三角形性质和判定定理
等边三角形性质与判定

等边三角形性质与判定等边三角形是指三条边都相等的三角形。
在几何中,等边三角形具有一些特殊的性质和判定方法。
本文将介绍等边三角形的性质以及如何判定一个三角形是等边三角形。
一、等边三角形的性质1.三边相等:等边三角形的三条边长度相等,即AB=AC=BC。
2.内角相等:等边三角形的三个内角都相等,每个角都是60度。
3.内角和为180度:等边三角形的三个内角和为180度,因为三个角都是60度,所以它们的和为180度。
4.等边三角形是等腰三角形:等腰三角形是指两边长度相等的三角形。
等边三角形的三边都相等,因此也是等腰三角形。
5.等边三角形是等角三角形:等角三角形是指三个角度都相等的三角形。
等边三角形的三个内角都是60度,因此也是等角三角形。
二、判定一个三角形是否为等边三角形判定一个三角形是否为等边三角形可以通过以下方法进行:1.测量三条边的长度:通过使用测量仪器(例如尺子)或计算方法,测量三条边的长度,如果它们长度相等,则可以判定为等边三角形。
2.判定三个角度是否相等:通过使用角度测量器或计算方法,测量三个角度的大小,如果它们都是60度,则可以判定为等边三角形。
3.判定两边是否相等:通过测量任意两条边的长度,如果它们长度相等,则可以判定为等边三角形。
需要注意的是,在实际应用中,我们常常会结合多种判定方法来确定一个三角形是否为等边三角形,以增加判定结果的准确性。
三、等边三角形的应用等边三角形在几何学中有广泛的应用,下面列举了其中一些常见的应用:1.建筑与设计:等边三角形在建筑和设计中常常作为参考图形,用于规划和设计各种建筑结构。
2.三角函数:等边三角形是三角函数的重要基础。
在三角函数中,等边三角形通常用作基本的参考图形,用于推导和分析各种三角函数的性质和关系。
3.几何证明:等边三角形作为一种特殊的三角形,常常被用于几何证明中。
通过研究等边三角形的性质,可以推导和证明各种几何定理和命题。
4.图形构造:等边三角形是一种基本的图形构造元素,可以用于构造其他形状和图形。
相似三角形判定与性质定理

(1)相似三角形的对应角相等.
(2)相似三角形的对应边成比例.
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.
(4)相似三角形的周长比等于相似比.
(5)相似三角形的面积比等于相似比的平方.
判定方法
证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。
如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
方法一(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。
(这是相似三角形判定的定理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线分线段成比例的证明)
方法二
如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似。
(AA')
方法三
如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似(SAS)
方法四
如果两个三角形的三组对应边的比相等,那么这两个三角形相似(SSS)
方法五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形。
直角三角形的性质及判定

直角三角形的性质及判定直角三角形定义:有一个角为90°的三角形,叫做直角三角形。
直角三角形可用Rt△表示,如直角三角形ABC 写作Rt△ABC。
直角三角形性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。
即。
如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)性质2:在直角三角形中,两个锐角互余。
如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2 性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则BD:DC=AB:AC直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。
如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。
(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
直角三角形的判定和性质

等腰直角三角形的面积可以通 过其直角边计算,面积=1/2 * a * a = 1/2 * a^2。
30°-60°-90°的直角三角形
30°-60°-90°的直角三角形是具有30°和60°锐角的直角三角形,其中30° 角所对的直角边等于斜边的一半,即c=2a,其中c为斜边,a为30°角所 对的直角边。
直角三角形中的三个角满足三角形内角和定理,即三角形的 三个内角之和等于180度。
直角三角形中的边长关系
直角三角形中,斜边是直角边中最长的一边,且斜边上的 中线等于斜边的一半。
在直角三角形中,直角边的平方和等于斜边的平方,即勾 股定理。
直角三角形的中线性质
直角三角形中,斜边上的中线长度等于斜边长度的一半。 直角三角形的中线性质还包括,中线与直角相对的边平行且等于该边的一半。
04
直角三角形的应用
在几何图形中的应用
01
勾股定理
勾股定理是直角三角形的一个重要性质,在几何学中广泛应用于解决与
直角三角形相关的问题。
02
等腰直角三角形
等腰直角三角形是一种特殊的直角三角形,其两腰相等,且一个角为90
度。在几何图形中,等腰直角三角形
直角三角形的判定和性质
目 录
• 直角三角形的定义 • 直角三角形的判定 • 直角三角形的性质 • 直角三角形的应用 • 直角三角形的特殊情况
01
直角三角形的定义
定义
01
直角三角形是有一个角为90度的 三角形。
02
在直角三角形中,斜边是最长的 一边,两个锐角的角度之和为90 度。
直角三角形的表示方法
运动学
在描述物体的运动轨迹时,我们经常需要使用直角三角形来计算角度、速度和加速度等物 理量。例如,在抛体运动中,我们可以使用直角三角形来计算物体的射程和仰角。
直角三角形的性质与判定

直角三角形的性质与判定直角三角形是初中数学中常见的一个概念,它具有一些独特的性质和判定方法。
在本文中,我们将探讨直角三角形的性质以及如何判定一个三角形是否为直角三角形。
首先,让我们来了解直角三角形的定义。
直角三角形是指一个三角形中,其中一个角为90度的三角形。
这个角称为直角,通常用一个小方块来表示。
直角三角形有一个重要的性质,即勾股定理。
勾股定理是直角三角形的基本定理之一,它表明在一个直角三角形中,直角边的平方等于两个其他边的平方和。
这个定理可以用一个简单的公式来表示:c² = a²+ b²,其中c表示斜边的长度,a和b分别表示直角边的长度。
利用勾股定理,我们可以判定一个三角形是否为直角三角形。
如果一个三角形的三条边满足勾股定理,那么它就是一个直角三角形。
例如,如果一个三角形的边长分别为3、4和5,那么它就是一个直角三角形,因为3² + 4² = 5²。
除了勾股定理外,直角三角形还有一些其他的性质。
首先,直角三角形的两条直角边是相互垂直的。
这意味着,如果一个三角形的两条边互相垂直,那么它就是一个直角三角形。
这个性质可以用来判定一个三角形是否为直角三角形,而不需要使用勾股定理。
例如,如果一个三角形的两条边的斜率的乘积为-1,那么它就是一个直角三角形。
另外,直角三角形的两条直角边的长度也具有一定的关系。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
因此,如果我们已知一个直角三角形的斜边和其中一条直角边的长度,我们可以通过勾股定理计算出另一条直角边的长度。
在实际应用中,直角三角形的性质和判定方法经常被用于测量和计算。
例如,我们可以利用直角三角形的性质来测量一个高楼的高度。
通过在地面上测量一个直角三角形的一条直角边和斜边的长度,再利用勾股定理计算出高楼的高度。
此外,直角三角形的性质还被广泛应用于建筑、航海、导航等领域。
例如,在建筑设计中,我们可以利用直角三角形的性质来确定房屋的角度和尺寸。
三角形的性质、定理、全等三角形判定以及运用;

三角形的常见的知识点知识点1. 三角形的三边和角度关系性质或推论1、三角形三边关系定理:1)三角形的两边之和大于第三边。
2)三角形三边关系定理的作用:①②2、三角形的内角和定理:1)三角形三个内角和等于°2)推论:①直角三角形的两个锐角。
②三角形的一个等于和它不相邻的两个内角的和。
注:在同一个三角形中:等角对;等边对;大角对;大边对。
【经典例题】1、已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是________.2、下列长度的各组线段中,能组成三角形的是()A.1,1,2 B.3,7,11 C.6,8,9 D.3,3,63、若△ABC的三个内角满足关系式∠B+∠C=3∠A,则这个三角形()A.一定有一个内角为45° B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形4、如图,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .5、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm的两个部分,求三角形各边的长.6、已知△ABC内一点P,证明:AB+AC > BP+PC知识点2. 证明三角形全等常用的一些方法1)全等变换包括 、 、 三种方式; 2) 全等三角形判定方法① 2边 “ ”、“ ”;② 1边1角 “ ”、“ ”、“ ”; ③ 直角特殊:“ ”; 3) 角的平分线:①(性质)角平分线上的点到角的两边的②(判定)角的内部到角的两边的距离相等的点在 。
【经典例题】★ 1、如图,B 、E 、C 、F 在同一直线上,AB ∥DE,AB=DE,BE=CF,AC=6,则DF= ;2、如图△ABC 中,∠BAC=90度,AB=AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD=2CE . (类型: )3、如图,321∠=∠=∠,AC=AE ,求证:DE=BC (类型: )12 A43BCDEO4、已知B E E D,12,求证:∆∆=∠=∠E≅DABE C(知识点:)★ 5、如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD 相交于点O,(1) 求证:△AEO≌△CDO;(2)若∠OCD=30°,AB=3,求△ACO的面积;★6、在△ABC中,∠ACB= 900,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
三角形的性质与判定总结

三角形的性质与判定总结三角形是几何学中最基本的形状之一,具有独特的性质和判定方法。
本文将对三角形的性质和判定进行总结,帮助读者更好地理解和应用三角形的知识。
一、三角形的定义和性质三角形是由三条线段组成的多边形。
根据边长的关系,三角形可以分为等边三角形、等腰三角形和一般三角形。
- 等边三角形的三条边相等。
- 等腰三角形的两条边相等。
- 一般三角形的三条边都不相等。
根据角度的关系,三角形可以分为直角三角形、锐角三角形和钝角三角形。
- 直角三角形的一个角为90度。
- 锐角三角形的三个角都小于90度。
- 钝角三角形的一个角大于90度。
根据角度的总和,三角形的内角总和始终为180度。
这是三角形的重要性质,在解题过程中经常被用到。
二、三角形的判定方法判定一个图形是否为三角形,可以通过以下几种方法进行验证。
1. 三边关系判定对于给定的三条线段,如果任意两条线段之和大于第三条线段的长度,则可以构成一个三角形。
否则,无法构成三角形。
2. 两角一边关系判定(SAS判定)如果两个角相等,并且它们的夹边也相等,那么可以确定这两个角和夹边构成一个三角形。
3. 对边关系判定(SSS判定)如果三条边相等,则可以确定这三条边构成一个三角形。
4. 直角三角形判定如果一个三角形的一个角是90度,则可以确定这个三角形为直角三角形。
可以使用勾股定理来判定一个三角形是否为直角三角形。
三、三角形的常见定理和公式1. 三角形的面积公式三角形的面积可以通过底边和高的乘积的一半来计算:面积 = 1/2 ×底边 ×高。
2. 相似三角形定理如果两个三角形的对应角相等,则它们是相似三角形。
相似三角形的边长之比等于对应边长之比。
3. 正弦定理在一个三角形ABC中,三角形的三条边分别为a、b、c,对应的角为A、B、C。
正弦定理表示:a/sinA = b/sinB = c/sinC。
4. 余弦定理在一个三角形ABC中,三角形的三条边分别为a、b、c,对应的角为A、B、C。
直角三角形的性质与判定

直角三角形的性质与判定直角三角形是一种特殊的三角形,具有独特的性质和判定条件。
本文将介绍直角三角形的定义、性质以及判定方法。
一、直角三角形的定义直角三角形是指其中一个角为直角(90度)的三角形。
三角形的三个内角之和为180度,因此直角三角形的其他两个角的度数之和为90度。
二、直角三角形的性质1. 斜边、直角边和对角线的关系在直角三角形中,斜边是直角三角形的最长边,对应直角边是直角三角形的次长边,而对角线是直角三角形的最短边。
这是由勾股定理所决定的,即斜边的长度等于直角边长度的平方和的平方根。
例如,对于直角边长分别为a和b的直角三角形,斜边的长度为√(a^2 + b^2)。
2. 直角三角形的角度关系直角三角形中,直角边与斜边的夹角为90度,而直角边与非直角的两个角之和为90度。
这意味着直角三角形中的两个非直角角度互为余角,即一个角的余角等于另一个角本身。
例如,如果一个角为30度,则另一个角为60度,它们互为余角。
三、直角三角形的判定方法在给定三条边的长度时,我们可以通过以下方法判断是否为直角三角形:1. 勾股定理勾股定理是判定一个三角形是否为直角三角形的重要方法。
根据勾股定理,如果一个三角形的最长边的平方等于其他两边的平方和,则该三角形为直角三角形。
2. 角度判定在一个三角形中,如果两个角的度数之和为90度,则该三角形为直角三角形。
通过测量三角形的角度可以判断是否为直角三角形。
3. 边长关系在一个三角形中,如果两条边的长度满足a^2 + b^2 = c^2,则该三角形为直角三角形。
其中,a、b表示两个直角边的长度,c表示斜边的长度。
四、直角三角形的应用直角三角形的性质和判定方法在实际生活中有广泛的应用。
例如,在建筑领域中,直角三角形的性质被用于测量和确定建筑物的角度和边长。
在航海和航空领域中,直角三角形的性质被用于计算飞行器和船只的航向和位置。
总结:直角三角形是一种具有独特性质的三角形,其中一个角为90度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形:
定义:有两条边相等的三角形是等腰三角形。在等腰
三角形中,相等的两边都叫做腰,另一边叫做底边,
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
性质:
1.等腰三角形的两条腰相等;
2.等腰三角形的两个底角相等;
3.等腰三角形是轴对称图形;
4.等腰三角形顶角的平分线、底边上的中线、底边上
的高重合,它们所在的直线都是等腰三角形的对称
轴。
判定:
1.有两条边相等的三角形是等腰三角形;
2.如果一个三角形有两个角相等,那么这两个角所对
的边也相等。
等边三角形:
定义:三边都相等的三角形是等边三角形,也叫正三
角形。
性质:
1.等边三角形是轴对称图形,有三条对称轴,任意边
的垂直平分线都是它的对称轴;
2.等边三角形的三个角都相等,每个角都是60°。
判定:
1.三条边都相等的三角形是等边三角形;
2.有一个角是60°的等腰三角形是等边三角形;
3.有两个角是60°的三角形是等边三角形。
直角三角形:
定义:有一个内角是直角的三角形叫做直角三角形。
其中,构成直角的两边叫做直角边,直角边所对的边
叫做斜边。
性质:
1.直角三角形的两个余角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中30°角所对的直角边等于斜边的一
半;
4.勾股定理:直角三角形两直角边a、b的平方和、
等于斜边c的平方,即a^2+b^2=c^2
判定:
1.有一个角是直角的三角形是直角三角形;
2..有两个角互余的三角形是直角三角形;
3.如果一个三角形一条边上的中线等于这条边的的一
半,那么这个三角形是直角三角形;
4.如果三角形的三边长a、b、c满足于
a^2+b^2=c^2,那么这个三角形是直角三角形。
角平分线定理:在角的平分线上的点到这个角的两边
的距离相等
逆定理:到一个角的两边的距离相同的点,在这个角
的平分线上
中垂线定理:线段垂直平分线上的点到这条线段两个
端点的距离相等
逆定理:到一条线段两个端点距离相等的点,在这
条线段的垂直平分线上
1 定理 三角形两边的和大于第三边
2 推论 三角形两边的差小于第三边
5外角2 三角形的一个外角大于任何一个和它不相
邻的内角
3 三角形内角和定理 三角形三个内角的和等于180°
4外角1 三角形的一个外角等于和它不相邻的两个
内角的和
全等的判定:
6边角边公理(SAS) 有两边和它们的夹角对应相等的两
个三角形全等
7角边角公理( ASA)有两角和它们的夹边对应相等
的两个三角形全等
8推论(AAS) 有两角和其中一角的对边对应相等的
两个三角形全等
9边边边公理(SSS) 有三边对应相等的两个三角形
全等
10斜边、直角边公理(HL) 有斜边和一条直角边对应
相等的两个直角三角形全等