,从而得到外接球的表面积.本题主要考查了三棱柱的外接球,是中档题.11.【答案】D【解析】【分析】本题考查排列组合的基础知识与分类讨论思想,涉及棱柱的几何结构,属于基础题.根据题意,分3种情况讨论:①若5种颜色都用上;②若5种颜色只用4种;③若5种颜色只用3种这三种情况,分别求得结果,由加法原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①,若5种颜色都用上,先涂A、B、C,有种选法,再涂D、E、F中的两个点,有种选法,最后剩余的一个点只有2种涂法,故此时方法共种涂色方法;②,若5种颜色只用4种,首先选出4种颜色,有种选法,先涂A、B、C,有种选法,再涂D、E、F中的1个点,有3种选法,最后剩余的2个点只有3种涂法,故此时方法共种涂色方法;③,若5种颜色只用3种,首先选出4种颜色,有种选法,先涂A、B、C,有种选法,再涂D、E、F,方法有2种,故此时方法共种涂色方法;则不同涂色方案共有种;故选:12.【答案】A【解析】解:因为,所以,令,则,所以当时,,单调递增;当时,,递减;所以当时,取得极大值,图象如图所示:方程,即为,解得或,由函数的图象知:只有一个解,所以有两个解,所以,解得故选:先利用导数画出图象,由方程,解得或,根据题意,由有两个解求解.本题考查了函数与方程思想、数形结合思想,作出图象是关键,属于中档题.13.【答案】【解析】解:的展开式的通项公式为,令,求得,可得展开式中的系数为,则,故答案为:先求出二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得展开式中的系数,再根据展开式中的系数为,求得a的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.14.【答案】7260【解析】解】和均为等差数列,则是等差数列,首项为,公差为,故前60项的和为故答案为:确定是等差数列,计算首项和公差,求和得到答案.本题主要考查了等差数列的性质及求和公式的应用,属于基础题.15.【答案】6【解析】解:依题意这10个数据从小到大排列为4、5、6、7、8、8、9、9、10、10,又,所以这组数据的分位数是第3个数故答案为:首先将数据从小到大排列,再根据百分位数计算规则计算可得.本题主要考查百分位数的定义,属于基础题.16.【答案】①②③【解析】解:曲线C:,对①:取曲线上点,则,在曲线上,故曲线C关于x轴和y轴对称,正确;对②:取,,取,,故曲线在一个长为4,宽为2的矩形内部,故其面积小于,正确;对③:设曲线上一点为,则,设,M 到原点的距离的平方为,,,当时,距离平方有最大值为,故距离的最大值为,正确.对④:对于曲线和椭圆,设点在上,点在上,,故,所以,设点在上,点在上,,所以,即,故椭圆在曲线内除四个交点外,如图:设直线交椭圆于A ,B 两点,交x 轴于,M ,N 为椭圆的两个焦点,由椭圆的定义可知:,,所以的周长为8,由图可知,的周长不小于8,错误;故答案为:①②③.确定,在曲线上,①正确,曲线在一个长为4,宽为2的矩形内部,②正确,利用三角换元计算得到③正确,确定椭圆在曲线内,④错误,得到答案.本题考查了超椭圆的概念,对称性,最值问题,意在考查学生的计算能力,转化能力和综合应用能力,其中确定椭圆在曲线内,再利用椭圆的知识求解是解题的关键.17.【答案】解:证明:三棱柱为直三棱柱,平面ABC ,,,,,,,又,平面,平面,,又四边形为正方形,,,AC,平面,平面;以C为坐标原点,直线CA,CB,分别为x轴、y轴、z轴建立空间直角坐标系.,,,,,,,设平面的一个法向量为,则,令,则,,平面的一个法向量为,设平面的一个法向量为,则,令,则,,平面的一个法向量为,,,二面角的余弦值为【解析】确定,,可得平面,得到,再根据,可得结论成立;建立空间直角坐标系,计算各点坐标,确定平面和平面的法向量,根据向量的夹角公式计算得到答案.本题考查了空间位置关系、空间角、法向量的应用、数量积运算性质、向量夹角公式、向量共线定理,考查了推理能力与计算能力,属于中档题.18.【答案】解:,则,即,则由余弦定理可得,所以又,,所以,即,又,所以由正弦定理可得:,解得,,,故B为锐角,,在中,,AD是的内角平分线,故,,故【解析】根据正弦定理和余弦定理得到,整理得到,得到答案.根据正弦定理得到,,计算角度得到,得到答案.本题主要考查三角形中的几何计算,正余弦定理的应用,考查运算求解能力,属于中档题.19.【答案】解:随机变量X的可能取值为0,1,2,,,,随机变量X的分布列如下表:X012P随机变量X的期望为设脱落一个“学”为事件A,脱落一个“好”为事件B,脱落一个“数”为事件C,事件M为脱落两个字,,,,,,所以某同学捡起后随机贴回,标语恢复原样的概率为【解析】随机变量X的可能取值为0,1,2,,求出对应的概率,即可求解分布列及数学期望;根据掉落的两个字的不同情况进行分类讨论求解.本题主要考查离散型随机变量分布列及其数学期望,概率的求法,考查运算求解能力,属于中档题.20.【答案】解:,即,因为,所以在上成立,令,得,当时,,单调递增,当时,,单调递减.所以在上单调递增,在上单调递减.证明:当时,,,由可得在上单调递增,在上单调递减,,,所以,即,即,即,要证明,只需证在上恒成立,令,则,所以单调递减,所以,所以恒成立,所以,原不等式得证.【解析】求导得,由,得在上成立,分析的符号,的单调性.当时,,,由单调性可得,即,即,要证明,只需证在上恒成立,即可得出答案.本题题考查导数的综合应用,解题中需要理清思路,属于中档题.21.【答案】解:在椭圆中,,所以,由,得;设直线l:,,,联立方程,消去x得,,则,设AB的中点,则,,设,,则直线MN的斜率为,,,相减得到,即,即,解得,由点G在椭圆内,得,解得,因为,所以p值是1,所以面积【解析】计算焦点得到,解得答案;设直线l:,联立方程得到根与系数的关系,设AB的中点,代入计算得到,由点G在椭圆内,得到,确定,再计算面积得到答案.本题主要考查了椭圆和抛物线方程,面积问题,意在考查学生的计算能力,转化能力和综合应用能力,属于中档题.22.【答案】解:将曲线的参数方程为为参数中的参数消去,可得由,得,又,,得曲线的直角坐标方程为;将代入,得解得,;由t的几何意义可得:;同理将代入,得,解得,故【解析】直接把曲线的参数方程中的参数消去,可得曲线的普通方程;由极坐标与直角坐标的互化公式,可得曲线的直角坐标方程;把直线l的参数方程分别代入曲线的普通方程与曲线的直角坐标方程,利用此时t的几何意义求解与,再由求解.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查运算求解能力,是中档题.23.【答案】解:,当时,原不等式等价于,解得;当时,原不等式等价于,解得;当时,,解得;综上,所求不等式的解集为;证明:由可知的最小值为,正实数a,b满足,即,所以,,当且仅当时取等号.所以【解析】将函数化为分段函数的形式,再分类讨论解不等式即可;分析可知的最小值为1,进而可得,再由基本不等式转化求证即可.本题考查绝对值不等式的解法以及不等式的证明,考查分类讨论思想及推理论证能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理科数学周测9答案解析
第1题答案A第1题解析
∵,∴,即,∴.故选.
第2题答案B第2题解析表示椭圆的充要条件是,即
且,∴是表示椭圆的必要不充分条件.
第3题答案C第3题解析双曲线的顶点为,其渐近线方程为,根据对称性,双曲线的顶点到其渐近线的距离等于,故选
第4题答案C第4题解析不等式在上恒成立,则有,∴,
∴它的一个必要不充分条件应为.
第5题答案A第5题解析由题目所给的不等式组可知,其表示的平面区域
如图所示,这里直线只需要经过线段的中点即可,此
时点的坐标为,代入即可解得的值为.
第6题答案C第6题解析∵,,∴,,∵,∴
是以为首项,为公比的等比数列,∴,
∴.故答案选.
第7题答案D第7题解析由题意直线恒过定点,
只要在椭圆内或椭圆上即可,故且,选D
第8题答案A第8题解析设双曲线方程为.当x=-c时,由题意知
=2c b2=2ac c2-a2-2ac=0e2-2e-1=0e=+1.
第9题答案A第9题解析当时,;当时,.
则数列的前项的和为
.
第10题答案A第10题解析,,
.可知是以为周期的数列,.故选.
第11题答案A第11题解析考虑它的逆否,“”是“且”的必要不充分条件,故“或”是“”的必要不充分条件.
第12题答案A第12题解析由于函数在定义域内是任意取值的,且必存在使得,因此问题等价于函数的值域是函数值域的子集.函数的值域是
,函数的值域是,则有且,即,又,故的取值范围是.故选A.
第13题答案第13题解析由余弦定理及已知条件得,又的面积等于,
所以,得,,即.
第14题答案充分不必要第14题解析由得或,:,由
得或,所以:.所以是的充分不必要条件
第15题答案第15题解析解答:由题意设双曲线C的标准方程为,又过点(2,2),所以.
第16题答案第16题解析∵,∴,即
,∴,解之得,即.
第17题答案(1);(2)第17题解析(1)由正弦定理:
,∴,整理得:∵,
∴,,∴,∴;
(2)由(1)得:,根据正弦定理有,即:,①
∵,根据余弦定理:,
∴,整理得:,②
解由①②组成的方程组得:,∴的面积
.
第18题答案(1);(2)当或时,;
(3)第18题解析(1)
,又.所以与是方程的两根,
解得或,又该等差数列递减,所以,则公差,,所以.
(2)由,即,解得,又,所以当或
时,取最大值,为.
(3)由(2)知,当时,;当时,,当时,

当时,
.
所以.
第19题答案第19题解析
若命题恒成立为真,则;若命题有实数根为真,则;由题“”为真命题,“”为假命题,则可知命题和命题一真一假;(1)当命题为真,命题
为假,此时实数的取值范围为:;(2)当命题为假,命题为
真,此时实数的取值范围为:,综上,实数的取值范围为:
第20题答案(1)[2,+∞)(2)(1,5]第20题解析由.作出可行域如图阴影部分所示:(1)表示可行域内任一点与坐标原点连线的斜率,因此的范围为直线OB的斜率到直线OA的斜率(OA斜率不存在).而由得B(1,2),∴.∴不存在,,
∴z的取值范围是[2,+∞).
(2)表示可行域内的任意一点与坐标原点的两点间距离的平方.
因此的范围最小为(取不到),最大为.由
得A(0,1),
∴.∴
,z无最小值.故z的取值范围是(1,5].
第21题答案(1);(2)第21题解析(1)设等差数列的公差为,则依题设
.由,可得:,由,得:,解得:
,∴,∴;
(2)设,则,即,可得:
,且,∴,可知:,
∴,∴数列是首项为,公比为的等比数列,∴前项和

第22题答案(1)椭圆方程(2)或第22题解析
(1)设椭圆的标准方程为由短轴长为4得,则;
又离心率为,则,解得所以所求椭圆的标准方程为
2)由知该椭圆的左焦点为,设的方程为,点
由得则
于是
又,则,即,即,解得
所以直线l的方程为或.。

相关文档
最新文档