应用凹凸函数的性质证明不等式

合集下载

函数的凹凸性在不等式证明中的应用

函数的凹凸性在不等式证明中的应用

函数的凹凸性在不等式证明中的应用函数的凹凸性是高等数学中的一个重要概念,它描述了函数图像的形状。

具体来说,如果函数的图像在一些区间上是向上凸起的,我们称之为凸函数;如果函数的图像在一些区间上是向下凹陷的,我们称之为凹函数。

在不等式证明中,函数的凹凸性具有很重要的应用。

首先,函数的凹凸性可以帮助我们证明不等式的性质。

假设我们要证明一个不等式,例如a + b ≥ 2√(ab),其中a、b为非负实数。

我们可以考虑定义函数f(x) = x²,则f(x)是一个凸函数。

由凸函数性质可知,对于任意的实数x₁、x₂,有f(λx₁ + (1 - λ)x₂) ≤ λf(x₁) + (1 -λ)f(x₂),其中0 ≤ λ ≤ 1、将x₁ = a,x₂ = b代入上述不等式,可得2ab ≤ a² + b²。

再将a² + b²除以2,即可得到a + b ≥ 2√(ab)。

因此,通过证明函数的凹凸性,我们可以得到不等式的性质。

其次,函数的凹凸性还可以帮助我们求解优化问题。

假设我们要在非负实数集合中找到满足一些条件的最大值或最小值。

我们可以先通过求导得到函数的极值点,然后通过函数的凹凸性判断这个极值点是最大值还是最小值。

具体来说,如果函数是凸函数,那么极值点就是最小值;如果函数是凹函数,那么极值点就是最大值。

通过函数的凹凸性,我们可以在优化问题中确定最优解。

此外,函数的凹凸性还可以帮助我们证明不等式的反面。

例如,我们要证明a + b ≥ 2√(ab),其中a、b为非负实数。

假设我们采用反证法,假设不等式不成立,即a + b < 2√(ab)。

我们可以定义函数f(x) = x - 2√(x),其中x为非负实数。

我们可以证明函数f(x)是一个凹函数,然后通过证明f(a) + f(b) < 0,来推出假设的不等式不成立。

通过函数的凹凸性,我们可以证明不等式的反面。

总的来说,函数的凹凸性在不等式证明中具有重要的应用。

函数的凹凸性在不等式中的应用

函数的凹凸性在不等式中的应用
关 键 词 : 凸 函数 ; 等 式 ;推 广 凹 不 中 圈分 类号 : 7 O12 文献标识码 : A 文 章 编 号 :0 6 3 32 1) 6 0 8 -0 10 —7 5 (0 1 0 - 0 3 2
1 凹 凸 函数 的 概念
在 曲线 的上方 ; 凹函数 中 , A 在 弦 A。在 曲线 的下
所 ≤ 以
口+ 卢≤ 2
≤ 1 理 捂=, 得 整
求 + ≥9 证: {+ .
分析 由反 比例 函数 Y一 在 ( , 。 ) O + 。 上
在 推 广 1中 , a = 1 ∈N, > 1, 有 若 +b , n 则
结 一 6 丢 论口 , )- +. ≥(
≥拉 ( +b ) a +c
≥ ( ) 即有 s,
分 析 函数 Y— 在 ( , ∞ )上 是 凸 函 O +
( ) 凸函 数 1
( ) 凹函 数 2
数, 于是 有
收 稿 日期 :2 1 - 0 —1 . 01 9 0 - 作 者 简 介 :倪 雪 华 (9 5 )女 , 师 , 究 方 向 : 等 数 学 教 育教 学 17一 , 教 研 高
第 2 4卷第 6期 21 0 1年 1 2月
Hale Waihona Puke 高等 函授 学报 ( 自然 科学版 )
J u n l f g e o r s o d n eE u ain Na u a S in e ) o r a o h rC re p n e c d c t ( t rl ce c s Hi o
y ●

求证 :
≥( a ̄b 一 )

当 ,> 1 , l 时 由幂 函数 图像知 , = X 在 ( , O + o )上 是 凸函数便 可证 得 。 o

高等数学课程中的不等式的证明

高等数学课程中的不等式的证明

高等数学课程中的不等式的证明不等式是高等数学教学内容的重要组成部分,是高等数学中经常遇到而解决起来又比较困难的问题之一。

下面通过高等数学的一些原理和方法,分享几种不等式证明的常用的方法。

一、利用拉格朗日中值定理证明不等式拉格朗日中值定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内至少存在一点,使得。

二、利用函数的单调性证明不等式函数单调性的判定定理:设函数y=f(x)在区间[a,b]上连续,在(a,b)内可导,那么:(1)如果f?(x)>0,则f(x)在区间[a,b]上单调增加;(2)f?(x)例2.证明:X>0时,1+>证明:令f(x)=,则f?(x)==,因为f(x)在[0,+oo)上连续,在(0,+oo)内f?(x)>0,因此f(x)在[O,+oo)上单调增加。

从而当x>O时,f(x)>f(O)。

由于f(O)=O,故f(x)>f(O)=O。

即>0,亦即1+>。

注:运用函数的单调性证明不等式,关键在于合理地利用题设条件,构造出相应的辅助函数f(x),将原问题等价代换,根据导数f?(x)的符号判定函数f(x)在所给区间上的单调性,从而导出所证不等式。

三、利用函数的凹凸性证明不等式函数凹凸性的定义:设f(x)在[a,b]上连续,若对[a,b]中任意两点x1,x2,恒有f((x1+x2)/2)2f(x1)+f(x2)/2,则称f(x)在[a,b]上是凸函数;若恒有f((x1+x2)/2)sf(x1)+f(x2)/2,则称f(x)在[a,b]上是凹函数。

函数凹凸性的判定定理:设f(x)在[a,b]上连续,在区间(a,b)内有二阶导数,(1)如果在区间(a,b)内,(x)>0,那么曲线y=f(x)在[a,b]内是凹的;(2)如果在区间(a,b)内,(x)例3.证明:a>0,b>0且a#b,n>1时,证明:令f(x)=xn,x?(0,+oo),则f?(x)=nxn-1,=n(n-1)xn-2,当n>1时,对任意的x?(0,+oo),都有>0。

函数的凹凸性在不等式证明中的应用

函数的凹凸性在不等式证明中的应用

学年论文题目凹凸函数及其在证明不等式中的应用学院数学与计算机科学学院专业数学与应用数学级别 10级姓名洪玉茹学号 101301040摘 要 首先给出了凸函数的定义,.接着给出了凸函数的一个判定定理以及Jesen 不等式.通过例题展示了凸函数在不等式证明中的应用.凸函数具有重要的理论研究价值和实际广泛应用,利用凸函数的性质证明不等式;很容易证明不等式的正确性.因此,正确理解凸函数的定义、性质及应用,更对有关学术问题进行推广研究起着举足轻重的作用.关键词 凸函数,凸函数判定定理Jensen 不等式。

下面我们主要研究凸函数,凹函数由读者自行探索。

一、 凸函数的等价定义定义1 若函数()f x 对于区间(,)a b 的任意12,x x 以及(0,1)λ∈,恒有[]1212(1)()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间的 线总在曲线之上.定义2 若函数()f x 在区间(,)a b 连续,对于区间(,)a b 的任意12,x x ,恒有[]12121()()()22x x f f x f x +≤+, 则称()f x 为区间(,)a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点1122(,()),(,())x f x x f x 间割线的中点总在曲线上相应点(具有相同横坐标)之上.定义3 若函数()f x 在区间(,)a b 可微,且对于区间(,)a b 的任意x 及0x ,恒有000()()()()f x f x f x x x '≥+-,则称()f x 为区间(,)a b 上的凸函数.定义4 设()f x 在区间I 上有定义, ()f x 在区间I 称为是凸函数当且仅当:1,2,...,n x x x I ∀∈,有1212......()()......().nn x x x f x f x f x f n n +++++⎛⎫≤⎪⎝⎭则称该函数为凸函数。

函数凹凸性在不等式中的应用

函数凹凸性在不等式中的应用

(下转第54页)函数凹凸性在不等式中的应用李国成郭铁卫(杭州科技职业技术学院浙江·杭州310012)中图分类号:G633.66文献标识码:A 文章编号:1672-7894(2013)15-0052-02摘要函数凹凸性是一种重要的几何性质,函数的凹凸性也是高等数学的一个基本内容。

函数的凹凸性是证明比较复杂不等式和构造不等式的有力工具。

文章给出了函数凹凸性的定义以及判别方法,进一步探讨了函数凹凸性在证明不等式和构造不等式中的具体应用。

关键词函数凹凸性不等式的研究Jensen 不等式On the Application of Concavity and Convexity of Func 鄄tions to Inequality //Li Guocheng,Guo Tiewei Abstract The concavity and convexity of function is an important geometric properties,the concavity and convexity of functions is a basic content of higher maths.The concavity and convexity offunctions is proved more complex structural inequality inequality and powerful tool.The article gives the concavity of a functiondefinition and discrimination method.To further explore the con-vex function in the proof of inequality and structural inequality in specific applications.Key words concavity and convexity of functions;study of in-equality;Jensen's inequality 不等式是数学中非常重要且值得探讨的问题,不等式的证明问题需要多种方法的灵活运用,也是各种思想方法的集中体现。

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March凸函数的性质及其在证明不等式中的应用数学计算机科学学院摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果.关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用Nature of Convex Function and its Application in ProvingInequalitiesChen Huifei, College of Mathematics and Computer ScienceAbstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).We also have promoted and proved some inequality (Triangle inequality, Jensen inequality) and reached new results.Key words : Convex function;Logarithmic convex function ; Jensen inequality; Hadamard Inequality;Application1 引言在很多数学问题的分析与证明中,我们都需要用到凸函数,例如在数学分析、函数论、泛函分析、最优化理论等当中.凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.常用的凸函数有两种,一种叫上凸函数,即曲线位于每一点切线的下方或曲线上任意两点间的弧段总在这两点连线上方的函数;另一种叫下凸函数,即曲线位于每一点切线的上方或曲线上任意两点间的弧段总在这两点连线下方的函数.本文试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其作用.2 概念2.1 凸函数的定义上面对凸函数作了直观的描述,我们用分析式子给出其精确定义.定义[1]2.1设函数()f x 在区间[,]a b 上有定义,若对[,]a b 上任意两点12,x x 和正数λ∈(0,1),总有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+- (A)则f 为区间[,]a b 上的凸函数.(同时也称为上凸函数,若是不等号反向则称为下凸函.)定义[1]2.2 若函数()f x 在D 上是正的,且ln ()f x 在D 上是下凸函数,则称()f x 是D 上的对数下凸函数这时, 对于任意,x y D ∈ 和(0,1)λ∈,有ln [(1)]ln ()(1)ln ()f x y f x f y λλλλ+-≤+-. 即(1)[(1)]()()f x y f x f y λλλλ-+-≤ (B)如果(2) 中的不等号反向,则称()f x 是D 上的对数上凸函数.2.2 对数凸函数的性质我们已经有了凸函数以及对数凸函数的定义,现在我们来看一下对数的一些引理,定理及其性质等.定理 2.1[2] (对数下(上) 凸函数的判定定理) 设()f x 是D 上的正值函数,且在D 上有二阶导数,则()f x 在D 上为对数下(上) 凸函数的充要条件为对于任意x ∈D ,有2()()(())0(0)f x f x f x '''-≥≤先证下引理引理 2.1[2] (1) 若()g x 是[,]a b 上的下(上) 凸函数,则()()g x f x e = 为[,]a b e e 上的对数下(上) 凸函数.(2) 若()f x 是[,]c d 上的对数下(上) 凸函数,则()ln ()g x f x =为[ln ,ln ]c d 上的下(上) 凸数.证明(1) 任取12,[,]c d x x e e ∈,由()g x 在[,]c d 上是下凸函数,对任意01λ<<有()()121212[(1)]()(1)()121()()112[(1)][][]()()g x x g x g x g x g x f x x e e e e f x f x λλλλλλλλλλ+-+---+-=≤==(2)任取12,[ln ,ln ]x x c d ∈ ,由()f x 是[,]c d 上的对数下凸函数,对任意01λ<<有11212121212[(1)]ln [(1)]ln[()][()]ln ()(1)ln ()()(1)()g x x f x x f x f x f x f x g x g x λλλλλλλλλλ-+-=+-≤=+-=+-所以()g x 为区间[ln ,ln ]c d 上的下凸函数. (用类似方法可证上凸的情形)下证定理2.1[2] “⇐” 设[,]D c d =,()ln ()g x f x =,则 ()()[ln ()]()f xg x f x f x '''==,22()()[()]()()f x f x f x g x f x '''-''= 所以()g x 是为区间[ln ,ln ]c d 上的下凸函数,根据引理1 得()ln ()()g x f x e e f x ==为[ c ,d] 上的对数下凸函数“⇒” 若()f x 为[,]c d 上的对数下凸函数,由引理1 得()ln ()g x f x =为区间[ln ,ln ]c d 上的下凸函数,从而()0g x ''≥ ,对()ln ()g x f x =求二阶导数即得2()()(())0f x f x f x '''-≥. (用类似方法可证上凸的情形) .推论2.1[2] 设12(),()f x f x 是D 上的对数下(上) 凸函数,则1212()(),()()f x f x f x f x +也是D 上的对数下(上) 凸函数证明:设1212()()(),,,(0,1)g x f x f x x x D λ=+∀∈∈121122121111112221221121122212((1))((1))((1))()()()()[()()][()()]()()g x x f x x f x x f x f x f x fx f x f x f x f x g x g x λλλλλλλλλλλλλλ----+-=+-++-≤+≤+⨯+= 其中(A) 由..H older 不等式得到根据定义 2.2 得出1121()()f x f x +是D 上的对数下凸函数.122112[()()]()()()()f x f x f x f x f x f x '''=+12211212[()()]()()2()()()()f x f x f x f x f x f x f x f x ''''''''=++2121212222221111222[()()][()()]{[()()]}(){()()[()]}(){()()[()]}0f x f x f x f x f x f x f x f x f x f x f x f x f x f x '''-=''''''-+-≥根据定理2.1 得12(),()f x f x 是D 上的对数下凸函数. (用类似方法可证上凸的情形)用数学归纳法可将推论1 推广到有限情形.推论 2.2[2] 设()f x 是定义在D 上的正值函数,1) 若()f x 是对数下凸函数,则1()f x 在区间D 上是对数上凸函数. 2) 若()f x 是对数上凸函数,则1()f x 在区间D 上是对数下凸函数. 证明 1) 设1()()x f x φ=22322224241()()()2(())()(),()[]()()()()()2(())()()()(())()()[()][][][]()()()f x f x f x f x x x f x f x f x f x f x f x f x f x f x f x x x x f x f x f x φφφφφ''''-''''==-=-'''''''--'''-=--=-显然是小于0的,所以1()()x f x φ=是对数上凸函数,同理可证2) . 定理 2.2[2] (Jensen 型不等式) 设()f x 是D 上的正值对数下凸函数, 12,01, (1)i i n x D λλλλ∈<<+++=12112212(...)()()...()n n n n f x x x f x f x f x λλλλλλ+++≤ (*)若()f x 是D 上的正值对数上凸函数,则(*) 中不等号反向.证明 (用数学归纳法) 当2n =时,由定义2.2 知不等式(*) 成立. 假设n k =时不等式(*) 成立,即121122121(...)()()...()(1,0)kkk k k i i i f x x x f x f x f x λλλλλλλλ=+++≤=>∑ ,(1,2,...,1),i x D i k ∈=+设1(1,0)ki i i λλ==>∑111211121111221111111121111211[...()()]()()...()()()()...()()()k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k x x f x x x x x f x f x f x f f x f x f x f x f x λλλλλλλλλλλλλλλλλλλλλλλλλλλ-+-+++--++++++-++-+++++++++≤+≤++ 所以当1n k =+时,不等式(*) 成立,从而对于一切自然数(2)n n ≥ 不等式(*) 成立. 用同样方法可证明上凸情形.当然这里的定理对凸函数也是成立的.在下面的运算性质中有介绍.也就是下面的Jensen 不等式 1,Jensen 不等式 2.引理 2.2[2] (凸函数的Hadamard 不等式) 设()x φ是区间D 上的下凸函数则对于任意,.a b D a b ∈≤有11()[()()]22b a a b x dx a b b aφφφφ+⎛⎫≤≤+ ⎪-⎝⎭⎰ (#) 若()x φ是区间D 上的上凸函数,则对于任意,.a b D a b ∈≤,(#)中不等号反向.定理 2.3[2] ( Hadamard 型不等式) 设():[,](0,)f x a b →+∞对数下凸函数,则11()()[()()]2ln ()ln ()b a a b f f x dx f b f a b a f a f b +≤≤---⎰ (@) 若():[,](0,)f x a b →+∞对数下凸函数,则(5) 中不等号反向. 证明 由引理2.1 和引理2.2有1ln ()ln ()11ln ()()lim lim lim n f a bbf x naan i f a nn n b a f x dx edx e n +∆→∞=+∆→∞→∞-==≥=∑⎰⎰nn 由平均值i=1(b-a )e(b-a )11(ln ())()2lim ()ln ()()()()2ni b aif a bnn b aan a blmf b a ef x dxa bb a eb a f =-+∆-→∞+∑==-+≥-=-⎰1b-a (b-a)e(其中b a ∆=-)又令()ln ()x f x φ=,根据定义2.1,对于a x b <<,有()()()()()a b x b x a x b aφφφ-+-≤-()()()()()()ln ()()()()()()()()()()()exp()|()()[]()()ln ()ln (b a x b a a b x b x a bbbbf x x b aaaaa b a a b b a a b bbb ab aa ab a f x dx edx edx edxb a b a eedx ex b a b a b a b a e e b a f b f a φφφφφφφφφφφφφφφφφ-⎡⎤⎢⎥-⎣⎦-+------==≤--⎡⎤==⎢⎥--⎣⎦--=-=--⎰⎰⎰⎰⎰[()()])f b f a - 定理得证.2.3[3] 凸函数的性质 在讨论了一些对数凸函数的定理,引理,我们来看一看凸函数的运算性质以及它们实用的定理:(1) 若()f x 与()g x 均为区间[,]a b 上的凸函数,则()f x +()g x 也是区间[,]a b 上的凸函数.(2)若()f x 与()g x 为区间[,]a b 上的凸函数,则ⅰ)0λ≥,则()f x λ是[,]a b 上的凸函数;ⅱ)0λ<,则()f x λ是[,]a b 上的凹函数.(3) 设()f x 与()g x 都是[,]a b 上的非负单调递增的凸函数,则()()()h x f x g x =也是[,]a b 上的凸函数.证明:对任意12,x x ∈[,]a b 且12x x <和任意λ∈(0,1),因()f x 与()g x 在[,]a b 上单调递增,故 :1212[()()][()()]0f x f x g x g x --≥即: 12211122()()()()()()()()f x g x f x g x f x g x f x g x +≤+ (1) 又因为()f x 与()g x 在[,]a b 上的凸函数,故1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,2121g(x +(1-)x )g(x )+(1-)g(x )λλλλ≤而()0,()0f x g x ≥≥,设将上面两个不等式相乘,可得2122222211211[(1)][(1)]()()(1)[()()()()](1)()()f x xg x g x f x f x g x f x g x f x g x λλλλλλλλ+-+-≤+-++-又由⑴知21212222211211[(1)][(1)]()()(1)[()()()()(1)()()]f x x g x x g x f x f x g x f x g x f x g x λλλλλλλ+-+-≤+-++-=1122(1)()()()()f x g x f x g x λλ-+由凸函数的定义知:()()()h x f x g x =是[,]a b 上的凸函数. 注:1°()f x 与()g x 非负不能少,2°(),()f x g x 单调递增不能少.(4)[4][5] 设()u ϕ是单调递增的凸函数,()u f x =是凸函数,则复合函数[()]f x ϕ也是凸函数.对于其他情况也有类似的情况的命题,如下列:我们也可以看一下单值有反函数的函数的反函数与自身的凸凹性的关系. 如下表:(5) 若()f x 为区间I 内的凸函数,且()f x 不是常数,则()f x 在I 内部不能达到最大值.2.4[3] 凸函数的等价定义和判定设函数f 在区间(,)a b 上有定义,则下列命题彼此互相等价:(1)对任意12,x x ∈(,)a b 及任意恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-(2)对任意i x ∈(,)a b 及任意i p >0. 1,2,...,i n =. 11ni i p -=∑ 恒有11()n ni i i i i i f p x p f x ==⎛⎫≤ ⎪⎝⎭∑∑ (3)对任意1,2,(,)x x x a b ∈, 12x x x <<,恒有12121212()()()()()()f x f x f x f x f x f x x x x x x x---≤≤---(4)在(,)a b 上曲线在其每一点处具有不垂直于x 轴的左、右切线,并且曲线在左、右切线之上.(5)若在(,)a b 内存在单调递增的函数()x ϕ.以及0x ∈(,)a b ,使得对任意(,)x a b ∈,恒有00()()()xx f x f x t dt ϕ-=⎰,(6)对任意12,x x ∈(,)a b ,12x x <,恒有21121221()()1()22x x x x f x f x f f t dt x x ++⎛⎫≤≤ ⎪-⎝⎭⎰(7)对任意12,(,)x x a b ∈,恒有1212()()22x x f x f x f ++⎛⎫≤ ⎪⎝⎭对于凸函数定义等价性的证明,可参看[4]及[5].对于等价定义(5)事实上,我们也有类似的这样一个定理:定理 2.4 设函数f 在[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上为上(下)凸函数(严格上(下)凸函数)的一个必要充分条件f '是在(,)a b 上递增(减)(严格递增(减)).证明 先证条件是必要的.设()12,(,)x x a b ⊂.只要x x '与满足12x x x x '<<<,由于等价定义(3)可知12121212()()()()()()f x f x f x f x f x f x x x x x x x '---≤≤'---在上式中令12,x x x x +-'→→,得211221()()()()f x f x f x f x x x -''≤≤-.在是严格上凸函数的情形,我们取一点*x 满足*12x x x <<,从而得出**1212**12()()()()()()f x f x f x f x f x f x x x x x --''≤<≤--. 这样就得出了严格的不等式12()()f x f x ''<,必要性得证.再证充分性.设f '是在(,)a b 上递增.对任何()12,x x x ∈,由Lagrange 中值定理,可只存在()12,x x ξ∈与()12,x x η∈,使得11()()()f x f x f x x ξ-'=-,22()()()f x f x f x xη-'=-因为x ξη<<,所以()()f f ξη''≤.从而有1212()()()()f x f x f x f x x x x x--≤--所以,可知函数f 在[,]a b 上为上凸函数.容易看出,当f '严格递增时,()()f f ξη''<.上述不等式中成立着严格的不等号,从而函数f 在[,]a b 上是严格的上凸函数.同理可以证明下凸时的情景.当函数f 在[,]a b 内有二阶导数时,我们有下列应用起来就会更方便的定理 定理 2.5 设函数f 在[,]a b 上连续,f 在(,)a b 内有二阶导数,则f 在[,]a b 上为上凸函数(下凸函数)的充分条件0(0)f f ''''≥≤在(,)a b 内成立;而f 在[,]a b 上为严格上(下)凸函数的充分必要条件是0(0)f f ''''≥≤在(,)a b 内成立并且在(,)a b 的任何开的子区间内f ''不恒等于0.证明 第一个结论,由于0f ''≥得出f '在(,)a b 上递增再由定理4可得出.同理可证明下凸时的情景; 第二个结论,先证充分性 由于0f ''≥在(,)a b 内成立并且在(,)a b 的任何开的子区间内f ''不恒等于0.对任意12,(,)x x a b ∈,12x x <,又由于2121()()()x x f x f x f x dx ''''=+⎰,所以21()()f x f x ''>.所以函数f 在[,]a b 上为严格的凸函数.充分性得证. 再证必要性(反证法) 因为函数f 在[,]a b 上为严格凸函数,对任意12,(,)x x a b ∈,12x x <,则21()()f x f x ''>,而由于2121()()()x x f x f x f x dx ''''=+⎰,若是有一个(,)a b 的子区间恒等于0.不妨设为(,)(,)a b ξη⊂,对任意(,)x ξη∈,()0f x ''=.则由于21()()()x x f f f x dx ηξ''''=+⎰,()()f f ξη''=,这与已知条件相矛盾.所以,必要性得证.同理可证明下凸时的情景. 所以,定理得证.关于凸函数的判定有很多,应用范围最广的是Jensen 不等式.Jensen 不等式 1 设()f x 在区间I 上有定义,()f x 为凸函数,当且仅当12,,...,n x x x I∀∈1212...()()...()n n x x x f x f x f x f n n ++++++⎛⎫≤⎪⎝⎭(J1) 此外,当且仅当12...n x x x === 时,上式等号成立(证明略请参考附[1]). Jensen 不等式 2 12,,...,[,]n x x x a b ∀∈,12,,...,0n λλλ>,且11ni i λ==∑,1.则()f x 为凸函数的充要条件为:11()()n ni i i i i i f x f x λλ==≤∑∑ (J2)此外,上式当且仅当12...n x x x === 时,等号成立.(证明略请参考附[1]). 这里对任意12,,...,0n βββ>,若是令1ii nii βλβ==∑,那么就有1111()nni i i i i i n n i i i i x f x f ββββ====⎛⎫ ⎪ ⎪≤⎪ ⎪⎝⎭∑∑∑∑ (J3) 每个凸函数都有一个Jensen 不等式,Jensen 不等式的应用范围甚广,既可用于求解不等式问题,又可用于证明不等式定理,应用Jensen 不等式解题的关键有两条:一是必须先判明函数的上(下)凸性,二是直接应用Jensen 不等式有困难时,可以根据命题的特点,选择恰当的上凸函数和下凸函数,然后再进行解答.3 凸函数以及对数凸函数的应用在许多证明题中,我们常常遇到一些不等式的证明,其中有一类不等式利用凸函数的性质来证明可以非常简洁、巧妙.证明不等式是凸函数的一个重要应用领域,但关键是构造能够解决问题的凸函数.例 1[1] 利用凸函数证明调和平均值H ≤几何平均值G ≤对数平均值L ≤指数平均值E ≤算术平均值A.证明:事实上,我们可以用凸函数理论证明,对任意0(1,2,...,)ix i n 有1212...111...nnx x x n nx x x +++≤≤+++ (2)只要将不等式各部分同时取对数,这时左边的不等式可变为121111...1111ln (ln ln ...ln )n nx x x n n x x x +++-≤----.从而由函数()ln f x x =-在(0,)+∞上的(严格)凸性可得;右边的不等式可直接由()ln g x x =上的(0,)+∞(严格)下凸性可得.(具体证明可参看[2])为了证明例1 中的连不等式,我们先来看下面两个小题:(1) 设0(1,2,...,)i a i n >=且不全相等,0(1,2,...,)i p i n >=有不等式链11111ln ln exp exp n n nii i i i i i i i i nn n ii i i i n i i p a p a p a a p p p a ======⎛⎫⎛⎫ ⎪ ⎪ ⎪≤≤ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭∑∑∑∑∑∑ (3) 证:凸函数()ln f x x =-的Jensen 不等式:取0i q >,11ni i q ==∑,0(1,2,...,).i a i n >=得11ln ln n n i i i i i i q a q a ==-≤-∑∑ [4] 111ln ln nni i i i i i q q a a ==-≤-∑∑ (5)在[4]中令1iini ii ip a q p a ==∑得 1111exp ln nn niiii ni i i i iii ip p p a p a a a ====⎛⎫≤ ⎪⎝⎭∑∑∑∑ (6)又由(4),(5)可得 1111in nq i i i n i i i i ia q a q a ===≤≤∑∏∑ (7)在此令1ini i i p q p ==∑,可得111111ln exp nn ni i i i ii i i n n n ii i i i i ip p a p a p p p a ======⎛⎫ ⎪≤≤ ⎪ ⎪ ⎪⎝⎭∑∑∑∑∑∑ (8)联立(6),(8)既得证 (3).(2) 设()()f x p x 与在[,]a b 上正的连续函数且()f x ≠常数,在⑻中作代换i b a p p a i n -⎛⎫=+ ⎪⎝⎭,i b a a f a i n -⎛⎫=+ ⎪⎝⎭并在“∑”号后均乘b a n -,由0b a ->,不改变原不等号方向.令n →∞ 便得(3)的积分形式:ln ln exp exp b bb ba aa ab b bba aa ap fdx pdxp fdx pfdx f p p pdx pdxdx dx f f ⎛⎫⎛⎫ ⎪⎪ ⎪≤≤≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰(3)'在(3)'中令()1,()p x f x x ==()11ln ln ln ln 2b ab a b a b ab a e ----+⎛⎫≤≤≤⎪-⎝⎭再联立(2),得出H G L E A ≤≤≤≤.例 2 (1)在锐角ABC ∆中,证明1cos cos cos 2A B C ++≤, (2)12,,...,n a a a 设为正数,证明恒成立12...n a a a n +++≥证明 (1)令()cos()f x x =-,(0,)x π∈.由于()cos()0f x x ''=>,(0,)2x π∈.所以()f x 在(0,)2x π∈上凸函数,所以由于(J1)()()()()33f A f B f C A B C f ++++≥,即cos()cos()cos()s()33A B C A B C co ---++≥-1()2=-即1cos cos cos 2A B C ++≤;(2) 令()ln ,(0,)g x x x =-∈+∞,所以21()0,(0,)g x x x''=>∈+∞,故()g x 是在(0,)+∞上的上凸函数.也是根据(J1)121212121212()()...()...()ln ln ...ln ...ln()ln ln ...ln ...ln()n nn nn n g a g a g a a a a g n n a a a a a a n na a a a a a n n++++++≥++++++-≥-++++++≤即即从而,有12...n a a a n+++≥下面我们再看一个用对数凸函数证明的不等式题. 例 3[2]10,0,12ni i i πλλ=<<>=∑i 设x ,则12112212sin(...)sin sin ...sin n n n n x x x x x x λλλλλλ+++≥ (&)12112212cos(...)cos cos ...cos n n n n x x x x x x λλλλλλ+++≥ (%)证明 设()sin()f x x =,由于2()()[()]10f x f x f x '''-=-<,故sin()x 是(0,)2π上的对数凸函数,同理cos()x 也是(0,)2π上对数凸函数.根据定理2即可得(&),(%).例 4 设()f x 在[,]a b 上可积,且()m f x M ≤≤,()t ϕ是在[,]m M 上的连续下凸函数,则11()(())b b a af x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 证明 令,()k n k f f a b a n ⎛⎫=+- ⎪⎝⎭,,1()k n x b a n ∆=-.由于()t ϕ是凸函数,故有1,2,,1,2,,...()()...()n n n n n n n n f f f f f f n n ϕϕϕϕ++++++⎛⎫≥⎪⎝⎭. 由定积分的定义,上式就相当于,,,,11()n ni n i n i n i ni i f f b a b a ϕϕ==⎛⎫∆∆ ⎪ ⎪≥-- ⎪⎪⎝⎭∑∑,,1()k n x b a n ∆=-在上式中令n →∞时, 则有11()(())b b a a f x dx f x dx b a b a ϕϕ⎛⎫≥ ⎪--⎝⎭⎰⎰. 命题得证.例 5[7]设,i i a b R +∈,111,2,...,,,n n i i i i i n a b ====∑∑则21112nni i i i i ia a ab ==≥+∑∑.证明 记1ni i s a ==∑,11ni i a s ==∑,将21112nni i i i i i a a a b ==≥+∑∑变为11121n ii i ia b s a =≥+∑,那么取11i ib a +作为函数1()1f x x=+,则由于3()2(1)0f x x -''=+>,再令i i i b x a =,ii a sλ=所以根据凸函数性质和(J3)得出11111211ni n i i i ii i a b s x a λ==≥=++∑∑结论本文主要讨论了凸函数以及对数凸函数一类重要的函数的概念,包括它们的一些定义,性质,定理,引理和它们在证明一些不等式的重要应用.本文介绍了Jensen 不等式,Hadamard 不等式,叙述了一些定理,引理,性质并给出了它们的证明,并指出它们在判断凸函数的应用.本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用.最后举出了一些例题来具体的来体现凸函数以及对数凸函数在不等式证明的应用.参考文献:[1]汪文珑.数学分析选讲[M].绍兴文理学院数学系,2001[2]刘琼.对数凸函数的Jensen型和Hadamard型不等式[J].邵阳学报,邵阳,2005,3[3]查良凇.凸函数及其在不等式证明中的应用[J].浙江工贸职业技术学院学报,绍兴,2005,3[4]燕建梁,张喜善.凸函数的性质及其在不等式证明中的应用[J].太原教育学院学报,太原,2002,4[5]T.M菲赫金哥尔茨普.微积分教程[M].1965: 290-300[6]常庚哲,史济怀.数学分析教程(上册)(M).高等教育出版社,2003:167-176[7]李碧荣.凸函数及其性质在不等式证明中的应用[J].广西师范学院学报,南宁,2004,2[8]白景华.图函数的性质、等价定义及应用[J].开封大学学报,开封,2003,2[9]Satish Shirali, Harkrishan L. Vasudeva. Mathematical analysis[M]. Alpha Science International Ltd., c2006.[10]Tom M. Apostol.Mathematical analysis[M].China Machine Press, 2004.致谢这是本人的第一篇论文,所以在多方面没有指导老师张金洪老师的指导是很难进行下去的.张老师从我的选题开始便给予了很大帮助,在以后的开题,开题报告,初稿的资料搜索,初稿出来后的校正,进一步的改进都给予了极大帮助,使我在论文的完成进程中得以较为平坦地进行下去.在论文的写作的进行中,我同组等同学也给了我很多帮助.在此表示感谢.也在此对我们的学校安徽师范大学以及我校资料室提供这样一个学习环境和帮助,表示感谢.也感谢那在身后的帮助.。

利用函数的凹凸性证明不等式

利用函数的凹凸性证明不等式

利用函数的凹凸性证明不等式使用函数的凹凸性证明不等式的方法,通常分为以下三个步骤:1.确定使用的函数是凸函数还是凹函数,以及其定义域。

2.利用函数的凹凸性得出基本不等式或者推导得到不等式。

3.根据不等式左右两边的定义域,进一步讨论如何得出不等式的证明。

以下是一个示例:要证明不等式$(a+b)^2\\leq 2(a^2+b^2)$。

1.确定使用的函数是凸函数还是凹函数,以及其定义域。

函数$f(x)=x^2$在实数域上是凸函数。

我们可以令$a,b$为实数。

2.利用函数的凹凸性得出基本不等式或者推导得到不等式。

由$f(x)$的凸性可得,对于任意两个实数$a,b$和$\\lambda\\in(0,1)$,有:$$f(\\lambda a+(1-\\lambda)b)\\leq\\lambda f(a)+(1-\\lambda)f(b)$$将$\\lambda$取为$\\dfrac12$,$a,b$代入,得到:$$f\\left(\\dfrac{a+b}{2}\\right)\\leq\\dfrac{f(a)+f(b)}{2}$$即:$$\\left(\\dfrac{a+b}{2}\\right)^2\\leq\\dfrac{a^2+b^2} {2}$$化简可得:$$a^2+2ab+b^2\\leq 2a^2+2b^2$$即:$$(a+b)^2\\leq 2(a^2+b^2)$$3.根据不等式左右两边的定义域,进一步讨论如何得出不等式的证明。

由于$a$和$b$都是实数,所以$(a+b)^2$和$2(a^2+b^2)$都存在并且有意义。

因此,不等式成立。

综上所述,我们使用函数的凸性证明了不等式$(a+b)^2\\leq 2(a^2+b^2)$。

应用凹凸函数的性质证明不等式解读

应用凹凸函数的性质证明不等式解读
2
sin Α+co s Α
2
=1+2sin2Α+
4
2sin (Α+
Π4
≥1+2+4
2
=3+2 2.
例2已知A 1,A 2,A 3,…,A n是凸n边形的n个内角.求证:
sin A 1+sin A 2+…+sin A n ≤n sin (n -2Π
n
.
证明 由平面几何知识可知A i ∈
(0,Π,i =1,2,3,…,n ,且A 1+A 2+…+A n
f (x 2≤2f (
x 1+x 2
2
(当且仅当x 1=x 2时取等号,则称f (x在[a ,b ]上是凸函数;若恒
有f (x 1+f (x 2≥2f (
x 1+x 2
2
(当且仅当x 1=x 2时取等号,则称f (x在[a ,b ]上是凹函数.
应用数学归纳法,我们可以证明下面的凹(或凸函数的性质.
定理 若函数f (x在某区间内是凹(或凸函数,则对变数在这区间内的任意值x 1,x 2,x 3,…x n有以下不等式成立:
一般的随机事件,用统计定义求出它的概率,需要做多次实验(而且还不能找出精确值.为此,对实验合理的设计,数据的处
论:
当x1,x2,…,x n∈R+,且x1+x2+…+ x n=1时,则有
(x1+1
x12+(x2+1
x2
2+…+(x n+1
x n
2
≥(n2+12
n
.
例4设a、b、c为△A B C的三边,S是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R+ , 求证:
(a +
1 a
)
2
+
(b +
1 b
)
2
+
(c +
1 c
)
2

1302.
证明 (a +
1 a
)
2+
(b+
1 b
)
2+
(c+
1 )2 c
(a + ≥ 3[
1 a
)
+
(b +
1) b
+
3
(c +
1) c ]2
=
(a + 3[
b+
c) +
(1 a
3
+
1 b
+
1) c ]2

3(
1 3
+
1 3
的思维能力.
(收稿日期: 20040910)
论:
当 x 1, x 2, …, x n ∈ R+ , 且 x 1 + x 2 + … + x n = 1 时, 则有
(x 1+
1 )2+ x1
(x 2+
1 )2+ x2
…+
(x n +
1 )2 xn
≥ (n2 + n
1)
2Hale Waihona Puke .例 4 设 a、b、c 为 △A B C 的三边, S 是
△A B C 的面积. 求证:
a2 + b2 + c2 ≥ 4 3 S. (第三届国际中学生竞赛题)
证明 a2 + b2 + c2 ≥ ab + bc + ca
=
ab sinC s inC
+
bc sinA s inA
+
ca sinB sinB
=
2S
(
s
1 inA
+
1 sinB
+
1 sinC
).

又 y =
1 x
(x
>
0) 为凹函数,
映象很深. 对第二个条件 —— 可重复性, 往往
容易忽视. 从定义可以看出, 概率论是一门实
践性很强的科学. 忽视了可重复性, 就忽视了 它的重要基础.
有些事情: 比如美国的总统选举. 虽然选 举前不能确定它的结果, 但它不满足可重复 性. 所以它不是数学中所指的随机现象. 因此 也不存在“概率”的问题, 实际生活中也很少 有人问它的概率大小. 如果有四人预测美国 的选举结果:
x 2, x 3, …x n 有以下不等式成立:
f (x 1 +
x2 + …+ n
x n) ≤
f (x 1) +
f (x 2) + n
…+
f (x n) ,
当且仅当 x 1 = x 2 = …, = x n 时取等号
(对于凸函数不等式方向相反). 由凹函数的
定义可知 y = x 2 (x ∈ R) , y =
中出现了 v 次, 则称 F u (A ) =
v 为随 u
机事件A 在 u 次独立试验中出现的频率. 事件
A
发生的频率 v u
会在某一常数 P
附近摆动,
且 当 u 越大时, 这种摆动幅度越小, 则称常数
P 为事件 A 的概率, 记为 P (A ).
概 率 的 统 计 定 义 是 一 种 最 基 础 的 定 义.
1 x
(x
>
0) 为凹
函数. 事实上, 任给 x 1, x 2 ∈ R, 都有
x
2 1
+
x
2 2

1 2
(x
2 1
+
2x 1x 2 +
x
2 2
)
=
2
(x
1
+ 2
x 2) 2,
∴ y = x 2 (x ∈ R) 是凹函数.
对于任意 x 1, x 2 ∈ R+ ,
1 x1
+
1 x2
=
x1 + x2 ≥ 2 x1 x2
4 2 sin (Α+ Π4 )
≥ 1 + 2 + 4 = 3 + 2 2.
2
例 2 已知A 1, A 2, A 3, …, A n 是凸 n 边形 的 n 个内角. 求证:
sinA 1 + sinA 2 + … + sinA n ≤ n sin
(n - n 2) Π.
证明 由平面几何知识可知 A i ∈ (0, Π) , i = 1, 2, 3, …, n , 且A 1 + A 2 + … + A n = (n - 2) Π. 又 y = sinx , x ∈ (0, Π) 是凸函
∴ 2S
(
1 sinA
+
1 s inB
+
s
1 inC
)
≥ 2S
s inA
+
3 s inB
+
s inC
3
=
2S sinA
+
9 s inB
+
s inC.

即 y = sinx , x ∈ (0, Π) 为凸函数,
又 sinA + sinB + sinC
≤ 3sin A
+
B 3
+
C=
3
3a+
1 b+
)2 c
3
=

(
1 3
+
3) 2 =
1302.
应 用上题方法可以得到下面的结
48
中学数学 2004 年第 11 期
概率小议
—— 兼谈广东省 2004 年高考第 13 题
510631 华南师范大学数学系 孙道椿
概率的统计定义: 记某个随机事件为
1 A , 若在 u 次彼此无关的试验 (或观察)
它说明了事件的概率是客观存在的. 也给出
了概率的最原始的求法. 从定义可以看出, 我
们指的随机现象应具有二个条件:
① 不确定性: 每次实验的结果 (事件) 具
有多个可能性, 且不能确定每次试验会出现
哪种结果.
② 可重复性: 在相同的条件下, 试验可重
复进行; 或者可以同时进行多次的相同试验.
平常, 人们对第一个条件 —— 不确定性
有 f (x 1) +
f
(x 2)
≥ 2f
(x 1 + 2
x 2) (当且仅当
x 1 = x 2 时取等号) , 则称 f (x ) 在[ a, b ] 上是凹
函数.
应 用数学归纳法, 我们可以证明下面的
凹 (或凸) 函数的性质.
定理 若函数 f (x ) 在某区间内是凹 (或
凸) 函数, 则对变数在这区间内的任意值 x 1,
甲说“布什有 95◊ 的可能当选. ” 乙说“布什有 50◊ 的可能当选. ” 丙说“布什有 5◊ 的可能当选. ” 丁说“布什肯定不会当选. ” 若 结果是布什当选了, 上面仅有丁一人 说错, 若布什没有当选, 上面四人全没有错, 由于美国的选举不可重复. 实际上, 前面三人 说的话是不可验证的, 它只是反映了说话人 的主观态度及认识, 在概率论中是无意义的. 一 般的随机事件, 用统计定义求出它的 概率, 需要做多 次 实 验 ( 而 且 还 不 能 找 出 精 确值). 为此, 对实验合理的设计, 数据的处
数.
∴ sinA 1 + sinA 2 + … + sinA n ≤ n
sin A 1 +
A2+ n
…+
An=
n
sin (n - n 2) Π.
而已知 A 、B 、C 为 △A B C 的内角,
则 sinA +
sinB +
sinC ≤ 3
3 是上 2
述命题中 n = 3 时的特例.
例 3 已知 a + b + c = 1, 且 a、b、c ∈
定义 已知函数 y = f (x ) 在给定区间 [ a, b ] 上, 若 x 1, x 2 ∈ [ a, b ] 恒 有 f (x 1) +
f
(x 2) ≤ 2f
(x 1 + 2
x 2 ) (当且仅当 x 1 =
x 2 时取
等号) , 则称 f (x ) 在 [ a , b ] 上是凸函数; 若恒
2004 年第 11 期 中学数学
47
应用凹 (凸) 函数的性质证明不等式
435000 湖北省黄石市第二中学 王碧纯
不等式的证明是高中数学中的一个重要
内容. 由于证题方法多、技巧性强, 所以是一 个难点. 本文介绍应用凹 (或凸) 函数的性质 证明不等式的方式, 希望给读者以启迪, 并起 到抛砖引玉的作用.
+
co1sΑ) ≥ 3 +
2
2.
证明 ∵ Α为锐角, ∴ sin Α> 0, co sΑ> 0.
又 y =
1 x
(x
∈ R+ )
为凹函数,
∴ (1 +
s
1 in
Α)
(1
+
co1sΑ)
=
1+
s
in
相关文档
最新文档