高考理科数学总复习第九章 第三节 几何概型
2019届高三数学一轮复习目录(理科)

2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。
高三数学复习几何概型专题

几何概型专题复习考点解读:1、了解几何概型的概念及基本特点2、熟练掌握几何概型中的概率计算公式3、会进行简单的几何概率运算4、会将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决实际问题重点:了解几何概型的概念,会解决与长度,面积、体积相关的几何概型的概率问题 难点:1、古典概型与几何概型的区分2、怎样把随机事件的总体和随机事件A 都转化与之对应的区域的测度一、知识回顾:几何概型的概念:对于一个随机实验,我们将每个基本事件理解为从某个特定的几何区域D 内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域的某个指定区域d 中的点,这里的区域可以是线段、平面图形、立体图形、角等,用这样的方法处理随机实验称为——几何概型二、古典概型与几何概型的区别:相同点:两者基本事件发生都是等可能的不同点:古典概率要求基本事件有有限多个,古典概率要求基本事件有无限三、几何概型的概率公式:面积、体积、角度)的区域的测度(长度、试验的全部结果所构成面积、体积、角度)的区域的测度(长度、构成事件A A)(=P 四、题型分析题型一、与长度有关的几何概型例1、假设车站每隔10分钟发一班车,乘客随机到达车站,问乘客到达站台等车时间不超过3分钟的概率变式:已知地铁列车10分钟发一班车,在车站停留1分钟,问乘客到达站台等车时间不超过3分钟的概率训练1、已知[]()()()272151437,1223+--+--=∈x m m x m x x f m 则函数在实数R 上是增函数的概率。
2、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边长正方形,所作正方形的面积介于362cm 与812cm 之间的概率题型二、与面积有关的几何概型例2、甲乙两人约定6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时才离开,求两人能会面的概率。
训练1、在一个圆上任取三点A、B、C,求能够成锐角三角形的概率题型三、与体积有关的几何概型例3、在长方体ABCD-A1B1C1D1内任意取一点,求该点落在四棱锥B1-ABCD的概率。
高考总复习数学几何概型

探
5.求试验中几何概型的概率,关键是求得事件所占区域和 究
整个区域 Ω 的几何度量,然后代入公式即可求解.
课
时
作
业
第7页
第九篇 第六节
与名师对话·系列丛书
高考总复习·课标A版·数学(文)
问题探究:古典概型与几何概型的区别?
基
提示:古典概型与几何概型中基本事件发生的可能性都是相
础 知
识
等的,但古典概型要求基本事件有有限个,几何概型要求基本事
回 顾
件有无限个.
考
点
互
动
探
究
课 时 作 业
第8页
第九篇 第六节
与名师对话·系列丛书
高考总复习·课标A版·数学(文)
几何概型是将古典概型的有限性推广到无限
基
性,而保留等可能性的一种求概率的模型.掀起几何概型的“盖
础 知
识
头”,你会发现事件的概率只与构成事件区域的测度(长度、面
回 顾
积、角度、体积等)有关,而与它的位置及形状无关.若考查的
高考总复习·课标A版·数学(文)
高考导航
基
础
知
考纲要求
识 回
顾
1.了解随机数的意义,能运用模拟方法估计概率.
考
点
2.了解几何概型的意义.
互 动
探
究
课 时 作 业
第3页
第九篇 第六节
与名师对话·系列丛书
高考总复习·课标A版·数学(文)
考情分析
基
以选择题或填空题的形式考查与长度或面积有关的几
础 知
识
何概型的求法是高考对本内容的热点考法,特别是与平面几
高考总复习·课标A版·数学(文)
高考数学总复习 第9章第3课时几何概型精品课件 文 新人教B版

()
1
1
A.4
B.3
2
1
C.3
D.2
解析:选 D.由题意可知,点 P 位于 BC 边的中 线的中点处.
记黄豆落在△PBC 内为事件 D,则 P(D)=SS△△APBBCC =12.
2.如图所示,在圆心角为 90°的扇形中,以圆 心 O 为起点作射线 OC,则使得∠AOC 和∠ BOC 都不小于 15°的概率为( )
【答案】 A 【规律小结】 解题时,首先要判断所研究问 题是什么类型的概率问题,“几何概型”的难点 在于怎样把随机事件的总体和随机事件A都转 化为与之对应的区域的测度.
与面积(或体积)有关的几何概型
(1)如果试验的结果所构成的区域的几何度量可 用面积表示,则其概率的计算公式为: P(A)=试验的构全成部事结件果A所的构区成域的面区积域面积. (2)如果试验的结果所构成的区域的几何度量可 用体积表示,则其概率的计算公式为: P(A)=试验的构全成部事结件果A所的构区成域的体区积域体积.
生活中的几何概型
生活中的几何概型常见的有人约会、船停码头、等 车等问题,解决这类题的难点是把两个时间分别用 x、y两个坐标表示,构成平面内的点(x,y),从而 把时间是一段长度问题转化为平面图形的二维面积 问题,转化成面积型几何概型问题.
例3 两人约定在20∶00到21∶00之间相见,并 且先到者必须等迟到者40分钟方可离去,如果两 人出发是各自独立的,在20∶00至21∶00各时刻
则 P1=38.
(3)因为 a,b∈Z,且 a∈A,b∈B,所以,基本 事件共 12 个: (-2,-1),(-2,0),(-2,1),(-2,2),(-1, -1),(-1,0),(-1,1),(-1,2),(0,-1),(0,0), (0,1),(0,2). 设事件 E 为“b-a∈A∪B”,则事件 E 中包含 9 个基本事件,
高考数学冲刺复习几何概型考点深度剖析

高考数学冲刺复习几何概型考点深度剖析在高考数学的复习冲刺阶段,几何概型是一个重要的考点,也是许多同学感到困惑和容易出错的部分。
为了帮助同学们在高考中更好地应对这一考点,我们将对几何概型进行深度剖析。
一、几何概型的概念几何概型是概率论中的一个重要概念,与古典概型相对应。
在古典概型中,试验的结果是有限个等可能的基本事件;而在几何概型中,试验的结果是无限个的,且每个结果出现的可能性相等,通常借助几何图形的长度、面积或体积来计算概率。
例如,在一个边长为 1 的正方形区域内随机取一点,求该点到正方形某个顶点的距离小于 1/2 的概率。
这就是一个典型的几何概型问题。
二、几何概型的特点1、无限性几何概型的基本事件有无限多个。
2、等可能性每个基本事件发生的可能性相等。
3、几何度量通过计算几何图形的长度、面积或体积等几何度量来确定概率。
三、几何概型的计算公式若几何概型中的随机事件 A 对应的区域长度(面积或体积)为 m,全部结果构成的区域长度(面积或体积)为 n,则事件 A 发生的概率为 P(A) = m / n 。
四、常见的几何概型类型1、长度型几何概型例如,在一条线段上取一点,求该点落在某一区间内的概率。
2、面积型几何概型比如,在一个平面区域内随机投点,求点落在某个特定区域内的概率。
3、体积型几何概型像在一个立体空间内随机取点,求点落在某个体积内的概率。
五、解题步骤1、理解题意明确题目中所描述的随机试验和所求概率的事件。
2、确定几何区域找出与随机试验对应的几何图形,并确定其度量(长度、面积或体积)。
3、计算概率根据几何概型的计算公式,计算出所求事件的概率。
六、经典例题解析例 1:在区间0, 5上随机取一个数 x ,求 x 满足 2 < x < 4 的概率。
解:区间0, 5的长度为 5,满足 2 < x < 4 的区间长度为 2,所以概率 P = 2 / 5 。
例 2:在半径为 1 的圆内随机取一点,求该点到圆心的距离小于 1/2 的概率。
2022年新高考数学总复习:几何概型

2022年新高考数学总复习:几何概型知识点一几何概型的定义如果每个事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,则称这样的概率模型为几何概率模型,简称几何概型.知识点二几何概型的特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.知识点三几何概型的概率公式P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__.知识点四随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是:①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN作为所求概率的近似值.归纳拓展几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关.(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.(√)(5)与面积有关的几何概型的概率与几何图形的形状有关.(×)(6)从区间[1,10]内任取一个数,取到1的概率是P =19.(×)题组二走进教材2.(P 140T1)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是(A)[解析]∵P (A )=38,P (B )=14,P (C )=13,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).故选A .3.(P 146B 组T4)≤x ≤2,≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(D)A .π4B .π-22C .π6D .4-π4[解析]如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D的面积为4,而阴影部分(不包括AC ︵)表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D .题组三走向高考4.(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是(B)A .14B .π8C .12D .π4[解析]不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.故选B .5.(2019·全国)在Rt △ABC 中,AB =BC ,在BC 边上随机取点P ,则∠BAP <30°的概率为(B)A .12B .33C .33D .32[解析]在Rt △ABC 中,AB =BC ,Rt △ABC 为等腰直角三角形,令AB =BC =1,则AC =2;在BC 边上随机取点P ,当∠BAP =30°时,BP =tan 30°=33,在BC 边上随机取点P ,则∠BAP <30°的概率为:P =BP BC =33,故选B .考点突破·互动探究考点一与长度有关的几何概型——自主练透例1(1)(2021·山西运城模拟)某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15-8:30),一名职工在7:50到8:30之间到单位且到达单位的时刻是随机的,则他能正常刷卡上班的概率是(D)A .23B .58C .13D .38(2)(2021·福建龙岩质检)在区间-π2,π2上随机取一个实数x ,使cos x ≥12的概率为(B )A .34B .23C .12D .13(3)(2020·山东省青岛市模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为(C)A .15B .14C .13D .12[解析](1)一名职工在7:50到8:30之间到单位,刷卡时间长度为40分钟,但有效刷卡时间是8:15-8:30共15分钟,由测度比为长度比可得,该职工能正常刷卡上班的概率P =1540=38.故选D .(2)由y =cos x 在区间-π2,0上单调递增,在,π2上单调递减,则不等式cos x ≥12在区间-π2,π2上的解为-π3≤x ≤π3,故cos x ≥12的概率为2π3π=23.(3)直线l 与C 相交⇒|2k |1+k 2<1⇒-33<k <33.∴所求概率P =33-(-33)3-(-3)=13.故选C .[引申]本例(3)中“圆上到直线l 的距离为12的点有4个”发生的概率为__515__.[解析]圆上到直线l 的距离为12的点有4个⇔圆心到直线l 的距离小于12⇔|2k |1+k 2<12⇔-1515<k <1515,∴所求概率P =1515-3-(-3)=515.名师点拨与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.〔变式训练1〕(1)(2017·江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是__59__.(2)(2021·河南豫北名校联盟精英对抗赛)已知函数f (x )=sin x +3cos x ,当x ∈[0,π]时,f (x )≥1的概率为(D)A .13B .14C .15D .12[解析](1)D ={x |6+x -x 2≥0}=[-2,3],∴所求概率P =3-(-2)5-(-4)=59.(2)由f (x )=1,x ∈[0,π]得x ∈0,π2,∴所求概率P =π2π=12,故选D .考点二与面积有关的几何概型——师生共研角度1与平面图形有关的问题例2(1)(2021·河南商丘、周口、驻马店联考)如图,AC ,BD 上分别是大圆O的两条相互垂直的直径,4个小圆的直径分别为OA ,OB ,OC ,OD ,若向大圆内部随机投掷一点,则该点落在阴影部分的概率为(D)A .π4B .π8C .1πD .2π(2)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为(C )A .34+12πB .12+1πC .14-12πD .12-1π[解析](1)不妨设大圆的半径为2,则大圆的面积为4π,小圆的半径为1,如图,设图中阴影部分面积为S ,由图形的对称性知,S 阴影=8S .又S =12π×12×12-12×2=1,则所求概率为84π=2π,故选D .(2)∵|z |=(x -1)2+y 2≤1,∴(x -1)2+y 2≤1,其几何意义表示为以(1,0)为圆心,1为半径的圆面,如图所示,而y ≥x 所表示的区域如图中阴影部分,故P =π4-12π=14-12π.[引申]本例(1)中图形改成下图,则此点取自图中阴影部分的概率为__π-22π__.[解析]不妨设大圆的半径为2,则小圆的半径为1,∴所求概率P 14×4π=π-22π.角度2与线性规划交汇的问题例3-y +1≥0,+y -3≤0,≥0的平面点集中随机取一点M (x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是(B )A .14B .34C .13D .23[解析]-y +1≥0+y -3≤0,≥0表示的平面区域为△ABC 且A (1,2),B (-1,0),C (3,0),显然直线l :y =2x 过A 且与x 轴交于O ,∴所求概率P =S △AOC S △ABC =|OC ||BC |=34.选B .名师点拨解决与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的几何元素,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.〔变式训练2〕(1)(2021·唐山模拟)右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为(B)A .8B .9C .10D .12(2)(2021·四川模拟)以正三角形的顶点为圆心,其边长为半径作圆弧,由这三段圆弧组成的曲边三角形被称为勒洛三角形,它是具有类似于圆的“等宽性”曲线,由德国机械工程专家、数学家勒洛首先发现.如图,D ,E ,F 为正三角形ABC 各边中点,作出正三角形DEF 的勒洛三角形DEF (阴影部分),若在△ABC 中随机取一点,则该点取自于该勒洛三角形部分的概率为(C)A .π-32B .23π-39C .3π-36D .3π-26[解析](1)根据面积之比与点数之比相等的关系,得黑色部分的面积S =4×4×225400=9,故选B .(2)设△ABC 的边长为2,则正△DEF 边长为1,以D 为圆心的扇形面积是π×126=π6,△DEF 的面积是12×1×1×32=34,∴勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即图中勒洛三角形面积为3×π6-34+34=π-32,△ABC 面积为3,所求概率P =π-323=3π-36.故选C .考点三,与体积有关的几何概型——师生共研例4(1)(2021·山西省模拟)以正方体各面中心为顶点构成一个几何体,从正方体内任取一点P ,则P 落在该几何体内的概率为(C )A .18B .56C .16D .78(2)(2020·江西抚州临川一中期末)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC 的概率为(D)A .13B .49C .827D .1927[解析](1)如图以正方体各面中心为顶点的几何体是由两同底正四棱锥拼成,不妨设正方体棱长为2,则GH =2,∴所求概率P =V E -GHIJ -FV 正方体=2×(13×2×2×1)2×2×2=16,故选C .(2)作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC ,∴V P -ABC ≤13V S -ABC 的概率P =1-827=1927.故选D .名师点拨求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题常转化为其对立事件的概率问题求解.〔变式训练3〕一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为(C)A .4π81B .81-4π81C .127D .827[解析]由已知条件可知,蜜蜂只能在以正方体的中心为中心棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P =1333=127.[引申]若蜜蜂在飞行过程中始终保持与正方体8个顶点的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为__1-4π81__.[解析]所求概率P =33-43π33=1-4π81.考点四,与角度有关的几何概型——师生共研例5(1)(2021·南岗区校级模拟)已知正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP 与正方形ABCD 的边交于点M ,则AM <2的概率为(D)A .32B .12C .33D .23(2)在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD <AC 的概率为__34__.[解析](1)正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP与正方形ABCD 的边交于点M ,如图所示:己知AD =AB =BC =CD =3,DM =1,所以AM =(3)2+12=2.所以∠DAM =π6.根据阴影的对称性,故P (AM <2)=π6+π6π2=23,故选D .(2)在AB 上取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°.设事件A ={在∠ACB 内部作一条射线CD ,与线段AB 交于点D ,AD <AC }.则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.590=34.名师点拨与角度有关的几何概型的求解方法(1)若试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P (A )=构成事件A 的区域角度试验的全部结果所构成区域的角度.(2)解决此类问题时注意事件的全部结果构成的区域及所求事件的所有结果构成的区域,然后再利用公式计算.〔变式训练4〕(1)(2021·山西太原一模)如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB内任作射线AP ,则射线AP 与线段BC 有公共点的概率为__13__.(2)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM交BC 于点M ,则BM <1的概率为__25__.[解析](1)当点P 在BC 上时,AP 与BC 有公共点,此时AP 扫过△ABC ,所以所求事件的概率P =3090=13.(2)因为∠B =60°,∠C =45°,所以∠BAC =75°,在Rt △ABD 中,AD =3,∠B =60°,所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=3075=25.名师讲坛·素养提升转化与化归思想在几何概型中的应用例6(1)(2021·贵州遵义模拟)在区间[0,2]上任取两个数,则这两个数之和大于3的概率是(A)A .18B .14C .78D .34(2)(2021·济宁模拟)甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到则等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率为(A )A .38B .34C .35D .45[解析](1)设函数为x ,y ,≤x≤2,≤y≤2由图可知x+y>3的概率P=124=18.故选A.(2)以6点作为计算时间的起点,设甲到的时间为x,乙到的时间为y,则基本事件空间是Ω={(x,y)|0≤x≤1,0≤y≤1},事件对应的平面区域的面积S=1,设满足条件的事件对应的平面区域是A,则A={(x,y)|0≤x≤1,0≤y≤1,y-x≤12,且y≥x},其对应的区域如图中阴影部分所示,则C(0,1),则事件A对应的平面区域的面积是1-12×12×12-12×1×1=38,根据几何概型的概率计算公式得P=381=38.名师点拨]生活中的几何概型度量区域的构造方法:(1)审题:通过阅读题目,提炼相关信息.(2)建模:利用相关信息的特征,建立概率模型.(3)解模:求解建立的数学模型.(4)结论:将解出的数学模型的解转化为题目要求的结论.〔变式训练5〕(2020·海口调研)张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是__78__.[解析]以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)=1×1-12×12×121×1=78.。
高三数学复习总目录

第二章函数的概念、基本初等函数(1)与应用2.1 函数及其表示2.2 函数的单调性与最大(小)值2.3 函数的奇偶性与周期性2.4 二次函数2.5 基本初等函数(1)2.6 函数与方程2.7 函数模型及其应用第三章三角函数(基本初等函数(2))3.1 弧度制及任意角的三角函数3.2 同角三角函数的基本关系及诱导公式3.3 三角函数的图象与性质3.4 三角函数图象的变换3.5 三角函数模型的应用3.6 三角恒等变换3.7 正弦定理、余弦定理及其应用第四章平面向量4.1 平面向量的概念及其线性运算4.2 平面向量的基本定理及坐标表示4.3 平面向量的数量积4.4 平面向量的综合应用第五章数列5.1 数列的概念与简单表示法5.2 等差数列5.3 等比数列5.4 数列求和及其应用第六章不等式6.1 不等关系与不等式6.2 一元二次不等式及其解法6.3 二元一次不等式(组)与简单的线性规划问题6.4 基本不等式及其应用第七章立体几何7.1 空间几何体的结构、三视图、直观图7.2 空间几何体的表面积与体积7.3 空间点、线、面之间的位置关系7.4 空间中的平行关系7.5 空间中的垂直关系7.6 空间向量及其加减、数乘和数量积运算7.7 空间向量的坐标表示及运算7.8 空间向量的应用第八章平面解析几何8.1 直线的方程8.2 两条直线的位置关系8.3 圆的方程8.4 直线与圆的位置关系8.5 曲线与方程8.6 椭圆8.7 双曲线8.8 抛物线8.9 直线与圆锥曲线的位置关系第九章导数9.1 导数的概念及运算9.2 导数的应用(一)9.3 导数的应用(二)9.4 定积分第十章算法初步10.1 算法与程序框图10.2 基本算法语句与算法案例第十一章计数原理、概率、随机变量及其分布11.1 分类加法计数原理与分步乘法计数原理11.2 排列与组合11.3 二项式定理11.4 随机事件的概率11.5 古典概型11.6 几何概型11.7 互斥、对立、独立、独立重复试验及其应用11.8 离散型随机变量及其分布列11.9 二项分布及其应用11.10 离散型随机变量的均值与方差11.11 正态分布第十二章统计12.1 随机抽样12.2 用样本估计总体12.3 变量间的相关关系与线性回归方程12.4 统计案例第十三章推理与证明13.1 合情推理与演绎推理13.2 直接证明与间接证明13.3 数学归纳法第十四章数系的扩充与复数的引入14.1 数系的扩充和复数的概念14.2 复数代数形式的四则运算14.3。
高考数学一轮复习 第九章 第3讲 几何概型课件 文

求
概
率
ppt精选
2
[做一做]
1.(2014·高考湖南卷)在区间[-2,3]上随机选取一个数 X,
则 X≤1 的概率为( B )
A.45
B..35
C.25
D.15
解析:在区间[-2,3]上随机选取一个数 X,则 X≤1,即
-2≤X≤1 的概率为 P=35.
ppt精选
3
2.(2014·高考辽宁卷) 若将一个质点随机投入如图所示的 长方形 ABCD 中,其中 AB=2,BC=1,则质点落在以 AB 为直径的半圆内的概率是( B )
(4)与距离有关的几何概型.
ppt精选
9
(1)一个路口的红绿灯,红灯的时间为 30 秒,黄灯
的时间为 5 秒,绿灯的时间为 40 秒,则某人到达路口时看
见的是红灯的概率是( B )
A.15
B.25
C.35
D.45
(2)设
p
在[0,5]上随机地取值,则方程 3
x2+px+p4+12=0
有
实数根的概率为_____5___.
ppt精选
13
π
π
解析:(1)所求概率为π26 --((--π62 ))=13,故选 A.
(2)由 1∈{x|2x2+ax-a2>0},得 a2-a-2<0⇒-1<a<2,
所以所求概率为25- -( (- -15) )=130.
(3)∵函数 g(x)=a-x 2在区间(0,+∞)内为增函数,∴a-2<0,
第九章 概率
第3讲 几何概型
ppt精选
1
1.几何概型 如果每个事件发生的概率只与构成该事件区域的 _____长__度__(面__积__或__体__积__)______成比例,则称这样的概率模型 为几何概率模型,简称几何概型. 2.几何概型的概率公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:C
4.如图所示,在直角坐标系内,射线OT落在30°角的终边 上,任作一条射线OA,则射线OA落在∠yOT内的概率为 ________.
解析:如题图,因为射线OA在坐标系内是等可能分布的,所 以OA落在∠yOT内的概率为36600°°=16. 答案:16
思维升华
1.与长度有关的几何概型 如果试验的结果构成的区域的几何度量可用长度表示,可直 接用概率的计算公式求解. 2.与角度有关的几何概型 当涉及射线的转动,扇形中有关落点区域问题时,应以角的 大小作为区域度量来计算概率,且不可用线段的长度代替, 这是两种不同的度量手段.
方法技巧
与体积有关的几何概型求法的关键点 对于与体积有关的几何概型问题,关键是计算问题的总体积 (总空间)以及事件的体积(事件空间),对于某些较复杂的也可 利用其对立事件去求.
[锁定考向] 与面积有关的几何概型是近几年高考的热点之 一.常见的命题角度有: (1)与三角形、矩形、圆等平面图形面积有关的问题; (2)与线性规划交汇命题的问题;
1
11
=V长方体3AAAB1C·SD△-AABD1B1C1D1=3AAAA11··S2S矩矩 形形ABACBDCD=16.
答案:16
3.(2018·烟台模拟)在棱长为2的正方体ABCD-A1B1C1D1中,点 O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一 点P,则点P到点O的距离大于1的概率为________.
2.(2018·辽宁五校联考)若实数k∈[-3,3],则k的值使得过点
A(1,1)可以作两条直线与圆x2+y2+kx-2y-
5 4
k=0相切的概率
等于( )
A.12
B.13
C.14
D.16
解析:由点A在圆外可得k<0,由题中方程表示圆可得k>-1
或k<-4,所以-1<k<0,故所求概率为16,故选D. 答案:D
角度二 与线性规划交汇命题的问题
4.(2018·石家庄模拟)在区间[0,1]上任取两个数,则这两个数
之和小于65的概率是( )
A.1225
B.1265
17 C.25
D.1285
解析:设这两个数分别是x,y,则总的基本事件构成的区域是
0≤x≤1, 0≤y≤1
确定的平面区域,所求事件包含的基本事件构成
有一根长为1米的细绳,随机将细绳剪断,则使两截的长度都
大于18米的概率为( )
3 A.4
B.13
C.12
D.23
解析:如图,将细绳八等分,C,D分别是第一个和最后一个
等分点,则在线段CD的任意位置剪断,得到的两截细绳长度
都大于
1 8
米(C,D两点除外).由几何概型的计算公式可得,两
6 截的长度都大于18米的概率为P=81=34.
解析:设甲、乙货车到达的时间分别为x,y分钟,据题意基本
事件空间可表示为Ω=x,y00≤ ≤xy≤≤6600,
,
而事件“有一辆车等待装货”可表示为
A=x,y00≤≤yx≤≤6600,,
,
|x-y|≤20
如图,据几何概型可知其概率等于P(A)=SS正阴方影形 =60×60-602××126× 0 40×40=59. 即至少有一辆车需要等待装货物的概率为59.
区域体积是400毫升,则P(A)=4200=0.005. 答案:D
2.(2018·济南模拟)如图,长方体ABCD-A1B1C1D1中,有一动 点在此长方体内随机运动,则此动点在三棱锥A-A1BD内的概 率为________.
解析:设事件M=“动点在三棱锥A-A1BD内”,
P(M)=V长方V三体棱AB锥CAD--AA11BBD1C1D1=V长方V三体棱AB锥CAD1--AA1BBD1C1D1
π 得,所求概率P=41=π4.故选B. 答案:B
2.已知向量a=(-2,1),b=(x,y). (1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点 数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点 数,求满足a·b=-1的概率; (2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.
课时作业
点击进入A1B1C1D1内任取一点,满足 几何概型,记“点P到点O的距离大于1”为事件A,则事件A 发生时,点P位于以O为球心,以1为半径的半球外.又V正方 体ABCD-A1B1C1D1=23=8,V半球=12·43π·13=23π, ∴答所案求:事1-件1概π2 率P(A)=8-823π=1-1π2.
3.在边长为4的等边三角形OAB及其内部任取一点P,使得
O→A·O→P≤4的概率为( )
1 A.2
B.14
1 C.3
D.18
解析:设O→P在O→A上的投影为|O→Q|,又O→A·O→P= |O→A|·|O→Q|,O→A·O→P≤4,则|O→Q|≤1.取OB的中点 M,作MN⊥OA于N,则满足条件的P构成的区 域为图中阴影部分,N为OA的四等分点,所以使得 O→A·O→P ≤4 的概率为SS△△OOMABN=18. 答案:D
个数.经过多次试验,计算出落在区域A内的点的个数的平均
值为6 600,则区域A的面积约为( )
A.5
B.6
C.7
D.8
解析:由题意,∵在正方形内随机产生10 000个点,落在区域 A内的点的个数的平均值为6 600, ∴概率P=160600000=3530, ∵边长为3的正方形的面积为9, ∴区域A的面积的估计值为3530×9≈6,故选B. 答案:B
解析:依题意知,当相应的弦长大于 3 时,圆心到弦的距离
小于
12-
32 2
=
1 2
,因此相应的点M应位于线段AB上与圆
心的距离小于12的地方,所求的概率等于12.
5.(2018·西宁复习检测)已知球O内切于棱长为2的正方体,若 在正方体内任取一点,则这一点不在球内的概率为_1_-__π6_.
0≤x≤1, 的区域是0≤y≤1,
x+y<65
确定的平面区域,
如图所示,阴影部分的面积是1-
1 2
×
4 5
2=
17 25
,所以这两个数
之和小于65的概率是1275.
答案:C
5.甲、乙两辆车去同一货场装货物,货场每次只能给一辆车 装货物,所以若两辆车同时到达,则需要有一车等待,已知 甲、乙两车装货物需要的时间都为20分钟,倘若甲、乙两车 都在某1小时内到达该货场(在此期间货场没有其他车辆),求 至少有一辆车需要等待装货物的概率.
解析:依题意,设长方体的长为x cm,则相应的宽为(12- x)cm,由4x(12-x)>128得x2-12x+32<0,4<x<8,因此所求的 概率等于8- 124=13.
4.(2018·湖北七市联考)AB是半径为1的圆的直径,M为直径
AB上任意一1点,过点M作垂直于直径AB的弦,则弦长大于 3 的概率是__2______.
解析:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包 含的基本事件总数为6×6=36(个). 由a·b=-1有-2x+y=-1,所以满足a·b=-1的基本事件为 (1,1),(2,3),(3,5),共3个. 故满足a·b=-1的概率为336=112.
(2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω ={(x,y)|1≤x≤6,1≤y≤6};满足a·b<0 的基本事件的结果为A={(x, y)|1≤x≤6,1≤y≤6且-2x+y<0};画出 图形如图,矩形的面积为S矩形=25,阴影 部分的面积为S阴影=25-12×2×4=21, 故满足a·b<0的概率为2215.
切圆的面积为π,根据对称性可知,黑色部分的面积是正方形
内切圆的面积的一半,所以黑色部分的面积为
π 2
.根据几何概型
π 的概率公式,得所求概率P=24=π8.故选B.
答案:B
2.如图,在边长为3的正方形内有区域A(阴
影部分所示),张明同学用随机模拟的方法
求区域A的面积.若每次在正方形内随机产
生10 000个点,并记录落在区域A内的点的
第九章 概率 第三节 几何概型
C目录 ONTENTS
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
高考·导航
1.了解随机数的意义,能运用模拟方法估计概率. 2.了解几何概型的意义.
主干知识 自主排查
几何概型
(1)定义:如果每个事件发生的概率只与构成该事件区域的 长度 (面积或体积)成比例,则称这样的概率模型为几何概率模 型,简称为几何概型.
题组练通
1.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫
升水样放到显微镜下观察,则发现大肠杆菌的概率为( )
A.0.008
B.0.004
C.0.002
D.0.005
解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果 有无限个,属于几何概型,设取出2毫升水样有大肠杆菌为事 件A,则事件A构成的区域体积是2毫升,全部试验结果构成的
解析:由题意知球的半径为1,其体积为V球=
4π 3
,正方体的体
积为V正方体=23=8,
4π
则这一点不在球内的概率P=1-
3 8
=1-π6.
易混淆几何概型与古典概型,两者共同点是试验中每个结果 的发生是等可能的,不同之处是几何概型的试验结果的个数 是无限的,古典概型中试验结果的个数是有限的.
[小题纠偏]
(2)特点:①无限性:在一次试验中,可能出现的结 果 有无限多个 ; ②等可能性:每个结果的发生具有 等可能性 .
(3)公式: 构成事件A的区域长度面积或体积 P(A)= 试验的全部结果所构成区域长度面积或体积 .
[小题诊断]
1.若将一个质点随机投入如图所示的长方