电力电容器故障分析和处理

合集下载

电容器在运行中的异常现象和处理方法范文(二篇)

电容器在运行中的异常现象和处理方法范文(二篇)

电容器在运行中的异常现象和处理方法范文电容器作为电力系统中常用的电子元件,其主要功能是存储电荷,并供电系统提供稳定的电压和电流。

然而,在电容器长时间运行的过程中,有时会出现一些异常现象,包括温升过高、电容器容值变化等问题。

针对这些异常现象,本文将分析其原因并提出相应的处理方法。

首先,温升过高是电容器运行中的一种常见异常现象。

电容器在工作时会产生一定的功率损耗,而这部分能量会转化为热能,使得电容器温度升高。

如果电容器的温度超出了其耐温范围,就会引发一系列问题,比如容值变化、故障发生甚至引发火灾。

针对电容器温升过高的问题,可以采取以下处理方法:1.增加散热措施:可以在电容器外部安装散热器,通过增加散热面积和改善空气流通,提高电容器的散热效果。

2.提高负载能力:通过增加电容器的额定电流和电压等级,提高其负载能力,降低功率损耗,减少温升现象的发生。

3.调整电容器布置:合理布置电容器的位置,避免电容器相互之间的热交感,降低整体温升。

另外,电容器容值变化也是电容器运行中的常见异常现象。

电容器的容值随着时间的推移和工作环境的变化,会发生一定程度的变化。

容值变化可能会导致电压和电流不稳定,从而影响到电力系统的正常运行。

对于电容器容值变化的处理,可以采取以下方法:1.定期检测:定期对电容器进行容值测试,以及时掌握电容器容值的变化情况,及时采取相应的处理措施。

2.控制工作环境:保持电容器所处的工作环境相对稳定,减少环境温度和湿度等因素对电容器容值的影响。

3.合理选择材料:选择质量优良、稳定性好的电容器材料,减少容值变化的可能性。

总之,电容器在运行中出现温升过高和容值变化等异常现象是常见的问题,但可以通过加强散热措施、提高负载能力、调整电容器布置、定期检测、控制工作环境等方法来处理。

通过采取这些处理方法,可以使电容器在工作中保持稳定的电压和电流输出,确保电力系统的正常运行。

电容器在运行中的异常现象和处理方法范文(二)电容器是一种常见的电子元件,用于存储和释放电荷。

电力电容器常见故障分析及预防措施

电力电容器常见故障分析及预防措施

电力电容器常见故障分析及预防措施摘要:在人们的生活与工作中,功率电容器是一种不可或缺的器件,不但是电网中最常见的器件之一,而且被大量地用于各类电气设备。

文章简要地介绍了电力电容器,并对其电容元件击穿、熔丝熔断、外部放电和内部短路等4种故障原理进行了对比,并对其中常见的鼓泡、渗漏油、爆炸、过电压等4种故障进行了详细的说明,并给出了针对这些问题的解决和预防措施,希望能够为电力电容器的发展和完善提供一个较为全面的思路和方向。

关键词:电力电容器;电容器故障;故障分析;预防引言在我们的日常生产和生活中,电力电容器是最常见的一种基础设施,它的主要结构是两块金属电极板块及夹在电极之间的绝缘材料,电极板的尺寸、几何形状等对它的特性有影响。

电容有很多种连接方式,一般以应用为基础,其中以并联电容和串联电容最为典型。

在工业、农业、商业、交通和日常居住场合中,电力电容器都具有非常重要的应用价值。

它对工业、农业及服务业等各类生产生活内容的发展,发挥着无可取代的作用。

在使用电容器的时候,因为操作不当、设计原理有缺陷、使用环境较为恶劣等多种原因,导致了电容器鼓泡、爆炸等故障,这些都给整个电力系统带来了极大的损失,严重地影响到了电网的效率和日常各个工业的正常生产。

本文介绍了几种常用的电气电容失效方法,并给出了相应的防治方法。

1电力电容器简介1.1电力电容器的发展80年代至21世纪,我国的电力电容已从薄膜式的纸张电容发展为全膜式的电容,其失效率表现为先高后低的变化。

其失效率高的主要原因有二:(1)其抗热性能差,易产生起泡和变形。

(2)在使用了全薄膜媒质之后,功率电容的辐射区域并未同时增大,使得功率电容的辐射区域不会增大,反而会减小。

1.2电力电容器的结构就功率电容器而言,按其连接形式,可分为多个主电路串接与多个主电路并联两种。

多正本串联是指用串联的方法将多个电容元件连接起来,多正本并联是以并联的方法将多个正本连接起来。

串、并联型功率电容,其主要零件大体上是相同的。

电力电容器常见故障问题及解决方法

电力电容器常见故障问题及解决方法

电力电容器常见故障问题及解决方法摘要:电力系统运行过程中,电压的高低随着无功的变化而变化。

为了控制无功,保证电压稳定,提高电能质量,需要在系统中通过串联或是并联的方式接入电容器。

随着输变电技术的发展,电力电容已经成为了电力系统中的重要设备。

本文就针对电力电容器常见故障进行分析,然后提出相应的预防措施。

关键词:电力电容器;故障;问题;解决方法电力电容器是电力系统中重要的设备之一,在系统运行中,通过对电容器的投切来控制系统的无功功率,从而减少运行中损耗的电能,达到提高功率因数的目的。

长期的运行经验表明,电容器在运行过程中会因本身缺陷或者系统工况运行等原因出现漏油、膨胀变形、甚至“群爆”等故障,若无查出电容器故障原因,对系统的安全运行将造成严重威胁。

因此,对电容器运行故障进行分析处理显得至关重要。

1、电力电容器的常见故障现象1.1电力电容器的渗油现象电容器的渗漏油现象主要由电容器密封不严造成,具有很大的危害,要坚决避免渗漏油现象的出现。

但在实际的运行中,由于加工工艺、结构设计和认为因素等多方面的影响,套管的根部法兰、螺栓和帽盖等焊口漏油的现象经常出现。

这些问题,采取措施加强对厂家和运行维修人员的管理,对机器的运行进行严密的管理,都可以使漏油现象得到缓解。

1.2鼓肚现象在所有电容器的故障中,鼓肚现象是比较常见的故障。

发生鼓肚的电容器不能修复,只能拆下更换新电容器。

因此,鼓肚造成的损失很大,而造成鼓肚的原因主要是产品的质量,保证产品的质量,加强对电容器质量的管理,是避免鼓肚的根本措施。

1.3熔丝熔断电容器外观检测后没有明显的故障时,可以进行实验检测,看是否存在熔丝熔断的现象。

一般情况下,外观没有明显的故障而电容器出现故障时,熔丝熔断就可能是其发生故障的原因。

1.4爆炸现象爆炸发生的根本原因是极间游离放电造成的电容器极间击穿短路。

爆炸时的能量来自电力系统和与相关电力电容器的放电电流,爆炸现象会对电容器本身及其周围的设施造成极大的破坏,是一种破坏力很大的严重故障现象,但由于科技的发展和人们的重视,爆炸现象在近年来很少出现,但我们在电容器的维修检查中,也要对引起爆炸的因素进行严格的控制,极力的避免爆炸现象的出现。

基于常见电力电容器故障分析与处理措施概述

基于常见电力电容器故障分析与处理措施概述

基于常见电力电容器故障分析与处理措施概述【摘要】电力电容器在电力系统中扮演着重要的角色,然而其故障会对系统运行造成严重影响。

本文从常见的电力电容器故障类型、原因分析、检测方法、处理措施以及预防建议等方面进行了概述。

通过分析故障原因并采用有效的检测手段,可以及时处理电力电容器故障并确保系统的正常运行。

本文强调了预防措施的重要性,建议定期对电力电容器进行检测和维护,以避免故障发生。

电力电容器故障的分析与处理对系统运行至关重要,未来的发展方向应该注重提高故障检测技术并加强预防措施,以确保电力系统的稳定运行。

【关键词】电力电容器、故障分析、处理措施、电容器故障、系统运行、故障原因、故障检测、预防措施、发展方向1. 引言1.1 介绍电力电容器的作用和重要性电力电容器是电力系统中常用的一种电气器件,主要用于储存和释放电能。

它具有降低系统电压波动、提高系统功率因数、提高电网稳定性以及减少电网损耗等重要作用。

在电力系统中,电容器被广泛应用于高压变电站、中压配电站以及低压配电箱等不同场景中,以提高电力系统的效率和稳定性。

电力电容器的选择和维护工作对于保证系统的正常运行具有重要意义。

在电力系统中,电容器的正常运行对整个系统的稳定性和安全性具有重要影响。

电力电容器故障会导致系统的功率因数下降、电压波动、电网负荷过载等问题,严重影响系统的运行效率和安全性。

及时发现和处理电力电容器故障对于保证电力系统的正常运行至关重要。

对常见的电力电容器故障进行分析和处理,是维护电力系统稳定运行的重要一环。

1.2 阐述电力电容器故障对系统运行的影响电力电容器是电力系统中非常重要的元件,它主要用于提高电力系统的功率因数,稳定系统电压,并降低谐波含量。

电力电容器的故障会对系统运行产生严重影响。

电力电容器的损坏会导致系统功率因数下降,影响电力系统的能效。

功率因数下降会导致电网能耗增加,不仅浪费了电力资源,还可能导致系统运行不稳定,增加电力系统的运行成本。

500kV某变电站35kV侧电容器组运行故障分析及治理措施

500kV某变电站35kV侧电容器组运行故障分析及治理措施
作者简介 : 严波( 1 9 6 7 一) , 女, 助理研究 员, 学士, 任 职 于 广 州
经 常超过 保 护限值 ( 1 . 4 3倍 额 定 电流 ,额 定 电流 为 6 0 7 A) , 如图 1 、 图 2给 出 了 该 组 电容 器 投 入 时 的 4次 谐 波 电流 及 总 电流 ,只 要 找 出 4次势 图 , 其 中上 、 中、 下 图
分别是 4次谐 波 电压( a b c相 ) 、 中性线直流 电流 、 4次
谐 波 电压 与 中性 线 直 流 电流 关联 趋 势 图 , 图 4给 出 一
个 较短 时间 片断 的 4次谐波 电压含 有 率和 中性 线 电 流 的关联趋势 。可以看 出 , 图3 、 图 4有 以下特征 : 中性 线直流 电流 的趋势 具有周 期性 , 以一 天为周
按单 位 总 资产 比率 设 置科 普 活 动 专 项 资金 , 引
导、 引进社 会 各界参 与科 普事 业 , 逐 年 扩 大资 金投 入 渠道和提 高投入 水平 , 为好 科普工 作顺利 开展 的强 力
保障。建立专业 化、 高素质 的科普人 才队伍 , 保持相 当
规模 、 素质 较 高 的科 普兼 职人 才和 志愿 者 队伍 , 全 面
5 0 0 k V某 变 电站 3 5 k V侧 电容 器 组
运 行 故 障分 析及 治 理 措 施
文/ 王展
电力 系统 中 , 并联 电容器组作 为无功补 偿设 备十 分普遍 , 随着 输 变 电技 术 的发展 , 电力 电容 器 已成 为 电力系统 中重 要的设备 , 运行 电网中存在 的谐波与并 联 电容器 组相 互作 用 ,会产 生谐 波放 大甚 至发 生谐 振, 对 系统 及其他 电气设备造成危 , 很 多并联 电容器组 因为谐波的 出现而导致过热 , 响声异常等损坏现象 , 无 法正常运行。高压直流输 电和地铁运行过程期 间也会

电力系统电容器故障的处理方法

电力系统电容器故障的处理方法

电容器、电抗器操作(一)、电容器、电抗器操作的一般知识一、电容器的操作根据电网运行需要,电容器组投入电网或退出的操作。

一般有两种方式,即手动投、切和自动投、切。

所谓手动投切是指当电网电压下降到规定值范围下限(或工作需要)时值班员手动将电容器组断路器合上(电容器组投入电网运行),当电压上升到规定值范围上限(或工作需要)时,手动将电容器组断路器拉开(停用电容器组)。

自动投、切是指利用VQC自动投、切装置,当电网电压下降到某一定值时,自动装置将动作合上电容器组断路器。

反之,当电压上升到某整定值时,自动装置将动作电容器组断路器跳闸。

电容器组由于操作频繁,要求断路器及其操作机构更加可靠;由于断开电容器组会产生很高的过电压(可达4倍以上),要求断路器灭弧不重燃;由于合闸时电容器组产生很高频率合闸涌流,断路器要承受很大的涌流冲击作用,要求断路器性能良好,且能多次动作不检修,因此多采用真空断路器或SF6断路器。

在交流电路中,如果电容器带有电荷时合闸,则可能使电容器承受两倍左右的额定电压的峰值,甚至更高。

这对电容器是有害的,同时也会造成很大的冲击电流,使开关跳闸或熔丝熔断。

因此,电容器组每次切除后必须随即进行放电,待电荷消失后方可再次合闸。

一般来说,只要电容器组的放电电阻选的合适,那么,1min左右即可达到再次合闸的要求。

所以电气设备运行管理规程中规定,电容器组每次重新合闸,必须于电容器组断开3min后进行。

串联补偿电容器:电力输电线路在输送电能时相当于一个电感,线路电抗主要为感抗,在线路两侧系统电势、电压及功角不变的情况下,线路输送的功率与电抗成反比。

电容器的阻抗特性为容抗,它与感抗的特性相反,若在线路中间串入电容器,其容抗就可以与线路感抗相互抵消,使线路总的电抗变小,从而提高输电能力。

又由于串补能使线路总电抗值减小,所以线路加装串补后还具有更高的静态和动态稳定性。

而目前国内外还有一种可控串补。

可控串联补偿(简称可控串补)是一种灵活交流输电技术,可以用来实现交流输电线路快速、灵活的阻抗控制,大幅度地提高系统的暂态稳定性,从而扩大线路输送能力。

电力电容器组不平衡电压保护动作原因分析及故障诊断

电力电容器组不平衡电压保护动作原因分析及故障诊断

电力电容器组不平衡电压保护动作原因分析及故障诊断摘要:在变电站中,电容器组三相电容量变化不一致,是导致电容器组不平衡电压保护动作最重要的原因之一,也是最常见的原因。

当电容器组发生跳闸,不应进行重合闸,必须查明确切的原因,排除故障。

另外,运行人员也应加强对电容器的红外检测,及时发现潜在隐患,减少电力事故的发生。

关键词:电力电容器组;不平衡电压;保护动作;原因;故障诊断1电容器结构及其对应保护三相单星型不接地型式的电容器组一般配置有两段式过流保护、低电压保护、过电压保护和不平衡电压保护,以应对不同的故障。

220kV甲变电站的10kV母线接线方式如图1所示,2台主变分别通过甲101与甲102带10kV西母线和10kV东母线,10kV母联分位运行。

甲容1开关柜内的电流互感器共引出2组电流绕组,一组是保护级别,另一组是测量级别。

同时,电容器保护逻辑中的过电压保护和低电压保护所用三相电压采用甲10西表转换后经过屏顶小母线传输的母线电压。

图1甲变电站10kV运行方式10kV电容器的差压保护接线如图2所示,C1、C2分别为单相电容器组的上、下节电容;L为电容器组的电抗器;n为放电线圈的变比;Um为系统一次电压;Ucy为单相电容器的差压二次值。

差压保护接线共有3组,每组2根信号线经过放电线圈至端子排,再连接到保护装置。

图210kV电容器差压保护接线示意图2电容器组不平衡电压保护动作原因2.1三相放电线圈性能不一致放电线圈是并联在系统中,其一次侧与电容器的抽头相连接,用于测量某一部分电容器的电压。

当放电线圈一次或者二次线圈发生断线或者短路的情况下,其变比会发生变化,此时放电线圈的二次电压也会发生变化,当三相放电线圈的二次电压变化不一致时,便会产生不平衡电压,引起保护动作。

2.2电容器组三相电容量不平衡中性点不接地的星型接线电容器组,当三相电容器组电容值不平衡时,运行中会产生电压分布不均的情况。

电容值小的一相或承受较高的电压,并随着电容值不平衡加大,电压分布不均的情况也随之加大。

电力电容器的故障模式与诊断方法

电力电容器的故障模式与诊断方法

电力电容器的故障模式与诊断方法电力电容器是电力系统中常用的电能贮存和滤波元件,其稳定运行对于保障电力系统的正常运行具有重要作用。

然而,由于长期运行或其他原因,电力电容器也会出现各种故障。

本文将针对电力电容器的故障模式及其诊断方法进行深入探讨。

一、电力电容器的故障模式1. 短路故障短路故障是电力电容器常见的故障模式之一。

当电容器内部绝缘击穿或电容器的金属箔之间出现短路时,导致电容器的电极直接连接在一起。

短路故障会导致电容器电流异常增大,并可能引发其他故障。

2. 开路故障开路故障是指电容器内部绝缘失效或导体断裂,导致电容器的电极间无法传导电流。

开路故障会导致电容器无法正常工作,严重影响电力系统的运行。

3. 老化故障电力电容器在长期运行过程中,由于外界环境、电压波动等因素的影响,会出现老化故障。

老化故障主要体现在电容器的绝缘材料老化、电容值损失等方面,会导致电容器性能下降,甚至完全失效。

二、电力电容器故障的诊断方法1. 外部检查法外部检查法是最基本的电力电容器故障诊断方法之一。

通过观察电容器外部是否有明显损坏、变形、漏液等异常情况,判断电容器是否存在故障。

这种方法简单易行,但只能发现一些明显的故障。

2. 声音诊断法声音诊断法是利用电力电容器发出的声音信号来判断是否存在故障。

通过对电容器进行高频放电,观察听觉上是否有明显的噪音,可以初步判断电容器的故障类型。

3. 电容器质量指标测量法电容器质量指标测量法是一种较为直接的故障诊断方法。

通过测量电容器的电容值、损耗角正切值等参数,可以客观地评估电容器的健康状况。

这种方法需要专业的测试设备和技术,可以提供较为准确的故障诊断结果。

4. 热红外检测法热红外检测法是通过红外热像仪对电容器进行扫描,观察其温度分布情况来判断是否存在故障。

热红外检测法可以有效地发现电容器内部故障,如热点、短路等。

5. 偏差电流分析法偏差电流分析法是一种通过分析电容器绝缘材料中的偏差电流来判断其健康状况的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

* 电力电容器保护配置
电容器保护配置有:过电压和欠电压保护,限时过电流的电流保护,防止电容器内部故障的电容器组专用保护。

* 硬件配置
该系统配置应有如下部分:电压、电流信号的检测电路,交流变直流的信号转换电路,模数转换电路,单片机及外围部分,信号的驱动放大电路,继电器等。

* 软件设计
软件应该包括主程序和子程序。

主程序作必要的初始化;子程序须进行故障判断、故障处理等。

还应该设计延时、清零等子程序。

* 电力电容器的故障和处理
一.电容器内部故障
电力电容器组是由电容器元件并联或串联组成。

电容器内部故障时,内部电流增大,致使内部气体压力增大,轻者发生漏油或鼓肚现象,重者会引起爆炸。

电力电容器保护应反映电容器组内部局部击穿与短路,并及时切除故障,防止故障扩大。

二.电容器外部故障
系统电压过高或过低可能危及电容器的安全运行。

因电容器内部功耗与电压平方成正比,过电压时电容器因内部功耗增大使温度显著增高,将进一步损坏电容器内部绝缘介质。

外部短路故障时,使电容器失压,但在电荷尚未释放时,可能在恢复供电时再次充电使电容器过压;另一种情况是恢复供电时,变压器与电容器同时投入,容易引起操作过电压和谐振过电压,从而使电容器过压。

各种故障的原因及处理情况如下:
1.电力电容器第一次投入电网后,发生运行异常
故障原因
对电力电容器没有认真检查和投入运行前的必要试验。

处理方法
(1)确认电力电容器的铭牌:电压、容量、环温、湿度和通风等应符合现场要求。

(2)对未投入运行的电力电容器做仔细的外观检查。

a.外部刷漆是否均匀,有无掉漆或碰撞的痕迹;
b.各部件是否完好和齐全;
c.有无渗油或漏油现象。

(3)用万用表测量电容器性能。

a.在测量前,须使电容器放电,否则会损伤仪表或电击测试人员;
b.使用万用表测量,通常采用1×1kΩ档,如果发现无阻值,为短路或接地;如果发现指针不摆动,而且阻值无穷大,为开路,应将该电容器退出。

严禁使用1×10kΩ档,防止万用表击穿损坏。

(4)三相电容差值,不应超过一相电容的5%。

(5)检查电容器接线是否正确,有关螺丝是否拧紧。

(6)各种保护是否正常。

2.电力电容器投入后,发生一般性故障
故障原因
(1)电力电容器存在缺陷。

(2)维修不当。

(3)工作环境恶劣。

处理方法
(1)仔细观察电容器外观有无异常,对电力电容器的套管和连接螺丝要重点检查。

(2)测量电容器的绝缘电阻、容量数值。

必要时,应该做耐压试验。

(3)在运行中,为了防止电容器鼓肚,主要是消除电容器自身的过电压,技术措施是在高压电容器上串联一只对地绝缘400V电容器。

400V电容器可加放电间隙予以保护。

对已经鼓肚、发生电晕、电火花的电容器,应及时切除。

(4)电容器体温急剧升高,可用酒精温度计或点温度计进行测量。

正常温度不超过40C︒,如果温度再升高,要立即采取有效降温措施,如加排风扇或空调等。

如果仍不下降,要将电容器由电网上解列下来试验检查。

(5)电网电压应控制在不超过电容器额定电压的10%,电容器三相不平衡电流应控制在不超过一相额定电流的5%,运行电流应控制在不超过额定电流的130%。

否则应停止电力电容器的运行。

3.电解电力电容器投入电网后,很快击穿
故障原因
该电容器极性接反;电容器内部短路。

处理方法
(1)电容器安装之前,应查明该电容器是电解式的还是通用式的,前者要求极性,后者不要求极性。

(2)新投入的电容器要按国家标准做相应的试验。

4.电容器从电网上解列重合后又发生故障
故障原因
(1)电网电压超标。

(2)电力电容器本体故障。

(3)操作机构或操作系统故障。

(4)放电环节不正常。

处理方法
(1)如果电网电压持续居高不下,有条件的场合可调整电力变压器分接调压器,将电压降下。

(2)如果初步判断有可能是电容器本身的故障,此时不要继续投运电力电容器组,在为送电情况下,测量该组每个电容器,将损坏或失效的电容器由电网上解除。

(3)如果操作机构跳跃或三相不同期等,要检查合闸、跳闸回路防跃环节是否正常,检查接触器、隔离开关、断路器等动力环节三相接触是否正常,如不同期要及时调整。

(4)检查放电电阻是否损坏,三相放电电阻是否平衡。

精确计算放电电阻。

5.电力电容器投运后,发现内部有异常声响
故障原因
内部受潮或短路。

处理方法
及时从电网上将电容器解列下来,检查如无特殊问题,仅仅是绝缘电阻低,采取烘潮措施即可。

6.电力电容器投入电网后,温度急速上升
故障原因
(1)电容器内部短路。

(2)电容器严重过电压。

(3)电容器严重过电流。

处理方法
(1)检查电力电容器内部是否短路。

(2)消除电容器过电压。

(3)测量并消除电容器过电流。

必要时要改变电容器的容量。

7.电力电容器爆炸
故障原因
(1)容量大,电压高的电力变压器内部严重短路。

(2)电容器严重受潮,形成接地拉弧。

(3)电容器温度超标。

(4)电容器严重漏油。

(5)未经放电,连续重合闸。

(6)由于小动物爬入造成三相短路。

处理方法
(1)诸多是由于电容器质量不好,换上一个好的电容器。

(2)保持电容器周围环境的干燥、通风和正常运行温度,保持周围无腐蚀性气体的良好条件。

(3)一般来讲,单台电容器不易爆炸。

并联多台的,向一台电容器放电能量很大,可能发生爆炸。

移相电容器爆炸主要原因是运行环温过高,电网电压波形畸变,操作过电压,接线错误等造成电容器内部击穿,产生剧热,使绝缘油分解产生大量气体,壳体承受不了此种压力。

处理这种故障,通常是应用单台熔断器保护方式,可按电容器额定电流的:倍选定熔断器的额定电流。

多台电容器,采用分组熔丝保护方式,一组不超过四台电容器,熔丝电流按小组额定电流的:倍来选定。

(4)及时消除电容器缺陷,如螺丝松动、锈蚀和漏油。

8.电力电容器突然熔断
故障原因
(1)熔断器容量选小。

(2)出现故障电流,如接地、短路或合闸冲击电流等。

处理方法
主要是按电力规程要求选择熔断器的容量。

相关文档
最新文档