人教A版高中数学必修五周练七
【人教A版】高中数学必修5教学同步讲练第二章《等比数列前n项和的示解》练习题(含答案)

第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解A 级 基础巩固一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .1282.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)43.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .1934.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 7.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.8.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .B级能力提升1.在等比数列{a n}中,a1+a2+…+a n=2n-1(n∈N*),则a21+a22+…+a2n等于()A.(2n-1)2 B.13(2n-1)2C.4n-1 D.13(4n-1)2.设等比数列{a n}的公比为q,前n项和为S n,若S n+1,S n,S n+2成等差数列,则q的值为________.3.等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n+14a n(n∈N*),求数列{bn}的前n项和T n.第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解(参考答案)一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128解析:设数列{a n }的公比为q (q >0),则有a 5=a 1q 4=16, 所以q =2,数列的前7项和为S 7=a 1(1-q 7)1-q =1-271-2=127. 答案:C2.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)4解析:因为a n =2×3n -1,则数列{a n }是以2为首项,3为公比的等比数列,由此数列的偶数项所组成的新数列是以6为首项,以9为公比的等比数列,则前n 项和为S n =6(1-9n )1-9=3(9n -1)4.答案:D3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .193解析:设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12=381,解得a 1=192.答案:C4.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)解析:因为3a n +1+a n =0,a 2=-43≠0,所以a n ≠0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).答案:C5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15解析:由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1a n =1,解得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5.答案:B 二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 解析:因为a 1+a 2=a 1(1+q )=30,a 3+a 4=a 1q 2(1+q )=60,所以q 2=2,所以a 7+a 8=a 1q 6(1+q )=[a 1(1+q )]·(q 2)3=30×8=240.答案:2407.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.解析:法一:a 1+|a 2|+a 3+|a 4|=1+|1×(-2)|+1×(-2)2+|1×(-2)3|=15. 法二:因为a 1+|a 2|+a 3+|a 4|=|a 1|+|a 2|+|a 3|+|a 4|,数列{|a n |}是首项为1,公比为2的等比数列,故所求代数式的值为1-241-2=15.答案:158.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:a 1+a 2=4,a 2=2a 1+1⇒a 1=1,a 2=3,再由a n +1=2S n +1,a n =2S n -1+1(n ≥2)⇒a n +1-a n =2a n ⇒a n +1=3a n (n ≥2),又a 2=3a 1,所以a n +1=3a n (n ≥1),S 5=1-351-3=121.答案:1 121 三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解:(1)设等差数列{a n }的公差为d ,由已知条件可得 ⎩⎨⎧a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n 2n -1,故S 1=1,S n2=a 12+a 24+…+a n2n . 所以,当n >1时,S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-⎝ ⎛⎭⎪⎫12+14+…+12n -1-2-n 2n =1-⎝ ⎛⎭⎪⎫1-12n -1-2-n 2n =n 2n ,所以S n =n2n -1,综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . (1)证明:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1, 所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)解:由(1)得a nn =1+(n -1)·1=n , 所以a n =n 2.从而b n =n ·3n 。
高中新课程数学(新课标人教A版)必修五《三不等式》归纳整合

网络构建
专题归纳
解读高考
高考真题
3.二元一次不等式(组)表示的平面区域 (1)二元一次不等式(组)的几何意义 二元一次不等式(组)的几何意义是二元一次不等式(组)表示 的平面区域.一般地,二元一次不等式Ax+By+C>0在平面 直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的 平面区域.区域不包括边界时,边界直线(Ax+By+C=0)应 画成虚线. (2)二元一次不等式表示的平面区域的判定 对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+ By+C的符号相同,所以只需在此直线的某一侧取一个特殊 点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表 示直线哪一侧的平面区域,可简记为“直线定界,特殊点定 域”.特别地,当C≠0时,常取原点作为特殊点.
网络构建
专题归纳
解读高考
高考真题
【例3】 f(x)=ax2+ax-1在R上满足f(x)<0,则a的取值范围是 ________. 解析 (1)当a=0时,f(x)<0恒成立,故a=0符合题意;
(2)当 a≠0 时,由题意得:aΔ<=0a2+4a<0 ⇔a-<40<a<0 ⇔
-4<a<0,综上所述:-4<a≤0. 答案 (-4,0]
(1)当Δ<0时,-1<a<2,M=∅⊆[1,4];
(2)当Δ=0时,a=-1或2;
当a=-1时,M={-1}⃘[1,4];
当a=2时,M={2}⊆[1,4].
(3)当Δ>0时,a<-1或a>2.
设方程f(x)=0的两根x1,x2,且x1<x2, 那么M=[x1,x2],M⊆[1,4]⇔1≤x1≤x2≤4
人教版A版2017课标高中数学必修第一册第五章综合测试试卷-含答案03

第五章综合测试一、单项选择题1.已知 1 845α=︒,则在弧度制下为( ) A .10πB .21π4C .31π4D .41π42.点()1,2P -是角α终边上一点,则()sin πα-的值为( )A B . C .25- D .153.如果点sin cos cos P θθθ⋅(,)位于第三象限,那么角θ位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.若θ是三角形的一个内角,且4tan 3θ=-,则3ππsin cos 22θθ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .15 B .15-C .75 D .75-5.若函数()()2cos f x x ωϕ=+对任意实数x 都有ππ33f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,那么π3f ⎛⎫⎪⎝⎭的值等于( ) A .2-B .2C .2±D .不能确定6.与函数πtan 2+4y x ⎛⎫= ⎪⎝⎭的图象不相交的一条直线是( )A .π2x =B .π2y =C .π4x =D .π8y =7.已知π(0,2cos 212ααα∈=+,则cos α=( )A B C D .158.已知sin α=()sin αβ-=,,αβ是锐角,则β=( ) A .5π12B .π3C .4πD .35二、多项选择题9.下列说法错误的是( )A .长度等于半径的弦所对的圆心角为1弧度B .若tan 0α≥,则πππ()2k k k α+∈Z ≤≤C .若角α的终边过点()()3,40P k k k ≠,则4sin 5α=D .当π2π2π()4k k k α+∈Z <<时,sin cos αα<10.已知函数()cos 22f x x x =-,则下列说法正确的是( ) A .()f x 的周期为πB .π3x =是()f x 的一条对称轴 C .ππ,36⎡⎤-⎢⎥⎣⎦是()f x 的一个递增区间 D .ππ,63⎡⎤-⎢⎥⎣⎦是()f x 的一个递减区间 11.已知函数()|tan |cos f x x x =,则下列说法正确的是( ) A .()f x 的最小正周期为πB .()f x 的值域为[1,1]-C .()f x 在区间π,π2⎛⎫⎪⎝⎭上单调递增D .()f x 的图象关于π,02⎛⎫⎪⎝⎭中心对称12.关于函数()sin |||sin |f x x x =+有下述四个结论,其中正确的结论是( ) A .()f x 是偶函数B .()f x 在区间π,π2⎛⎫⎪⎝⎭单调递增C .()f x 在[π,π]-有4个零点D .()f x 的最大值为2三、填空题13.为得到函数2sin 3y x =的图象,只需将函数sin y x =的图象横坐标________到原来的________倍,再将纵坐标伸长到原来的2倍;14.如图,某港口某天6时到18时的水深变化曲线近似满足函数πy 4sin 6x k ϕ⎛⎫=++ ⎪⎝⎭,据此图像可知,这段时间水深(单位:m )的最大值为________.15.若函数2sin y x x =+的最大值为3,则a 的值为__________. 16.已知()2sin 3αβ+=,()2sin 5αβ-=,则tan tan αβ的值为__________.四、解答题17.已知cos α是方程25760x x --=的根,求()()25π3πsin sin tan 2πtan π22π3πcos cos 22αααααα⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的值.18.已知函数()π3tan 23f x x ⎛⎫=- ⎪⎝⎭.(1)求()f x 的定义域与单调区间;(2)比较π2f ⎛⎫⎪⎝⎭与π8f ⎛⎫- ⎪⎝⎭的大小.19.已知曲线sin()(0,0)y A x A ωϕω=+>>上的一个最高点的坐标为(6π)此点与相邻最低点之间的曲线与x 轴交于点(2π3,0)且ππ,22ϕ⎛⎫∈- ⎪⎝⎭. (1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2π]上的图象.20.已知π1tan 42α⎛⎫+= ⎪⎝⎭.(1)求tan α的值;(2)求()()22πsin 22πsin 21cos π2sin αααα⎛⎫+-- ⎪⎝⎭--+的值.21.设函数π()sin sin 3f x x x ⎛⎫=++ ⎪⎝⎭.(1)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(2)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.22.如图,在平面直角坐标系xOy 中,单位圆O 上存在两点A ,B ,满足π3AOB ∠=,AC ,BD 均与x 轴垂直,设ππ62xOA αα⎛⎫∠= ⎪⎝⎭<,AOC △与BOD △的面积之和为()f α.(1)若()38f α=,求α的值; (2)若对任意的ππ,62α⎛⎫∈ ⎪⎝⎭,存在(),0x ∈-∞,使得()318f x m x α++≤成立,求实数m 的取值范围.第五章综合测试答案解析一、 1.【答案】D【解析】∵180π︒=,π1180︒=∴,则π41π1 84518451804︒=⨯=.故选D .2.【答案】A【解析】由三角函数的定义可得sin α==()sin πsin αα-==.故选A . 3.【答案】B【解析】∵点(sin cos ,cos )P θθθ⋅位于第三象限,sin cos 0θθ⋅∴<,cos 0θ<.∴sin 0θ>.∴θ是第二象限角. 4.【答案】C 【解析】∵sin 4tan cos 3θθθ==-,()0,πθ∈,sin 0θ>,cos 0θ<,又∵22sin cos 1θθ+=,4sin 5θ=∴,3cos 5θ=-,3ππ7sin cos cos sin 225θθθθ⎛⎫⎛⎫-+-=-+= ⎪ ⎪⎝⎭⎝⎭.故选C .5.【答案】C【解析】由ππ33f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭得函数图象的对称轴为π3x =,因为余弦函数在对称轴取到函数的最值,所以π=23f ⎛⎫± ⎪⎝⎭.故选C .6.【答案】D【解析】由ππ2π,42x k k +=+∈Z ,得ππ,82k x k =+∈Z ,令0k =,得π8x =.π8x =∴为函数图象的一条渐近线,即直线π8x =与函数的图象不相交.故选D .7.【答案】A【解析】因为π(0,)2α∈,所以cos 0α>,因此有22sin 2cos 214sin sin cos 2cos 11cos 2a a ααααα=-+⇒==+⇒,而22cos sin 1αα+=,所以有cos α=,故本题选A .8.【答案】C【解析】因为,αβ是锐角,ππ(,)22αβ-∈-,所以cos()0αβ->cos α==,cos αβ-==().∴()()()sin sin sin cos cos sin a a βααβαβαβ=⎡--⎤=---=+⎣⎦ ∵β为锐角∴π4β=.故选C . 二、9.【答案】ABC【解析】对于A ,长度等于半径的弦所对的圆心角为π3弧度,命题错误; 对于B ,若tan 0α≥,则πππ()2k k k α+∈Z ≤<,命题错误;对于C ,若角α的终边过点()()3,40P k k k ≠,则4sin 5α=±,命题错误;对于D ,当π2π2π()4k k k α+∈Z <<时,sin cos αα<,命题正确.故选:ABC10.【答案】ABD【解析】由()cos 22f x x x =-可得:π()2cos 23f x x ⎛⎫=+ ⎪⎝⎭,所以()f x 的周期为2ππ2T ==;所以A 正确; 将π3x =代入π()2cos 23f x x ⎛⎫=+ ⎪⎝⎭可得:πππ2cos 22333f ⎛⎫⎛⎫=⨯+=- ⎪ ⎪⎝⎭⎝⎭此时()f x 取得最小值2-,所以π3x =是()f x 的一条对称轴,所以B 正确; 令π23t x =+,则π()2cos 23f x x ⎛⎫=+ ⎪⎝⎭由2cos y t =,π23t x =+复合而成;当ππ,36x ⎡⎤∈-⎢⎥⎣⎦时,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,π23t x =+在ππ,36x ⎡⎤∈-⎢⎥⎣⎦递增,2cos y t =在π2π,33t ⎡⎤∈-⎢⎥⎣⎦不单调,由复合函数的单调性规律可得:ππ,36⎡⎤-⎢⎥⎣⎦不是()f x 的一个递增区间;所以C 错误.当ππ,36x ⎡⎤∈-⎢⎥⎣⎦时,[0,π]t ∈,π23t x =+在ππ,63x ⎡⎤∈-⎢⎥⎣⎦递增,答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
高中数学不等式2一元二次不等式及其解法第1课时一元二次不等式及其解法课后课时精练课件新人教A版必修5

(2)由题意,得14- +a2+ a+b= b=0, 0, 解得ba==--21, . ∴-x2+x-2<0,∴x2-x+2>0, ∴不等式 x2-x+2>0 的解集为 R.
10.已知 M 是关于 x 的不等式 2x2+(3a-7)x+3+a- 2a2<0 的解集,且 M 中的一个元素是 0,求实数 a 的取值范 围,并用 a 表示出该不等式的解集.
9.已知不等式 x2-2x-3<0 的解集为 A,不等式 x2+x -6<0 的解集为 B.
(1)求 A∩B; (2)若不等式 x2+ax+b<0 的解集为 A∩B,求不等式 ax2 +x+b<0 的解集.
解 (1)由 x2-2x-3<0,得-1<x<3, ∴A=(-1,3). 由 x2+x-6<0,得-3<x<2, ∴B=(-3,2),∴A∩B=(-1,2).
4.已知不等式 ax2-5x+b>0 的解集为{x|-3<x<2},则 不等式 bx2-5x+a>0 的解集为( )
A.x-13
1 <x<2
B.xx<-31 或x>21
C.{x|-3<x<2}
D.xx<-21 或x>31
解析 由题意可知,ax2-5x+b=0 的两个根分别为- 3,2,利用根与系数的关系可得,-3+2=5a,-3×2=ba, 解得 a=-5,b=30,则所求不等式可化为 30x2-5x-5>0, 即(2x-1)(3x+1)>0,解得 x<-13或 x>12.故选 B.
04课后课时精练
A 级:基础巩固练 一、选择题 1.函数 y= x2+x-12的定义域是( ) A.{x|x<-4 或 x>3} B.{x|-4<x<3} C.{x|x≤-4 或 x≥3} D.{x|-4≤x≤3}
人教A版高中数学必修第一册课后习题 第2章 一元二次函数、方程和不等式 2.2 基本不等式 (2)

2.2 基本不等式A 级 必备知识基础练1.[探究点一]不等式(x-2y)+1x -2y≥2成立的前提条件为( )A.x ≥2yB.x>2yC.x ≤2yD.x<2y2.[探究点三]已知0<x<1,则当x(5-5x)取最大值时,x 的值为( ) A.54B.12C.13D.343.[探究点三]已知a>0,b>0,a+4b=2,则ab 的最大值为( ) A.14B.12C.1D.24.[探究点三]设x>0,y>0,且xy=4,则1x+1y的最小值是( ) A.1B.2C.-1D.-25.[探究点三]已知x<0,则x+1x的最大值为( ) A.2B.-12C.-2D.126.[探究点三·江西宜春高一期中]已知a>0,b>0,a+b=1,且α=a+1a,β=b+1b,则α+β的最小值是( )A.2B.3C.4D.57.[探究点一·湖北十堰高一检测](多选题)下列推导过程正确的是( )A.因为a,b 为正实数,所以ba+ab≥2√ba·ab=2B.因为a>3,所以4a +a>2√4a·a =4C.因为a<0,所以4a+a ≥2√4a·a =4D.因为x,y ∈R,xy<0,所以x y+y x=-[(-x y)+(-y x)]≤-2√(-x y)·(-yx)=-2,当且仅当x=-y≠0时,等号成立8.[探究点二](多选题)若a,b ∈R,且ab>0,则下列不等式中,恒成立的是( )A.a 2+b 2≥2abB.a+b ≥2√abC.1a+1b >√abD.b a+ab≥29.[探究点三]已知t>0,则t 2-3t+1t的最小值为 .10.[探究点二]已知a,b,c 为正数,求证:b+c -a a+c+a -b b+a+b -c c≥3.11.[探究点一]下列是一道利用基本不等式求最值的习题: 已知a>0,b>0,且a+b=1,求y=1a+2b 的最小值.小明和小华两名同学都巧妙地用了“a+b=1”,但结果并不相同.小明的解法:因为a+b=1,所以y=1a+2b+1-1=1a+2b+a+b-1=a+1a+b+2b-1,而a+1a≥2√a ·1a =2,b+2b ≥2√b ·2b =2√2.那么y ≥2+2√2-1=1+2√2,则最小值为1+2√2.小华的解法:因为a+b=1,所以y=1a+2b=(1a+2b)(a+b)=3+ba+2a b,而3+b a+2a b≥3+2√b a ·2ab=3+2√2,则最小值为3+2√2. (1)你认为哪名同学的解法正确,哪名同学的解法有错误? (2)请说明你判断的理由.B 级 关键能力提升练12.已知当x=a 时,代数式x-4+9x+1(x>-1)取得最小值b,则a+b=( )A.-3B.2C.3D.8A.∀x ∈R,且x≠0,x+1x≥2 B.∃x ∈R,使得x 2+1≤2x C.若x>0,y>0,则√x 2+y 22≥2xy x+yD.若x>0,y>0,且x+y=18,则√xy 的最大值为9 14.若a>0,b>0,则在①1a+1b ≤4a+b,②b 2a+a 2b≥a+b,③√a 2+b 22≥a+b 2,这三个不等式中,不正确的有( )A.0个B.1个C.2个D.3个15.[安徽高一校联考期中](多选题)已知正实数a,b 满足a+b=2,则下列结论正确的是( ) A.ab ≤1 B.√a +√b ≥2 C.a 3+b 3≤2D.a 2+b 2≥216.(多选题)对于a>0,b>0,下列不等式中正确的是( ) A.√ab 2<1a+1b B.ab ≤a 2+b 22C.ab ≤(a+b 2)2 D.(a+b 2)2≤a 2+b 2217.已知a>b>c,则√(a -b )(b -c )与a -c 2的大小关系是 .18.已知不等式(x+y)(1x +ay )≥9对任意正实数x,y 恒成立,求正实数a 的最小值.C 级 学科素养创新练19.若a>0,b>0,且点(a,b)在反比例函数y=1x 的图象上,则1a 2b+1ab2+16ab a+b的最小值是 . 答案:1.B 基本不等式成立的前提条件是各项均为正数,所以不等式(x-2y)+1x -2y≥2成立的前提条件为x-2y>0,即x>2y.故选B.2.B 由0<x<1,可得1-x>0,则x(5-5x)=5x(1-x)≤5·(x+1-x 2)2=54,当且仅当x=1-x,即x=12时,等号成立,所以x=12时,x(5-5x)取得最大值54.故选B. 3.A 因为a>0,b>0,a+4b=2,由基本不等式可得2=a+4b ≥2√4ab =4√ab ,可得ab ≤14,当且仅当a=4b,即a=1,b=14时,等号成立,所以ab 的最大值为14.故选A.4.A 因为x>0,y>0,且xy=4,所以1x >0,1y >0,1x +1y ≥2√1x ·1y =2√1xy =2×12=1,当且仅当1x=1y ,即x=y=2时,等号成立.故选A.5.C 因为x<0,可得-x>0,则x+1x=-[(-x)+1-x]≤-2√(-x )·1-x=-2,当且仅当-x=1-x,即x=-1时,等号成立,所以x+1x的最大值为-2.故选C.6.D 由题意知a>0,b>0,a+b=1,且α=a+1a,β=b+1b,则α+β=a+1a+b+1b=1+1ab≥1+1(a+b 2)2=5,当且仅当a=b=12时,等号成立,所以α+β的最小值为5.故选D.7.ABD 对于A,a,b 为正实数,有ba>0,ab>0,且ba·ab=1,又当且仅当a=b 时,ba=a b成立,满足基本不等式的条件,A 正确;对于B,当a>3时,4a>0,4a+a ≥2√4a·a =4,当且仅当4a=a,a=2时,等号成立,与a>3矛盾,所以不存在大于3的正数a 使a=4a成立,所以4a+a>4,B 正确;对于C,因为a<0,则4a<0,不符合基本不等式成立的条件,C 错误;对于D,x,y ∈R,xy<0,则-x y>0,-yx>0,且(-x y)·(-y x)=1,又当且仅当-x=y≠0时,-x y=-yx成立,满足基本不等式的条件,D 正确.故选ABD.8.AD 对于A 选项,a 2+b 2-2ab=(a-b)2≥0,故a 2+b 2≥2ab,A 正确;对于B,取a=b=-1,此时a+b=-2<2√ab =2,B 错误;对于C,取a=b=-1,此时1a+1b=-2<√ab=2,C 错误;对于D,因为ab>0,所以a b>0,b a>0,所以b a+a b≥2√b a·ab=2,当且仅当a=b≠0时,等号成立,D 正确.故选AD. 9.-1 ∵t>0,∴t 2-3t+1t =t+1t-3≥2√t ·1t-3=-1,当且仅当t=1时,等号成立.10.证明左边=ba +ca -1+cb +ab -1+ac +bc -1=(ba +ab )+(ca +ac )+(cb +bc )-3.∵a,b,c 为正数,∴ba+ab≥2(当且仅当a=b 时,等号成立);ca+ac≥2(当且仅当a=c 时,等号成立);c b +b c ≥2(当且仅当b=c 时,等号成立).从而(b a +ab )+(ca +ac )+(cb +bc )≥6(当且仅当a=b=c 时,等号成立).∴(ba +ab )+(ca +ac )+(cb +bc )-3≥3,即b+c -a a+c+a -b b+a+b -c c≥3.11.解(1)小华的解法正确,小明的解法错误.(2)在小明的解法中,a+1a≥2√a ·1a=2,当等号成立时a=1;b+2b≥2√b ·2b =2√2,当等号成立时b=√2,那么y 取得最小值1+2√2时,a+b=1+√2,这与条件a+b=1是相矛盾的,所以小明的解法错误.小华的解法中,b a+2a b≥2√2,等号成立的条件为b 2=2a 2,即b=√2a,再由已知条件a+b=1,即可解得满足条件的a,b 的值,所以小华的解法正确. 12.C x-4+9x+1=x+1+9x+1-5,由x>-1,得x+1>0,9x+1>0,所以由基本不等式得x+1+9x+1-5≥2√(x +1)·9x+1-5=1,当且仅当x+1=9x+1,即x=2时,等号成立.所以a=2,b=1,a+b=3.13.BCD 对于A,当x<0时不成立;对于B,当x=1时成立,B 正确;对于C,若x>0,y>0,则(x 2+y 2)(x+y)2≥2xy·4xy=8x 2y 2,可化为√x 2+y 22≥2xyx+y,当且仅当x=y>0时,等号成立,C 正确;对于D,∵x>0,y>0,∴x+y=18≥2√xy ,当且仅当x=y=9时,等号成立,∴√xy ≤9,D 正确.故选BCD.14.B 因为a,b>0,对于①,由(a+b)(1a+1b)=2+ba+ab≥2+2√ba·ab=4,当且仅当a=b 时,等号成立,所以1a+1b≥4a+b,所以①错误;对于②,由不等式a 3+b 3-a 2b-ab 2=(a+b)(a-b)2≥0,可得a 3+b 3≥a 2b+ab 2,两边同除ab,可得b 2a+a 2b≥a+b 成立,所以②正确;对于③,由2a 2+2b 2=a 2+b 2+a 2+b 2≥a 2+b 2+2ab=(a+b)2,可得a 2+b 2≥(a+b )22,即a 2+b 22≥(a+b )24,所以√a 2+b 22≥a+b 2成立,所以③正确.故选B.15.AD 因为正实数a,b 满足a+b=2,对于A 选项,ab ≤(a+b 2)2=1,当且仅当a=b=1时,等号成立,A 正确;对于B 选项,因为(√a +√b )2=a+b+2√ab ≤2(a+b)=4,则√a +√b ≤2,当且仅当a=b=1时,等号成立,B 错误;对于C 选项,当a=32,b=12时,a 3+b 3=(32)3+(12)3=72>2,C 错误;对于D 选项,a 2+b 2=a 2+b 2+a 2+b 22≥a 2+b 2+2ab2=(a+b )22=2,当且仅当a=b=1时,等号成立,D 正确.故选AD. 16.BCD 当a>0,b>0时,因为21a +1b≤√ab ,所以√ab≤1a+1b,当且仅当a=b 时,等号成立,故A 不正确;显然B,C,D 均正确. 17.√(a -b )(b -c )≤a -c 2∵a>b>c,∴a-b>0,b-c>0,∴a -c 2=(a -b )+(b -c )2≥√(a -b )(b -c ). 当且仅当b=a+c 2时,等号成立.18.解(x+y)(1x +ay )=1+a+yx +ax y,∵x>0,y>0,a>0,∴y x+ax y≥2√y x·ax y=2√a ,∴1+a+yx +ax y≥1+a+2√a ,当且仅当y=√a x 时,等号成立.∴要使(x+y)(1x +ay )≥9对任意正实数x,y 恒成立,只需1+a+2√a ≥9恒成立即可.∴(√a +1)2≥9,即√a +1≥3,∴a ≥4,故a 的最小值为4.19.8 ∵点(a,b)在反比例函数y=1x的图象上,∴b=1a,即ab=1.∵a>0,b>0,∴a+b>0,∴1a 2b+1ab2+16ab a+b=1a+1b+16a+b=a+b ab+16a+b=a+b+16a+b≥8,当且仅当a+b=16a+b,即a+b=4时,等号成立,所以1a 2b+1ab2+16ab a+b的最小值是8.。
高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5

名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,
高中数学第五章三角函数5-7三角函数的应用课时作业新人教A版必修第一册

5.7 三角函数的应用必备知识基础练1.简谐运动y =4sin (5x -π3)的相位与初相是( ) A .5x -π3,π3 B .5x -π3,4C .5x -π3,-π3D .4,π32.如图,为一半径为3 m 的水轮,水轮圆心O 距离水面2 m ,已知水轮自点A 开始1 min 旋转4圈,水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系y =A sin (ωx +φ)+2,则有( )A.ω=2π15,A =3 B .ω=152π,A =3C .ω=2π15,A =5D .ω=152π,A =53.电流I (A)随时间t (s)变化的关系式是I =5sin (100πt +π3),则当t =1200 s 时,电流I 为( )A .5 AB .2.5 AC .2 AD .-5 A4.音叉是呈“Y ”形的钢质或铝合金发声器(如图1),各种音叉可因其质量和叉臂长短、粗细不同而在振动时发出不同频率的纯音.敲击某个音叉时,在一定时间内,音叉上点P 离开平衡位置的位移y 与时间t 的函数关系为y =11 000sin ωt .图2是该函数在一个周期内的图象,根据图中数据可确定ω的值为( )A .200B .400C .200πD .400π5.(多选)如图所示的是一质点做简谐运动的图象,则下列结论正确的是( )A .该质点的运动周期为0.7 sB .该质点的振幅为5C .该质点在0.1 s 和0.5 s 时运动速度为零D .该质点的运动周期为0.8 s6.某港口在一天24小时内的潮水的高度近似满足关系式f (t )=2sin (5π12t -π6),其中f (t )的单位为m ,t 的单位是h ,则12点时潮水的高度是________m.7.如图,弹簧挂着的小球做上下振动,它在t 秒时相对于平衡位置(即静止时的位置)的高度h 厘米满足下列关系:h =2sin (t +π6),t ∈[0,+∞),则每秒钟小球能振动________次.关键能力综合练 1.如图,一个质点在半径为2的圆O 上以P 点为起始点,沿逆时针方向运动,每3s 转一圈.则该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .y =⎪⎪⎪⎪⎪⎪2sin (2π3t -π4)B .y =2sin (2π3t -π4)C .y =2sin (2π3t +π4)D .y =⎪⎪⎪⎪⎪⎪2sin (2π3t +π4) 2.人的血压在不断地变化,血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg 为标准值.设甲某的血压满足函数式p (t )=102+24sin (160πt ),其中p (t )为血压(单位:mmHg),t 为时间(单位:min),对于甲某而言,下列说法正确的是( )A .收缩压和舒张压均高于相应的标准值B .收缩压和舒张压均低于相应的标准值C .收缩压高于标准值、舒张压低于标准值D .收缩压低于标准值、舒张压高于标准值3.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数y =3sin (ωx +φ)+k ,据此可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .104.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F (t )=50+4sin t2(0≤t ≤20) 给出,F (t )的单位是辆/分,t 的单位是分,则下列哪个时间段内车流量是增加的( )A .[0,5]B .[5,10]C .[10,15]D .[15,20]5.(多选)如图,一圆形摩天轮的直径为100米,圆心O 到水平地面的距离为60米,最上端的点记为Q ,现在摩天轮开始逆时针方向匀速转动,30分钟转一圈,以摩天轮的中心为原点建立平面直角坐标系,则下列说法正确的是( )A .点Q 距离水平地面的高度与时间的函数为h (t )=50sin (πt 15+π3)+10B .点Q 距离水平地面的高度与时间的函数的对称中心坐标为(15k ,60)(k ∈Z )C .经过10分钟点Q 距离地面35米D .摩天轮从开始转动一圈,点Q 距离水平地面的高度不超过85米的时间为20分钟 6.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos [π6(x -6)](A >0,x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的平均气温值为________ ℃.7.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时).A -B =________.8.某一天6~14时某地的温度变化曲线近似满足函数y =10sin (π8x +3π4)+20(x ∈[6,14]),其中,x 表示时间,y 表示温度.求这一天中6~14时的最大温差,并指出何时达到最高气温.9.如图,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin (ωx +φ)+b (A >0,ω>0,|φ|<π2).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.核心素养升级练1.小明给学校设计数学文化长廊,计划将长廊的顶部遮雨棚设计成如图所示横截面为正弦曲线的形状(雨棚的厚度忽略不计),已知入口高度AB 和出口处高度CD 均为H ,为使参观者行走方便,要求雨棚的最低点到地面的距离不小于雨棚的最高点到地面距离的23,则雨棚横截面正弦曲线振幅的最大值为( )A .H 3B .H4C .H 5D .H62.[2022·福建厦门高一期末]在国际气象界,二十四节气被誉为“中国的第五大发明”.一个回归年定义为从某年春分到次年春分所经历的时间,也指太阳直射点回归运动的一个周期.某科技小组以某年春分为初始时间,统计了连续400天太阳直射点的纬度平均值(太阳直射北半球时取正值,直射南半球时取负值).设第x 天时太阳直射点的纬度平均值为y ,该小组通过对数据的整理和分析,得到y 与x 近似满足y =23.439 391 1·sin (0.017 202 5x ),则一个回归年对应的天数约为________(精确到0.01);已知某年的春分日是星期六,则4个回归年后的春分日应该是星期________.(π0.017 202 5≈182.624)3.“八月十八潮,壮观天下无.”——苏轼《观浙江涛》,该诗展现了湖水涨落的壮阔画面,某中学数学兴趣小组进行潮水涨落与时间的关系的数学建模活动,通过实地考察某港口水深y (米)与时间t (0≤t ≤24)(单位:小时)的关系,经过多次测量筛选,最后得到下表数据:曲线,经拟合,该曲线可近似地看成函数图象.(1)试根据数据表和曲线,求出近似函数的表达式;(2)一般情况下,船舶航行时船底与海底的距离不小于3.5米是安全的,如果某船舶公司的船的吃水度(船底与水面的距离)为8米,请你运用上面兴趣小组所得数据,结合所学知识,给该船舶公司提供安全进此港时间段的建议.5.7 三角函数的应用必备知识基础练1.答案:C解析:相位是5x -π3,当x =0时的相位为初相即-π3.2.答案:A解析:由题目可知最大值为5,∴ 5=A ×1+2⇒A =3.T =604=15,则ω=2πT =2π15. 3.答案:B解析:将t =1200代入I =5sin (100πt +π3)得I =2.5 A .4.答案:D解析:由图象可得,ω>0,T =4×1800=1200,即2πω=1200,则ω=400π.5.答案:BCD解析:由题图可知,质点的振动周期为2×(0.7-0.3)=0.8 s ,所以A 错,D 正确; 该质点的振幅为5,所以B 正确;由简谐运动的特点知,质点处于平衡位置时的速度最大,即在0.3 s 和0.7 s 时运动速度最大,在0.1 s 和0.5 s 时运动速度为零,故C 正确.综上,BCD 正确.6.答案:1解析:当t =12时,f (12)=2sin (5π-π6)=2sin 5π6=1,即12点时潮水的高度是1 m . 7.答案:12π解析:函数h =2sin (t +π6),t ∈[0,+∞)的周期T =2π,故频率为12π.所以每秒钟小球能振动12π次.关键能力综合练1.答案:A解析:由于y 表示距离,为非负数,所以BC 选项错误.P 点的初始位置为(2,-2),在第四象限,所以A 选项符合,D 选项不符合. 2.答案:C解析:∵p (t )=102+24sin (160πt ), ∴p (t )min =102-24=78,p (t )max =102+24=126.所以,甲某血压的收缩压为126 mmHg ,舒张压为78 mmHg. 因此,收缩压高于标准值、舒张压低于标准值. 3.答案:C解析:从图象可以看出,函数y =3sin (ωx +φ)+k 最小值为2,即当sin (ωx +φ)=-1时,函数取得最小值,即-3+k =2,解得k =5,所以y =3sin (ωx +φ)+5,当sin (ωx +φ)=1时,函数取得最大值,y max =3+5=8,这段时间水深(单位:m)的最大值为8.4.答案:C解析:由2k π-π2≤t 2≤2k π+π2(k ∈Z ),得4k π-π≤t ≤4k π+π(k ∈Z ),所以函数F (t )=50+4sin t2在[4k π-π,4k π+π](k ∈Z )上单调递增,当k =1时,t ∈[3π,5π]⊆[0,20],此时[10,15]⊆[3π,5π].故选C.5.答案:CD解析:由题意知∠xOQ =π2,OQ 在t 分钟转过的角为2π30t =π15t ,所以以OQ 为终边的角为π15t +π2,所以点Q 距离水平地面的高度与时间的关系为h (t )=50sin (πt 15+π2)+60=50cos πt15+60,故A 错误; 由πt 15=k π+π2,k ∈Z ,得t =15t +152,k ∈Z ,所以(15k ,60)(k ∈Z )不是对称中心,故B 错误;经过10分钟,h (10)=50cos 10π15+60=35,故C 正确;由50cos πt 15+60≤85,得cos πt 15≤12,得π3≤πt 15≤5π3,解得5≤t ≤25,共20分钟,故D 正确.6.答案:20.5解析:依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos [π6(x -6)],当x =10时,y =23+5cos (π6×4)=20.5.7.答案:-4.2或写成-215解析:由表中某市码头某一天水深与时间的关系近似为函数y =A cos (ωx +φ)+B (A >0,x ∈[0,24]),从表中数据可知,函数的最大值为5.0,最小值为4.2,所以⎩⎪⎨⎪⎧A +B =5.0-A +B =4.2,解得A =0.4,B =4.6,故A -B =-4.2.8.解析:由x ∈[6,14],得3π2≤π8x +3π4≤5π2,所以当π8x +3π4=3π2,即x =6时,y 取得最小值10,当π8x +3π4=5π2,即x =14时,y 取得最大值30, 所以这一天中6~14时的最大温差为20,且14时达到最高气温. 9.解析:(1)最大用电量为50万kW ·h ,最小用电量为30万kW ·h.(2)由图象可知,8~14时的图象是y =A sin (wx +φ)+b 的半个周期的图象, ∴A =12×(50-30)=10,b =12×(50+30)=40.∵12×2πw =14-8, ∴w =π6.∴y =10sin (π6x +φ)+40.将x =8,y =30代入上式,解得φ=π6.∴所求解析式为y =10sin (π6x +π6)+40,x ∈[8,14].核心素养升级练1.答案:C解析:雨棚横截面正弦曲线振幅为A ,则雨棚的最低点到地面的距离为H -A ,雨棚的最高点到地面的距离为H +A ,由题意有H -A ≥23(H +A ),解得A ≤H5,所以横截面正弦曲线振幅的最大值为H5.2.答案:365.25 四解析:因为周期T =2πω=2π0.017 202 5≈182.624×2=365.248≈365.25,所以一个回归年对应的天数约为365.25;一个回归年对应的天数约为365.25,则4个回归年经过的天数为365.25×4=1 461. 因为1 461=208×7+5,且该年的春分日是星期六,所以4个回归年后的春分日应该是星期四.3.解析:(1)画出散点图,连线如下图所示:设y =A sin ωt +b ,根据最大值13,最小值9,可列方程为⎩⎪⎨⎪⎧A +b =13-A +b =7⇒⎩⎪⎨⎪⎧A =3b =10, 再由T =2πω=12,得ω=π6,y =3sin π6t +10(0≤t ≤24).(2)3sin π6t +10-8≥3.5⇒sin π6t ≥12.∵0≤t ≤24, ∴0≤π6t ≤4π,∴π6≤π6t ≤5π6,或π6+2π≤π6t ≤5π6+2π, 解得1≤t ≤5,或13≤t ≤17,所以请在1:00至5:00和13:00至17:00进港是安全的.。
高中数学 周练卷1测评(含解析)新人教A版必修1-新人教A版高一必修1数学试题

周练卷(一)一、选择题(每小题5分,共40分)1.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=(B)A.{3}B.{2,5}C.{1,4,6} D.{2,3,5}解析:∵∁U B={2,5},A={2,3,5},∴A∩(∁U B)={2,5}.故选B.2.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是(C)A.1 B.3C.5 D.9解析:因为x∈A,y∈A,x-y的值分别为0,-1,-2,1,0,-1,2,1,0,由集合中元素互异性知,B={x-y|x∈A,y∈A}={-2,-1,0,1,2}.故选C.3.已知下面的关系式:①a⊆{a};②0∈{0};③0∈∅;④{1}∈{1,2}.其中正确的个数是(A)A.1 B.2C.3 D.4解析:根据元素与集合、集合与集合的关系可知,①错误,②正确,③错误,④错误.故选A.4.集合M={(x,y)|(x+3)2+(y-1)2=0},N={-3,1},则M与N的关系是(D)A.M=N B.M⊆NC.M⊇N D.M,N无公共元素解析:因为M={(x,y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集,而N={-3,1}是数集,所以两个集合没有公共元素,故选D.5.已知:全集U={x|-3<x≤4},A={x|-3<x≤-1},B={x|-1<x≤4},则不正确的选项是(C)A.A∪B=U B.A∩B=∅C.A∪(∁U B)=U D.(∁U A)∩(∁U B)=∅解析:∁U B={x|-3<x≤-1},A∪(∁U B)={x|-3<x≤-1},故C 不正确,故选C.6.有关集合的性质:(1)∁U(A∩B)=(∁U A)∪(∁U B);(2)∁U(A∪B)=(∁U A)∩(∁U B);(3)A∪(∁U A)=U;(4)A∩(∁U A)=∅.其中正确的个数有(D)A.1个B.2个C.3个D.4个解析:(1)∁U (A ∩B )=(∁U A )∪(∁U B ),正确;(2)∁U (A ∪B )=(∁U A )∩(∁U B ),正确;(3)A ∪(∁U A )=U ,正确;(4)A ∩(∁U A )=∅,正确,则正确的个数有4个,故选D.7.已知全集U =R ,集合A ={x |x <3或x ≥7},B ={x |x <a }.若(∁U A )∩B ≠∅,则实数a 的取值X 围为( A )A .{a |a >3}B .{a |a ≥3}C .{a |a ≥7}D .{a |a >7}解析:因为A ={x |x <3或x ≥7},所以∁U A ={x |3≤x <7},又(∁U A )∩B ≠∅,则a >3.故选A.8.对于数集M ,N ,定义M +N ={x |x =a +b ,a ∈M ,b ∈N },M ÷N ={x |x =a b ,a ∈M ,b ∈N }.若集合P ={1,2},则集合(P +P )÷P的所有元素之和为( D )A.272B.152C.212D.232解析:由题意得P +P ={2,3,4},(P +P )÷P ={2,3,4}÷{1,2}={1,32,2,3,4},所以集合(P +P )÷P 的所有元素之和为1+32+2+3+4=232.故选D.二、填空题(每小题5分,共15分)9.已知a 2∈{a,1,0},则a 的值为-1.解析:由元素的确定性可知a2=a或a2=1或a2=0.若a2=a,求得a=0或a=1,此时集合为{0,1,0}或{1,1,0},不符合集合中元素的互异性,舍去;若a2=1,求得a=-1或a=1,a=1时,集合为{1,1,0},不符合集合中元素的互异性,舍去,所以a=-1;若a2=0,求得a =0,此时集合为{0,1,0},不符合集合中元素的互异性,舍去.综上所述,a=-1.10.设A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a =1.解析:由A∩B={3}得3∈B,又a2+4≥4,所以a+2=3,解得a=1.11.设集合M={x|x>1,x∈R},N={y|y=2x2,x∈R},P={(x,y)|y=x-1,x∈R,y∈R},则(∁R M)∩N={x|0≤x≤1},M∩P=∅.解析:因为M={x|x>1,x∈R},所以∁R M={x|x≤1,x∈R},又N ={y|y=2x2,x∈R}={y|y≥0},所以(∁R M)∩N={x|0≤x≤1}.因为M ={x|x>1,x∈R}表示数集,而P={(x,y)|y=x-1,x∈R,y∈R}表示点集,所以M∩P=∅.三、解答题(共45分)12.(15分)已知集合A={2,5,a+1},B={1,3,a},且A∩B={2,3}.(1)某某数a 的值及A ∪B ;(2)设全集U ={x ∈N |x ≤6},求(∁U A )∩(∁U B ).解:(1)∵A ∩B ={2,3},∴3∈A ,即a +1=3,得a =2,则A ={2,5,3},B ={1,3,2},A ∪B ={1,2,3,5}.(2)由题得U ={0,1,2,3,4,5,6},(∁U A )∩(∁U B )={0,1,4,6}∩{0,4,5,6}={0,4,6}.13.(15分)已知集合A ={x |2<x <7},B ={x |2<x <10},C ={x |5-a <x <a }.(1)求A ∪B ,(∁R A )∩B ;(2)若C ⊆B ,某某数a 的取值X 围.解:(1)A ∪B ={x |2<x <10}.∵∁R A ={x |x ≤2或x ≥7},∴(∁R A )∩B ={x |7≤x <10}.(2)①当C =∅时,满足C ⊆B ,此时5-a ≥a ,得a ≤52;②当C ≠∅时,要C ⊆B ,则⎩⎪⎨⎪⎧ 5-a <a ,5-a ≥2,a ≤10,解得52<a ≤3.由①②,得a ≤3.∴a的取值X围是{a|a≤3}.14.(15分)对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如,A={1,2},B={3,4},则有A×B={(1,3),(1,4),(2,3),(2,4)},B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)},B×B={(3,3),(3,4),(4,3),(4,4)}.据此,试回答下列问题:(1)已知C={a},D={1,2,3},求C×D;(2)已知A×B={(1,2),(2,2)},求集合A,B;(3)若集合A中有3个元素,集合B中有4个元素,试确定A×B 中有多少个元素.解:(1)C×D={(a,1),(a,2),(a,3)}.(2)因为A×B={(1,2),(2,2)},所以A={1,2},B={2}.(3)由题意可知A×B中元素的个数与集合A和B中的元素个数有关,即集合A中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有m×n个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B 中有12个元素.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料金戈铁骑整理制作周练七(2013年高一下学期期中模拟试题)命题人 刘云清一.选择题:每小题5分,共50分.每小题四个选项中,只一项是符合要求的. 1.下列命题正确的是A.若,0a b x y >>>则ax by >B. 若11x y>则x y < C. 若x y >则22x y > D .若33x y >则x y >2.不等式2230x x -++<的解集是A .﹛x|3x <-或1x >﹜ B.﹛x|1x <-或3x >﹜ C. ﹛x|13x -<<﹜ D.﹛x|31x -<<﹜3.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =A .23 B. 13 C.13- D. 23- 4.在ABC ∆中,222sin sin sin sin sin A B C B C ≥+-,则A 的取值范围是A .0,6π⎛⎤ ⎥⎝⎦ B.0,3π⎛⎤ ⎥⎝⎦C.,6ππ⎡⎫⎪⎢⎣⎭D. ,3ππ⎡⎫⎪⎢⎣⎭5. 已知△ABC 的三边长分别为a-2,a ,a+2,且它的最大角的正弦值为23,则这个三角形的面积是 ( )A .415B .4315 C .432 D .43356.已知关于x 的不等式20ax x +<的解集中的整数恰有2个,则A .1132a <≤ B. 1132a ≤<C. 1132a <≤或1123a -≤<-D. 1132a ≤<或1123a -<≤-7.若等比数列{a n }满足a n a n +1=16n,(n a R ∈),则公比为A .4-B .2C .4D .168. 已知{}n a ,{}n b 都是等差数列,前n 项和分别记为,n n A B ,若213n n A n B n+=,则44a b = A .59 B. 35 C 1927 D. 579.记实数,a b 中的最大数为{}max .a b ,定义数列{}n a : {}2max ,2n n a n =,则数列{}n a 的前10项和为A .2046 B.2047 C.2048 D.204910.等差数列{}n a (公差不为0)的部分项构成等比数列{}n b ,已知n n k b a =,12k = 24k =,312k =,则4k =A .26 B. 28 C. 44 D. 48题号 1 2 3 4 5 6 7 8 9 10 答案二.填空题:本大题共5小题.每小题5分.共25分. 11. 不等式10x x+>的解集是 12 在相距2千米的A 、B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
13.设{a n }是公比为q 的等比数列,给出下列命题①数列{a n }的前n 项和111n n a aS q+-=-;②若 1q >,则数列{a n }是递增数列;③若a 1<a 2<a 3 ,则数列{a n }是递增数列。
其中正确的命题序号是 14.已知函数()tan f x x =.项数为27的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()(2721=+⋯++a f a f a f ,则当k =____________时,0)(=k a f .15. 如果一辆汽车每天行驶的路程比原来多19km ,那么在8天内它的行程就超过2200km ,如果它每天行驶的路程比原来少12km ,那么它行驶同样的路程得花9天多的时间,这辆汽车原来每天行驶的路程(km )范围是________. 三.解答题:共75分.解答应写出文字说明,证明过程或演算步骤.16. (12分)设等比数列{}n a 的前n 项和为n S .已知321341,,a a S S S -=,成等差数列,求{}n a 的通项公式.17.(12分)在ABC ∆中,35cos ,sin 513A B ==. (1)求sin C 的值;(2)若ABC ∆的面积为145,求AC 边的长.18.(12分)已知三角形的三个顶点为(2,4),A (1,2),B -(2,3)C -,求BC 边上的高AD 所在的直线方程.19.(12分)设0,a >,解关于x 的不等式()221a x a x -->⎡⎤⎣⎦.20..(13分)Ⅰ(文科)如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为015,75==βα,如果这时气球的高度100=h 米,求河流的宽度BC 。
Ⅱ(理科)数学上称,到三角形3个顶点距离之和最小的点为费马点。
它是这样确定的: 1.如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点.2.如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
(Ⅰ)ABC ∆中,AB AC =,费马点记为P ,证明:PB PC =; (Ⅱ)若Q 为ABC ∆内任意一点,73AB AC ,BC ===求QA QB QC ++的最小值.21.(14分)Ⅰ(文科)在等差数列{}n a 中,已知710,715105-==a a 。
(I )求通项n a 和前n 项和n S ;(II )求n S 的最大值以及取得最大值时的序号n 的值; (III )求数列{}n a 的前n 项和n T .II (理科)已知数列{}n a 满足1313a ,a ==,且对任意2n ,n N *≥∈都有112a n n n a a -++=(Ⅰ)求24a ,a ;(Ⅱ)证明:{}n a 是等差数列,并求通项公式n a ;(Ⅲ)设n n n b a= ⋅ 2 , (n N*) ∈,数列{}n b 的前n 项和记为n S ,求n S .DBCA期中模拟试题参考答案1.D2. B3.A4.D5解析:先判断出a+2所对角最大,设为α,则sin α=23,∴cos α=±21.当cos α=21时,由(a+2)2=a 2+(a-2)2-2a(a-2)·cos α,解得a=0,不合题意.当cos α=-21时,由(a+2)2=a 2+(a-2)2-2a(a-2)·cos α,解得a=5或a=0(舍去). ∴S=21 (a-2)·a ·sin α=21×3×5×23=4315.答:B6.B 7 C 8.D 9.B 10.C11. ﹛x|1x <-或0x >﹜ 12.6 13. ③ 14. 1415解析:设这辆汽车原来每天行驶的路程为xkm ,则8(19)2200,9(12)8(19),x x x +>⎧⎨-<+⎩解之,得256<x<260.答案:256<x<26016.解:设等比数列{}n a 的公比为q ,由321a a -=得:()211a q q -=,① …………2分由134,,S S S 成等差数列得:4331,S S S S -=-∴432a a a =+ 则21q q =+ ② ∴152q ±=…………7分 ①代入②得:11a = …………10分 ∴通项公式115()2n n a -±= …………12分17.解:(1)由已知得:4sin sin 5A B => ∴02B A π<<<,12cos 13B = ……………3分从而63sin sin()65C A B =+= ……………6分(2)由正弦定理得:63sin sin 25AC AB C AC B == ……………9分∴ABC ∆的面积21163414sin 222555S AB AC A AC =⋅⋅=⋅⋅= 解得53AC = …………12分18.解:直线BC 的斜率为3(2)5213BC k --==---, ∵AD BC ⊥, ∴35AD k =,根据点斜式,得到所求直线的方程为34(2)5y x -=-, 即35140x y -+=.19.解:由()221a x a x -->⎡⎤⎣⎦得:()()20ax a a x a --->⎡⎤⎣⎦∵0,a >∴()()120x a x a --->⎡⎤⎣⎦ ………3分 ① 当2a =时,有()210x -->∴1x <,不等式的解集是(),1-∞ ………5分 ② 当02a <<时,20a -<有()102a x x a ⎛⎫--< ⎪-⎝⎭∴12ax a <<-, 不等式的解集是,12a a ⎛⎫⎪-⎝⎭………9分③ 当2a >时,20a ->有()102a x x a ⎛⎫--> ⎪-⎝⎭∴1x <或2ax a >-,不等式的解集是﹛x|1x <或2ax a >-﹜ ………12分20. I 文科解:设A 在地面上的射影为D ,则AD=h ,由题设βααβα-=∠=∴=∠=∠BAC hAB ACB ABD ,sin ,, (2分)在ABC ∆中由正弦定理得βαβαβαββαsin sin )sin(,sin sin sin )sin(-=∴==-h BC h AB BC (6分)将已知数据代入计算,得 3200=BC (12分)II 理科解:(Ⅰ)① 当0120A ≥时,费马点P 与A 重合,∴PB PC =;……2分 ②当00120A <<时,则费马点P 在三角形内部,且0120APB BPC CPA ∠=∠=∠=(方法一)在,ABP ACP ∆∆中,由正弦定理知:120AB APsin sin ABP=∠ 0120AC APsin sin ACP=∠ ∵AB AC =∴sin APB sin ACP,∠=∠ APB ACP,∠=∠则APB ACP,∆≅∆∴PB PC = ………7分(方法二)在,ABP ACP ∆∆中,由余弦定理知:2222AB PA PB PA PB cos APB,=+-⋅∠ 2222AC PA PC PA PC cos APC,=+-⋅∠∵AB AC =,0120APB APC ∠=∠=∴22PB PA PB PC PA PC,+⋅=+⋅∴0(PB PC )(PB PC PA),-⋅++=∴PB PC = ………7分(Ⅱ)由已知得:ABC ∆是锐角三角形,∴Q 为三角形的费马P 时, QA QB QC ++取到最小值………9分在PBC ∆中,0120BPC ∠=∵73AB AC ,BC ===,由(Ⅰ)知:1PB PC ==在PAC ∆中,由余弦定理知:2222AC PA PC PA PC cos APC,=+-⋅∠∴20712120PA PA cos ,=+-⋅解得2PA =∴QA QB QC ++最小值为4. ………13分21. I 文科解(I ))15(145),8(75n n S n a n n -=-=(6分) (II )n=7或8时20)(max =n S (9分)(III )⎪⎪⎩⎪⎪⎨⎧≥+-≤-=)9(,401475145)8(),15(1452n n n n n n T n (14分)II 理科解:(Ⅰ)∵对任意2n ,n N*≥∈都有112a n n n a a -++= 令2n =得:1322a a a += , ∴ 2a 2=令3n =得:2432a a a += , ∴ 4a 4= ………3分(Ⅱ)∵对任意2n ,n N*≥∈都有112a n n n a a -++=∴1n n a a +-=1a n n a -- ………5分∴数列{}n a 是等差数列,通项公式n a n.= ………9分 (Ⅲ)n S =231222322n n ⋅+⋅+⋅++⋅ ① 2n S =2341122232(1)22n n n n +⋅+⋅+⋅++-⋅+⋅ ②①-②得n S -=23122222n n n +++++-⋅=1(1)22n n +--∴1(1)22n n S n +=-+。