山东省曲阜市石门山镇中学八年级数学上册 11.1.1 三角形的边同步练习 (新版)新人教版
初中八年级(上)第十一章三角形同步练习及答案完整版

第十一章三角形11.1.1三角形的边复习检测( 5 分钟)1、若等腰三角形的两边长分别为 3 和 7, 则它的周长为;若等腰三角形的两边长分别是 3 和 4, 则它的周长为。
2、长为 10、7、5、3 的四跟木条,选其中三根组成三角形有种选法3、若三角形的周长是60cm,且三条边的比为3: 4:5,则三边长分别为4、△ ABC中,如果 AB=8cm, BC=5cm,那么 AC的取值范围是。
5. 下列图形中有几个三角形,用符号表示。
AD EB C6.下列长度的各组线段中,能组成三角形的是()A. 3cm,12cm, 8cm B. 6cm,8cm,15cmC. 2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm7.下列说法:其中正确的有()(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.1 个B.2 个C.3 个D.4 个8.现有两根木棒,它们的长分别为40cm和 50cm,若要钉成一个三角形木架(?不计接头),则在下列四根木棒中应选取()A. 10cm 长的木棒B. 40cm 长的木棒C. 90cm 长的木棒D. 100cm长的木棒9、一个等腰三角形,周长为20cm,一边长 6cm,求其他两长。
10、已知等腰三角形的两边长分别为4,9, 求它的周长 .11.1.2三角形的高、中线与角平分线复习检测( 5 分钟)1.以下说法错误的是()A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,? 那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.如图 1,BD=1BC,则 BC边上的中线为,△ABD的面积=的2面积.(1)(2)(3)4.如图 2,△ABC中,高 CD、BE、AF 相交于点 O,则△ BOC? 的三条高分别为线段。
人教版八年级数学上册11.1.1《三角形的边》同步训练习题

人教版八年级数学上册11.1.1《三角形的边》同步训练习题一.选择题(共7小题)1.(2014秋•惠城区校级月考)下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角2.(2014春•泗县校级期中)图中三角形的个数是()A.8个B.9个C.10个D.11个3.(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.14.(2015•海安县校级二模)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.105.(2015•集美区一模)在同一平面内,线段AB=7,BC=3,则AC长为()A.AC=10 B.AC=10或4 C.4<AC<10 D.4≤AC≤106.(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)7.(2015春•泰兴市期末)已知△ABC的三边a,b,c的长度都是整数,且a≤b <c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个二.填空题(共7小题)8.(2013秋•温岭市校级期中)三角形按边分类可分为:三边都不相等的三角形和三角形两类.9.(2012春•南安市校级月考)平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,用它们作顶点可以组成三角形的个数是个.10.(2015•丹东一模)已知三角形的三边的长分别是5、x、9,则x的取值范围是.11.(2015春•衡阳县期末)一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为.12.(2015春•鄄城县期末)若一个三角形的两条边相等,一边长为4cm,另一边长为7cm,则这个三角形的周长为.13.(2015春•无锡校级期中)小明和小丽是同班同学,小明家距学校2千米,小丽家距学校5千米,设小明家距小丽家x千米,则x的值应满足.14.(2015秋•鄂城区校级月考)设△ABC三边为a、b、c,其中a、b满足|a+b ﹣6|+(a﹣b+4)2=0,则第三边c的取值范围.三.解答题(共5小题)15.如图,以BC为边的三角形有几个?以A为顶点的三角形有几个?分别写出这些三角形.16.(2013秋•庄浪县校级月考)三角形的三边长分别为5,1+2x,8,求x的取值范围.17.若△ABC中两边长之比为2:3,三边都是整数且周长为18cm,求各边的长.18.(2015秋•石城县校级月考)已知a、b、c为三角形三边的长,化简:|a﹣b ﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.19.(2013秋•湖北校级期中)已知△ABC的三边长分别为a,b,c,且|b+c﹣2a|+(b+c﹣5)2=0,求b的取值范围.人教版八年级数学上册11.1.1《三角形的边》同步训练习题参考答案一.选择题(共7小题)1.(2014秋•惠城区校级月考)下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角选A2.(2014春•泗县校级期中)图中三角形的个数是()A.8个B.9个C.10个D.11个【考点】三角形.【分析】根据三角形的定义,找出图中所有的三角形即可.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.【点评】此题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.3.(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.(2015•海安县校级二模)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.10【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边,分别求出x的最小值、最大值,进而判断出x的值可能是哪个即可.【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.【点评】此题主要考查了三角形的三边的关系,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)三角形的两边差小于第三边.5.(2015•集美区一模)在同一平面内,线段AB=7,BC=3,则AC长为()A.AC=10 B.AC=10或4 C.4<AC<10 D.4≤AC≤10【考点】三角形三边关系;两点间的距离.【分析】此题要分三点共线和不共线两种情况.三点共线时,根据线段的和、差进行计算;三点不共线时,根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行计算.【解答】解:若点A,B,C三点共线,则AC=4或10;若三点不共线,则根据三角形的三边关系,应满足大于4而小于10.所以4≤AC≤10.故选:D.【点评】此题主要考查了线段的和与差以及三角形的三边关系,关键是要考虑全面,此题有两种情况,不要漏解.6.(2015•南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)【考点】三角形三边关系.【分析】根据三角形的三边关系对各选项进行逐一分析即可.【解答】解:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.7.(2015春•泰兴市期末)已知△ABC的三边a,b,c的长度都是整数,且a≤b <c,如果b=5,则这样的三角形共有()A.8个B.9个C.10个D.11个【考点】三角形三边关系.【分析】由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c﹣b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∵b<c,∴b<c<a+b,又∵c﹣b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故选:C.【点评】此题考查了三角形的三边关系.此题难度较大,解题的关键是根据三角形的三边关系与a,b,c的长都是整数,且a≤b<c,b=5去分析求解,得到a=2,3,4,5.二.填空题(共7小题)8.(2013秋•温岭市校级期中)三角形按边分类可分为:三边都不相等的三角形和等腰三角形两类.【考点】三角形.【分析】三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.【解答】解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.【点评】此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).9.(2012春•南安市校级月考)平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,用它们作顶点可以组成三角形的个数是4个.【考点】三角形.【分析】根据三角形的定义(由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形)填空.【解答】解:∵平面上有四个点A、B、C、D,其中任意三个点都不在一条直线上,∴用它们作顶点可以组成三角形有:△ABC、△ABD、△ACD和△BCD,共4个.故填:4.【点评】本题考查了三角形的定义.注意,是不在同一直线上的三个点才可以连接成为三角形.10.(2015•丹东一模)已知三角形的三边的长分别是5、x、9,则x的取值范围是4<x<14.【考点】三角形三边关系.【分析】由三角形的两边的长分别为9和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.【解答】解:根据三角形的三边关系,得:9﹣5<x<9+5,即:4<x<14.故答案为:4<x<14.【点评】此题考查了三角形的三边关系.此题比较简单,注意掌握已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和.11.(2015春•衡阳县期末)一个三角形的两边长分别为2cm和9cm,若三角形的周长为奇数,则第三边长为8或10cm.【考点】三角形三边关系.【点评】考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.12.(2015春•鄄城县期末)若一个三角形的两条边相等,一边长为4cm,另一边长为7cm,则这个三角形的周长为15cm或18cm.【考点】三角形三边关系.【分析】分情况考虑:当相等的两边是4cm时或当相等的两边是7cm时,然后求出三角形的周长.【解答】解:当相等的两边是4cm时,另一边长为7cm,则三角形的周长是4×2+7=15cm,当相等的两边是7cm时,则三角形的周长是4+7×2=18cm.故答案为:15cm或18cm.【点评】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:两边之和大于第三边,两边之差小于第三边.13.(2015春•无锡校级期中)小明和小丽是同班同学,小明家距学校2千米,小丽家距学校5千米,设小明家距小丽家x千米,则x的值应满足3≤x≤7.【考点】三角形三边关系.【分析】小明家、小丽家和学校可能三点共线,也可能构成一个三角形,由此可列出不等式5﹣2≤x≤5+2,化简即可得出答案.【解答】解:依题意得:5﹣2≤x≤5+2,即3≤x≤7.故答案为:3≤x≤7;【点评】本题考查的是三角形三边关系定理的应用,解此类题目时要注意三个地点的位置关系.14.(2015秋•鄂城区校级月考)设△ABC三边为a、b、c,其中a、b满足|a+b ﹣6|+(a﹣b+4)2=0,则第三边c的取值范围4<c<6.【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值范围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.【点评】此题主要考查了非负数的性质,以及三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.三.解答题(共5小题)15.如图,以BC为边的三角形有几个?以A为顶点的三角形有几个?分别写出这些三角形.【考点】三角形.【分析】根据图形直接得出所有的三角形进而得出答案.【解答】解:以BC为边的三角形有△ABC,△DBC,△EBC,△OBC;以A为顶点的三角形有△ABE,△ADC,△ABC.【点评】此题主要考查了三角形的定义,根据三条线段,两两相交在一起所构成的一个密闭的平面图形叫做三角形得出所有三角形是解题关键.16.(2013秋•庄浪县校级月考)三角形的三边长分别为5,1+2x,8,求x的取值范围.【考点】三角形三边关系;解一元一次不等式组.【分析】根据三角形的三边关系三角形两边之和大于第三边;三角形的两边差小于第三边可得8﹣5<1+2x<8+5,再解不等式即可.【解答】解:根据三角形的三边关系可得8﹣5<1+2x<8+5,解得:1<x<6.【点评】本题考查了三角形的三边关系,以及解一元一次不等式组,关键是熟记三边关系.17.若△ABC中两边长之比为2:3,三边都是整数且周长为18cm,求各边的长.【考点】三角形三边关系.【分析】首先根据题意设两边长为2xcm,3xcm,第三边长为ycm,根据周长为18cm可得2x+3x+y=18,然后计算出正整数解,再根据三边关系确定答案.【解答】解:设两边长为2xcm,3xcm,第三边长为ycm,2x+3x+y=18,5x+y=18,①x=1,y=13,则三边长为2cm,3cm,13cm,∵2+3=5<13,∴不能够成三角形;②x=2,y=8,则三边长分别为4cm,6cm,8cm,∵4+6>8,∴能够成三角形;③x=3,y=3,则三边长分别为6cm,9cm,3cm,∵3+6=9,∴不能够成三角形;因此各边的长分别为4cm,6cm,8cm.【点评】此题主要考查了二元一次方程的应用,以及三角形的三边关系,关键是掌握三角形两边之和大于第三边.18.(2015秋•石城县校级月考)已知a、b、c为三角形三边的长,化简:|a﹣b ﹣c|+|b﹣c﹣a|+|c﹣a﹣b|.【考点】三角形三边关系;绝对值;整式的加减.【分析】根据三角形的三边关系得出a+b>c,a+c>b,b+c>a,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|a﹣(b+c)|+|b﹣(c+a)|+|c﹣(a+b)|=b+c﹣a+a+c﹣b+a+b﹣c=a+b+c.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.19.(2013秋•湖北校级期中)已知△ABC的三边长分别为a,b,c,且|b+c﹣2a|+(b+c﹣5)2=0,求b的取值范围.【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质得b+c﹣2a=0,b+c﹣5=0,两式联立求出a的值,再根据三角形任意两边之和大于第三边,任意两边之差小于第三边列不等式求解即可.【点评】本题主要利用非负数的性质和三角形的三边关系求解.几个表示非负数的算式的和等于0,则每一个运算式都等于0.。
人教版数学八年级上册第11章11.1.1三角形的边同步练习(解析版)

人教版数学八年级上册第11章11.1.1三角形的边同步练习一、单选题(共12题;共24分)1、在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为()(提示:可以构造平行四边形)A、2<AD<14B、1<AD<7C、6<AD<8D、12<AD<162、已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A、5B、7C、5或7D、103、等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为()A、8B、10C、8或10D、不能确定4、已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A、5B、10C、11D、125、下列各组数据能作为一个等腰三角形各边长的是()A、1,1,2B、4,2,4C、2,3,4D、3,3,76、平行四边形的两条对角线长分别为8cm和10cm,则其边长的范围是()A、2<x<6B、3<x<9C、1<x<9D、2<x<87、平行四边形的对角线长为x、y,一边长为11,则x、y的值可能是()A、8和14B、10和8C、10和32D、12和148、平行四边形的两条对角线长和一条边的长可以依次是()A、4、4、4B、6、4、4C、6、4、6D、3、4、59、平行四边形一边的长是10cm,那么它的两条对角线长可以是()A、4、6cmB、6、8cmC、8、12cmD、20、30cm10、分别以下列各组数一个三角形的三边长,其中能构成直角三角形的是()A、B、C、D、2,3,411、平行四边形ABCD中对角线AC和BD交于点O,AC=6,BD=8,平行四边形ABCD较大的边长是m,则m取值范围是()A、2<m<14B、1<m<7C、5<m<7D、2<m<712、下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A、1B、2C、3D、4二、填空题(共5题;共6分)13、已知△ABC是等腰三角形,其边长为3和7,△DEF≌△ABC,则△DEF的周长是________.14、在△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是________.15、已知△ABC中,AB=10cm,AC=12cm,AD为边BC上的中线,求中线AD的取值范围________.16、AD是△ABC的边BC上的中线,AB=6,AC=4,则边BC的取值范围是________,中线AD的取值范围是________.17、已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:________ (要求写出自变量x的取值范围).三、解答题(共5题;共25分)18、在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.19、已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长.20、已知三角形三边长分别为a、b、c,其中a、b满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.21、在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.22、如图,线段AB=CD,AB与CD相交于O,且AC与BD不平行,∠AOC=60°,判断AC+BD与AB的大小关系,并说明理由.答案解析部分一、单选题1、【答案】B【考点】三角形三边关系,平行四边形的判定与性质【解析】【解答】解:延长AD至点E,使AD=ED,连接BE、CE.∵点D是BC的中点,∴BD=CD,∴四边形ABEC是平行四边形(对角线互相平分的四边形是平行四边形),∴CE=AB(平行四边形的对边相等),在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,1<AD<7.故选B.【分析】作辅助线(延长AD至点E,使AD=ED)构建平行四边形2、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.【分析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.3、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:∵方程x2﹣6x+8=0的解是x=2或4,·(1)当2为腰,4为底时,2+2=4不能构成三角形;·(2)当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选:B.【分析】先求出方程的根,再根据三角形三边关系确定是否符合题意,然后求解.4、【答案】B【考点】三角形三边关系【解析】【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.5、【答案】B【考点】三角形三边关系,等腰三角形的判定【解析】【解答】解:A、因为1+1=2,所以本组数据不可以构成等腰三角形;故本选项错误;B、因为4﹣4<2<4+4,所以本组数据可以构成等腰三角形;故本选项正确;C、因为这个三角形没有一组相等的边,所以构不成等腰三角形;故本选项错误;D、因为3+3<7,所以本组数据不可以构成等腰三角形;故本选项错误;故选B.【分析】根据三角形的三边关系对以下选项进行一一分析、判断.6、【答案】C【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:如图,∵平行四边形的两条对角线长分别为8cm和10cm,∴OA=4cm,OB=5cm,∴1<AB<9,即其边长的取值范围是:1<x<9.故选:C.【分析】首先根据题意画出图形,然后由平行四边形的性质得出OA=4cm,OB=5cm,利用三角形的三边关系,即可求得答案.7、【答案】D【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:因为平行四边形的对角线互相平分,一边与两条对角线的一半构成三角形,所以根据三角形的三边关系进行判断:A、根据三角形的三边关系可知:4+7=11,不能构成三角形,故此选项错误;B、5+4<11,不能构成三角形,故此选项错误;C、5+16>11,11+5=16,不能构成三角形,故此选项错误;D、6+7=13>11,能构成三角形,故此选项正确.故选:D.【分析】根据平行四边形的性质知,平行四边形的对角线互相平分,则对角线的一半和已知的边组成三角形,再利用三角形的三边关系可逐个判断即可.8、【答案】B【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,A、OA=2,OB=2,2、2、4不满足三角形的三边关系,不能组成三角形,故本选项错误;B、OA=3,OB=2,3、2、4满足三角形的三边关系,能组成三角形,故本选项正确;C、OA=3,OB=2,3、2、6不满足三角形的三边关系,不能组成三角形,故本选项错误;D、OA=1.5,OB=2,1.5、2、5不满足三角形的三边关系,不能组成三角形,故本选项错误.故选B.【分析】平行四边形的对边相等,对角线互相平分,平行四边形的一边和两条对角线的一半构成三角形,满足三角形中第三边大于两边之差,小于两边之和,由此结合选项即可作出判断.9、【答案】D【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,A、∵2+3<10,不能够成三角形,故此选项错误;B、4+3<10,不能够成三角形,故此选项错误;C、4+6=10,不能构成三角形,故此选项错误;D、10+10>15,能够成三角形,故此选项正确;故选:D.【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.10、【答案】B【考点】三角形三边关系【解析】【解答】解:根据勾股定理的立逆定理,∵,∴A不符合;∵,∴B符合;∵,∴C不符合;∵,∴D不符合;故选B.【分析】如果三角形三边符合“ ”,那么这个三角形是直角三角形;则只需要计算每个选项中,较小的两边长的平方的和是否等于第三边长的平方.11、【答案】B【考点】三角形三边关系,平行四边形的性质【解析】【解答】解:如图所示:∵四边形ABCD是平行四边形,∴OA= AC=3,OD= BD=4,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3,∴1<AD<7.故选:B.【分析】根据平行四边形的对角线互相平分,即可求得OA与OD的值,又由三角形的三边关系,即可求得答案.12、【答案】C【考点】三角形的角平分线、中线和高,三角形三边关系,三角形内角和定理,全等三角形的判定【解析】【解答】解:∵锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,∴①正确;∵当a=2,b=c=1时,满足a+b>c,但是边长为1、1、2不能组成三角形,∴②错误;∵设三角形的三角为3x°,2x°,x°,∴由三角形的内角和定理得:3x+2x+x=180,∴x=30,3x=90,即三角形是直角三角形,∴③正确;∵有两个角和一条边对应相等的两个三角形全等,∴④正确;故选C.【分析】锐角三角形的三条高都在三角形的内部,直角三角形有一条高在三角形的内部,两条在三角形的两边上,钝角三角形的一条高在三角形的内部,两条高在三角形的外部,根据以上内容即可判断①;举出反例a=2,b=c=1,满足a+b>c,但是边长为1、1、2不能组成三角形,即可判断②;设三角形的三角为3x°,2x°,x°,由三角形的内角和定理得:3x+2x+x=180,求出3x=90,得出三角形是直角三角形,即可判断③;根据有两个角和一条边对应相等的两个三角形全等即可判断④.二、填空题13、【答案】17【考点】三角形三边关系,全等三角形的性质,等腰三角形的性质【解析】【解答】解:当3为腰时,3+3=6,∵6<7,∴3、3、7不能组成三角形;当7为腰时,3+7=10,∵7<10,∴3、7、7能组成三角形.∴△ABC的周长为3+7+7=17.又∵△DEF≌△ABC,∴△DEF的周长是17.故答案为:17.【分析】根据等腰三角形的性质结合三角形三边关系即可得出等腰三角形的三边长为3、7、7,再根据全等三角形的性质结合三角形的周长即可得出结论.14、【答案】2<AD<4【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即4<2AD<8,2<AD<4.故答案为:2<AD<4.【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.15、【答案】1cm<AD<11cm【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:过点D作DE∥AB交AC于点E,如图所示.∵AD是BC边上的中线,∴BD=CD.∵DE∥AB,∴DE是△ABC的中位线,∴AE= =6,DE= =5.∵在△ADE中:AE﹣DE<AD<AE+DE,∴6﹣5<AD<6+5,∴1<AD<11.故答案为:1cm<AD<11cm.【分析】过点D作DE∥AB交AC于点E,根据AD是BC边上的中线可得出BD=CD,由平行线的性质可得出DE是△ABC的中位线,进而得出AE、DE的长度,再根据三角形的三边关系即可得出中线AD的取值范围.16、【答案】2<BC<10;1<AD<5【考点】三角形三边关系,全等三角形的判定与性质【解析】【解答】解:∵在△ABC中,AB=6,AC=4,∴6﹣4<BC<6+4,∴2<BC<10;延长AD到E,使AD=DE,连接BE,如图所示:∵AD为中线,∴BD=DC,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB=6,BE=4,∴6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为:2<BC<10,1<AD<5.【分析】根据三角形的三边关系定理求出BC的范围即可;延长AD到E,使AD=DE,连接BE,证三角形全等,推出BE=AC=6,在三角形ABE中,根据三角形的三边关系定理求出即可.17、【答案】y=﹣x+9(0<x<9)【考点】函数关系式,函数自变量的取值范围,三角形三边关系,等腰三角形的性质【解析】【解答】解:由已知得:y=﹣x+9,三角形的三边关系式可得:,解得:0<x<9.则y与x之间的函数关系式为y=﹣x+9(0<x<9).故答案为:y=﹣x+9(0<x<9).【分析】根据三角形的周长公式结合等腰三角形的周长为48厘米,即可得出腰长y关于底边长x的函数解析式,再由三角形的三边关系即可得出关于x的一元一次不等式组,解不等式组即可得出x的取值范围.三、解答题18、【答案】解:如图,设AB=AC=a,BC=b,则有a+a=24且a+b=18;或a+a=18且a+b=24,得到a=16,b=10或a=12,b=18,这时三角形的三边长分别为16,16,10和12,12,18.它们都能构成三角形.【考点】三角形三边关系【解析】【分析】结合题意画出图形,利用三角形的中线的定义,以及三角形的周长和三角形的三边关系求三角形三边的长.19、【答案】解:若4cm长的边为底边,设腰长为xcm,则4+2x=14,解得x=5,若4cm长的边为腰,设底边为xcm,则2×4+x=14,解得x=6.两种情况都成立.所以等腰三角形另外两边长分别为5cm、5cm或4cm、6cm【考点】三角形三边关系,等腰三角形的性质【解析】【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.20、【答案】解:∵(a﹣6)2+|b﹣8|=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,b﹣a<c<a+b,这个三角形的最长边c,c>b=8,8<c<14【考点】三角形三边关系,平方的非负性,绝对值的非负性【解析】【分析】根据算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0,可得a、b的值,根据三角形两边之和大于第三边,两边之差小于第三边,可得答案.21、【答案】解:∵关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,∴△=(b+2)2﹣4(6﹣b)=0,即b2+8b﹣20=0;解得b=2,b=﹣10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12【考点】根与系数的关系,三角形三边关系,等腰三角形的性质【解析】【分析】若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.22、【答案】证明:把CD沿CA方向、距离为AC长度平移到AE,连接BE、DE,如图,则AC=ED,AE∥CD,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,在△DBE中,ED+BD>EB,则有AC+BD>AB【考点】平行线的性质,三角形三边关系,等边三角形的判定与性质【解析】【分析】根据三角形的三边关系:两边之和大于第三边,及平移的基本性质可得.。
人教版八年级上册数学:《11.1.1三角形的边》同步练习及答案

清大教育三角形的边试题一、选择题1.三角形是( )A .连接任意三角形组成的图形B .由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C .由三条线段组成的图形D .以上说法均不对2.若△ABC 三条边的长度分别为m,n,p,且()02=-+-p n n m ,则这个三角形为( )A .等腰三角形 B.等边三角形C .直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是( )A .一个直角三角形一定不是等腰三角形B .一个等腰三角形一定不是锐角三角形C .一个等腰三角形一定不是等腰三角形D .一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是( )A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( )A .3cm B.4 cm C. 7 cm D.11cm6.一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A .2 B.3 C.4D.87.)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远8.)如图1为图2中三角柱ABCEFG 的展开图,其中AE 、BF 、CG 、DH 是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB 长度?( )A .2B .3C .4D .5 (第7题) (第8题) (第9题)二、填空题9.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有________对10.已知△ABC 的一个外角为50°,则△ABC 一定是________三角形11.若等腰三角形两边长分别为3和5,则它的周长是_______________.12.如图,C 在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.如图,在图1中互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个……则在第n 个图形中,互不重叠的三角形共有__________个(用含n 的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有__________ .16.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有 __________ 个三角形.17.如图,直角ABC 的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为 __________.18.平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成__________个不同的三角形.三、解答题19.如图,△ABC 是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.。
人教版八年级数学上册《11.1.1三角形的边》同步测试题

人教版八年级数学上册《11.1.1三角形的边》同步测试题学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各组线段中,能组成三角形的是()A.a=6.3,b=6.3,c=12.6B.a=1,b=2,c=3C.a=2.5,b=3,c=5D.a=5,b=7,c=15cm,用它们能摆成三角形的是()2.下列每组数分别是三根小木棒的长度()A.2,4,6B.3,4,7C.2,6,7D.3,3,73.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm4.四条线段的长度分别为4,6,8,10,从中任取三条线段可以组成三角形的组数为()A.4B.3C.2D.15.下列线段能组成三角形的是()A.3、4、8B.5、6、11C.5、6、10D.2、2、46.下列给出的各组线段的长度中,能组成三角形的是()A.4,5,6B.6,8,15C.5,7,12D.3,7,137.下列各组中的三条线段能组成三角形的是()A.3,4,5B.5,6,12C.5,5,10D.4,4,88.长度分别为3,8,x的三条线段能组成一个三角形,x的值可能是()A.11B.5C.7D.49.已知四组线段的长分别如下,以各组线段为边,不能组成三角形的是()A.1,2,3B.2,3,4C.3,4,5D.2,2,210.同学们在玩“猜三角形”的游戏,图中被信封遮住的().A .只能是锐角三角形B .只能是直角三角形C .只能是钝角三角形D .可能是锐角三角形、直角三角形或钝角三角形二、填空题11.已知三角形的两边长分别是7和10,则第三边长a 的取值范围是 .12.已知三角形两边长分别为2,3,那么第三边的长可以是 .13.在数轴上点A 、B 、C 、D 对应的数字分别是1,1,6,x ,若线段AB BD CD 、、能围成三角形,则x 的范围是 .14.如图,沿虚线将正方形的一角剪掉后得到一个五边形.则五边形的周长比正方形的周长小,理由是 .15.广告公司为某种商品设计了一种商标图案(如图所示),图中阴影部分为红色.若每个小长方形的面积都是1,则红色部分的面积是16.有四根细木棒,长度分别为 3cm 、5cm 、7cm 、9cm ,以其中任意三条为边可以构成 个三角形.三、解答题17.观察图形.(1)图中有几个三角形?把它们一一写出来;(2)写出ABD△的边、顶点及三个内角;∠为内角的三角形有哪些?(3)以C(4)以AB为边的三角形有哪些?18.已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a﹣b)2+(b﹣c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.a-=的解,求ABC的19.已知a、b、c为ABC的三边长,且b、c满足()2570-+-=,a为方程32b c周长.A B C.20.如图,在同一平面内有三个点,,(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹.△作射线BA;△作线段BC;△连接AC,并在线段AC上作一条线段AD,使AD AB=,连接BD.(2)观察(1)题得到的图形,请直接写出DB DC与BC的大小关系是______________,依据的数学原理是__________________.21.一个三角形的三边长分别是xcm、(x+2)cm、(x+5)cm.它的周长不超过37cm.求x的取值范围.。
部编版人教初中数学八年级上册《11.1.1三角形的边 同步训练习题(含答案)》最新精品优秀

前言:
该同步训练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步训练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步训练习题)
第十一章三角形
11.1__与三角形有关的线段__
11.1.1 三角形的边
[学生用书P3]
1.[2015·大连]下列长度的三条线段能组成三角形的是( )
A.1,2,3 B.1,2,3
C.3,4,8 D.4,5,6
2.如图11-1-5,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16 m,PB=12 m,那么A,B间的距离不可能是( )
图11-1-5
A.5 m B.15 m C.20 m D.28 m
3.[2015·朝阳]一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为____.
4.等腰三角形两边长为4 cm,6 cm,求等腰三角形的周长.
5.指出图11-1-6中有几个三角形,并用字母分别表示出来.
图11-1-6
6.用一条长为20 cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边的长是多少?
(2)能围成有一边长为5 cm的等腰三角形吗?如果能,请求出它的另外两边.
7.从长为9,6,5,4的四根木条中选其中三根组成三角形,则选法共有( ) A.1种 B.2种 C.3种 D.4种
8.[2016·濉溪期中]已知三角形三条边的长分别为a+4,a+5,a+6,求a的取值范围.。
山东省曲阜市石门山镇中学八年级数学上册 11.1.3 三角形的稳定性同步练习 (新版)新人教版

11.1.3三角形的稳定性A 卷一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2D .34.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A .中线B .角平分线C .高线D .三角形的角平分线 6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( ) A.∠1 B .∠2 C .∠BD .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠BB .∠APC=∠BC .∠APC<∠BD .不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B .M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤ B .23P m P << C .23P m P ≤< D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形. 2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形.4.一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.5.在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.7.在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D、C、F、E,则_______是△ABC中BC边上的高,_________是△ABC中AB边上的高,_________是△ABC中AC边上的高,CF是△ABC的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC的两个外角的平分线相交于点D,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_____.11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线, ∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm .∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=. 5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BC AC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C . 又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++,即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.11.1.3三角形的稳定性 B 卷1.一定在△ABC 内部的线段是( )A .锐角三角形的三条高、三条角平分线、三条中线B .钝角三角形的三条高、三条中线、一条角平分线C .任意三角形的一条中线、二条角平分线、三条高D .直角三角形的三条高、三条角平分线、三条中线 2.下列说法中,正确的是( )A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A.小于直角; B.等于直角; C.大于直角; D.大于或等于直角14.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________, ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 15.如图,∠ABC =∠ADC =∠FEC =90°.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________;(4)若AB =CD =3,AE =5,则△AEC 的面积为________.16.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 17.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.18.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 19.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 20.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 21.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 22.如图,在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.23.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.24.如图,AB∥CD,BC⊥AB,若AB=4cm,2S,求△ABD中AB边上的高.=12cm∆ABC25.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?26.在直角△ABC中,∠BAC=90°,如下图所示.作BC边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?27.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.28.一个三角形的周长为36cm ,三边之比为a ∶b ∶c =2∶3∶4,求a 、b 、c .11.已知△ABC 的周长为48cm ,最大边与最小边之差为14cm ,另一边与最小边之和为25cm ,求△ABC 各边的长.29.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.30.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.31.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.32.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.33.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,(1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM . ∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________( ), ∴ ∠G = ________.∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.34.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,∠A =46°,∠D =50°.求∠ACB 的度数.35.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.36.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.37.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC <∠ACE.38.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.参考答案:1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ;9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 14.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ;15.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 16.22cm 或26cm ; 17.3; 18.11; 19.2;5.90°,36°,54°;20.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;21.略;22.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 23.212cm =∆ABC S ,∴21AB ·BC =12,AB =4,∴ BC =6, ∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm . 24.后一种意见正确.25.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.26.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.27.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm . 28.设三角形中最大边为a ,最小边为c , 由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm . 29.10-5<a -2<10+5,∴ 7<a <17. 30.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 31.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB .32.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC .33.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.34.94°; 35.120°; 36.10°;37.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.38.略.。
人教版八年级数学上《11.1.1三角形的边》同步练习题(含答案)

初中数学·人教版·八年级上册——第11章三角形11.1与三角形有关的线段11.1.1三角形的边同步练习题测试时间:30分钟一、选择题1.如图,以BC为边的三角形有()A.3个B.4个C.5个D.6个答案B以BC为边的三角形有△BCN,△BCO,△BMC,△ABC,故选B.2.四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为()A.4B.3C.2D.1答案B选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形.故选B.3.已知等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A.3cmB.6cmC.9cmD.3cm或6cm答案A当3cm是等腰三角形的腰长时,底边长=12-3×2=6(cm),∵3+3=6,∴3cm,3cm,6cm不能构成三角形,∴此种情况不存在;当3cm是等腰三角形的底边长时,腰长=12-32=4.5(cm),此时能组成三角形.∴底边长为3cm,故选A.二、填空题4.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.答案10解析若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,∴此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.综上所述,该等腰三角形的周长为10.5.如果三角形的三边长分别为3a,4a,14,则a的取值范围是.答案2<a<14解析根据三角形的三边关系,得3 +4 >14,4 -3 <14,解得2<a<14.三、解答题6.已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.解析(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.(2)∵a=5,b=2,∴5-2<c<5+2,即3<c<7,∵c为整数,∴c=4,5,6,∴当c=4时,△ABC的周长最小,最小值=5+2+4=11;当c=6时,△ABC的周长最大,最大值=5+2+6=13.7.小兵用长度为10cm,45cm和50cm的三根木条钉一个三角形时,不小心将50cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个三角形木架?解析(1)∵两根木条的长为10cm,45cm,∴若设第三根木条的长为x cm,则x应满足45-10<x<45+10,即35<x<55,∵第三根木条长为50cm,50-35=15(cm),∴最长的木条至少折断了15厘米.(2)如果最长的木条折断了25cm,则还剩25cm.要想钉成一个三角形木架,可以将45cm长的木条折成大于15cm且小于35cm的木条.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1.1 三角形的边
(检测时间50分钟满分100分)
班级______ 姓名_________ 得分______
一、选择题:(每小题3分,共18分)
1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形
的有( )
A.1个
B.2个
C.3个 C.4个
2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )
A.6<L<15
B.6<L<16
C.11<L<13
D.10<L<16
3.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应
在下列四根木棒中选取 ( )
A.10cm的木棒
B.20cm的木棒;
C.50cm的木棒
D.60cm的木棒
4.已知等腰三角形的两边长分别为3和6,则它的周长为( )
A.9
B.12
C.15
D.12或15
5.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )
A.2cm
B.3cm
C.4cm
D.5cm
6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )
A.2个
B.3个
C.4个
D.5个
二、填空题:(每小题3分,共18分)
1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长
为________;当周长是5的倍数时,第三边长为________.
2.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和
4,则它的周长为_____.
3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则
它的腰长b的取值范围是_______.
4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.
5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC
的长为__________.
6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.
三、基础训练:(每小题12分,共24分)
1. 如图所示,已知P 是△ABC 内一点,试说明PA+PB+PC>12(AB+BC+AC).
2.已知等腰三角形的两边长分别为4,9,求它的周长.
四、提高训练:(共16分) 设△ABC 的三边a,b,c 的长度都是自然数,且a ≤b ≤c,a+b+c=13,则以a,b,c 为边的三角形共有几个?
P C
A
五、探索发现:(共16分)
若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?
六、中考题与竞赛题:(每小题4分,共8分)
1.(南京)有下列长度的三条线段,能组成三角形的是( )
A.1cm,2cm,3cm
B.1cm,2cm,4cm;
C.2cm,3cm,4cm
D.2cm,3cm,6cm
2.(青海)两根木棒的长分别是8cm,10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长
x的取值范围是________;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.
答案:
一、1.B 2.D 3.B 4.C 5.B 6.B
二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5.5cm 6.7cm 三、
1.解:在△APB中,AP+BP>AB,
同理BP+PC>BC,PC+AP>AC,
三式相加得2(AP+BP+PC)>AB+AC+BC,
∴AP+BP+CP>1
2
(AB+AC+BC).
2.22
四、5个
五、25个
六、1.C 2.2cm<x<18cm 25cm.。