八年级数学第二章《实数》单元测试卷

合集下载

北师大版八年级数学上册第2章《实数》单元测试卷含答案

北师大版八年级数学上册第2章《实数》单元测试卷含答案

北师大版八年级上册第2章《实数》单元测试卷一.选择题(共12小题,满分36分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.25的算术平方根是()A.5B.﹣5C.12.5D.﹣12.53.下列各数中,为无理数的是()A.3.14 B.C.D.0.10100100014.下列式子中,为最简二次根式的是()A.B.C.D.5.若实数a﹣2有平方根,那么a可以取的值为()A.﹣1B.0C.1D.26.下列说法正确的是()A.有理数、零、无理数统称为实数B.没有绝对值最小的实数C.最小的无理数是D.数轴上的点都表示实数7.下列计算错误的是()A.=12B.=﹣0.6C.=±4D.=8.已知+|b﹣2a|=0,则a+2b的值是()A.4B.6C.8D.109.如图,数轴上有O,A,B,C,D五点,根据图中各点所表示的数,表示数的点会落在()A.点O和A之间B.点A和B之间C.点B和C之间D.点C和D之间10.把根号外的因式移入根号内得()A.B.C.D.11.已知:a+b=﹣5,ab=1,则+的值为()A.5B.﹣5C.25D.5或﹣512.规定:一个数的平方等于﹣1,记作i2=﹣1,于是可知i3=i2×i=(﹣1)×i,i4=(i2)2=(﹣1)2=1……,按照这样的规律,i2019等于()A.1B.﹣1C.i D.﹣i二.填空题(共7小题,满分28分,每小题4分)13.若二次根式在实数范围内有意义.则a的取值范围是.14.比较大小:23.(填“>”,“=”,“<”号)15.一个实数在数轴上对应的点在负半轴上,且到原点距离等于,则这个数为.16.若计算×m的结果为正整数,则无理数m的值可以是(写出一个符合条件的即可).17.甲同学利用计算器探索.一个数x的平方,并将数据记录如表:x16.216.316.416.516.616.716.816.917.0 x2262.44265.69268.96272.25275.56278.89282.24285.61289请根据表求出275.56的平方根是.18.对于任意不相等的两个实数a,b.定义运算※如下:a※b=,如3※2==,那么8※4=.19.观察并分析下列数据:寻找规律,那么第10个数据应该是.三.解答题(共8小题,满分56分)20.(6分)计算(1)2﹣6+3(2)(3+﹣4)÷21.(6分)计算:求下列各式中的x(1)x2﹣4=0 (2)2x3=﹣1622.(6分)若实数a,b,c在数轴上的对应点如图所示,试化简:﹣+|b+c|+|a﹣c|.23.(7分)在数轴上表示下列各数,并用“<”连接起来.﹣|﹣4.5|,0,,(﹣2)2,.24.(7分)若最简二次根式和是同类二次根式.(1)求x,y的值;(2)求的值.25.(7分)(1)当a=15时,求代数式﹣+的值.(2)已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.26.(8分)(1)观察被开方数a的小数点与算术平方根的小数点的移动规律:a0.00010.011100100000.01x1y100填空:x=,y=.(2)根据你发现的规律填空:①已知≈1.414,则=,=;②=0.274,记的整数部分为x,则=.27.(9分)“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:不论x取什么值,x2+1恒大于0.故一定是二次根式.当x取有些值时,﹣x2+1、x、x2﹣1会小于0,故、、不一定是二次根式.故选:D.2.解:∵52=25,∴25的算术平方根是5.故选:A.3.解:A.3.14是有限小数,属于有理数;B.是分数,属于有理数;C.是无理数;D.0.1010010001是有限小数,属于有理数.故选:C.4.解:A、=,不是最简二次根式,故本选项不符合题意;B、是最简二次根式,故本选项符合题意;C、=2,不是最简二次根式,故本选项不符合题意;D、=4,不是最简二次根式,故本选项不符合题意;故选:B.5.解:∵实数a﹣2有平方根,∴a﹣2≥0,∴a≥2,∴D符合题意,故选:D.6.解:A、有理数、无理数统称为实数,故此选项错误;B、绝对值最小的实数是0,故此选项错误;C、没有最小的无理数,故此选项错误;D、数轴上的点都表示实数,正确.故选:D.7.解:A.=12,此选项计算正确;B.﹣=﹣0.6,此选项计算正确;C.=4,此选项计算错误;D.=,此选项计算正确;故选:C.8.解:∵+|b﹣2a|=0,∴a﹣2=0,b﹣2a=0,解得:a=2,b=4,故a+2b=10.故选:D.9.解:=﹣2,∵4<<5,∴2<﹣2<3,因此在点A和点B之间,故选:B.10.解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.11.解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,又∵a+b=﹣5,ab=1,∴原式=﹣=5;故选:B.12.解:∵i=i,i2=﹣1,i3=﹣i,i4=1,i5=i……∴从上计算可知,i的指数循环周期是4,①当指数除以4余数为0时,其结果是1;②当指数除以4余数为1时,其结果是i;③当指数除以4余数为2时,其结果是﹣1;④当指数除以4余数为3时,其结果是﹣i;∵2019÷4=504 (3)∴i2019=﹣i.故选:D.二.填空题(共7小题,满分28分,每小题4分)13.解:由题意得:a﹣1≥0,解得:a≥1,故答案为:a≥1.14.解:∵2=,3=,∴<,即2<3.故答案为:<.15.解:∵一个实数在数轴上对应的点在负半轴上,且到原点距离等于,∴这个数为:﹣.故答案为:﹣.16.解:若计算×m的结果为正整数,则无理数m的值可以是:(答案不唯一).故答案为:(答案不唯一).17.解:观察表格数据可知:=16.6所以275.56的平方根是±16.6.故答案为±16.6.18.解:根据题中的新定义得:8※4===,故答案为:.19.解:1=,2=,2=,4=,4=,8=.则第10个数据是:=16.故答案是:16.三.解答题(共8小题,满分56分)20.解:(1)原式=4﹣2+12=14;(2)原式=(9+﹣2)÷4=8÷4=2.21.解:(1)∵x2﹣4=0,∴x2=4,则x=±2;(2)∵2x3=﹣16,∴x3=﹣8,则x=﹣2.22.解:根据题意得:a<b<0<c,且|c|<|b|<|a|,∴a+b<0,b+c<0,a+c<0,则原式=|a|﹣|a+b|+|b+c|+|a﹣c|=﹣a+a+b﹣b﹣c﹣a+c=﹣a.23.解:∵﹣|﹣4.5|=﹣4.5,=2,(﹣2)2=4,=﹣3,∴﹣4.5<﹣3<0<2<4,即﹣|﹣4.5|<<0<<(﹣2)2.在数轴上表示为:24.解:(1)根据题意知,解得:;(2)当x=4、y=3时,===5.25.解:(1)当a=15时,原式=﹣+=3﹣5+6=4;(2)(x+1)2﹣4(x+1)+4=(x+1﹣2)2=(x﹣1)2,∵x﹣1=,∴原式=()2=3.26.解:(1)观察表格数据可知:x==0.1;y==10;故答案为:0.1;10;(2)∵≈1.414,∴=14.14,=0.1414故答案为:14.14;0.1414;(3)∵=0.274,记的整数部分为x,∴x=27,则=故答案为.27.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷一、选择题(每题 3分,共30分)1.下列式子中,是二次根式的是 ( ) A.√−3 B √9 C √3 D √a2.9的平方根是 ( ) A.3 B.±3 C.±√3 D.81 3 下列各数是无理数的是 ( ) A.-2 024 B.√20242 C.|-2024| D.√202434. 某同学利用科学计算器进行计算,其按键顺序如下:SHIFT 显示结果为( )A.32B.8C.4D.25.下列运算正确的是 ( ) A.3+√3=3√3 B.√2+√3=√5 C.√273÷√3=√3 D.√12−√102=√6−√56.估计 5−√13的值在 ( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和 4 之间7. 我国古代的《洛书》记载了世界上最早的幻方——“九宫格”.在如图所示的“九宫格”中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则M 代表的实数为( )A.6√2B.2√3 C √6 D. √68.一个等腰三角形,已知其底边长为 √5 分米,底边上的高 √15分米,那么它的面积为 ( ) A.45√52平方分米 B.45√3平方分米 C.45√32平方分米 D.45√5平方分米9.若x 是整数,且 √x −3⋅√5−x 有意义,则 √x −3⋅√5−x 的值是 ( ) A.0或1 B.±1 C.1或2 D.±210.如果一个三角形的三边长分别为 12,k,72,则化简 √k 2−12k +36−|2k −5|的结果是( )A.-k--1B. k+1C.3k-11D.11-3k+)二、填空题(每题3分,共15分)11.计算√−198−13=¯.12 √64₄的倒数是,|π−11|=¯,√5−3的相反数是.13. 手工制作手工课上老师拿走了一块大的正方形布料做教学材料,小红和小芸按照如图所示的方式各剪下一块面积为42cm²和28cm²的小正方形布料做沙包,那么剩下的两块长方形布料的面积和为.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的三斜求积公式, 即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积. S=√14[a2b2−(a2+b2−c22)2],现已知△ABC的三边长分别为2, √6,3,则△ABC的面积为.15.若等式(√x3−2)x−1=1成立,则x的取值可以是.三、解答题(16, 17题每题8分, 19, 21题每题12分, 22题15分, 其余每题10分, 共75分)16.计算: (1)(√3+2)(√3−1)+|√3−2|;(2)√48÷√3−2√15×√30+(2√2+√3)2.17.解方程: 2√3x−√48=√3x+√12.18.先化简,再求值:(√2x+√y)(√2x−√y)−(√2x−√y)2,其中x=34,y=12.19.(1)若|2x−4|+(y+3)2+√x+y+z=0,求. x−2y+z的平方根;(2)如图,实数a,b,c是数轴上A,B,C三点所对应的数,化简√c33+|c−b|−√(a−b)2+|a+c|.20.已知7+√5和7−√5的小数部分分别为a,b,试求代数式. ab−a+4b−3的值.21. 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足式子t=√ℎ(不考虑风速的影响).5(1)从50 m高空抛物,落地所需时间l₁是多少秒? 从100m高空抛物,落地所需时间l₂是多少秒?(2)t₂是t₁的多少倍?22. 一只蜗牛A从原点出发向数轴负方向运动,同时,另一只蜗牛B 也从原点出发向数轴正方向运动,3√2秒后,两蜗牛相距15个单位长度.已知蜗牛A,B的速度比是1:4.(速度单位:单位长度/秒)(1)求两只蜗牛的运动速度,并在如图所示的数轴上标出蜗牛A,B从原点出发运动3√2秒时的大致位置.(2)若蜗牛A,B从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两只蜗牛的正中间?(3)若蜗牛A,B从(1)中的位置同时向数轴负方向运动时,另一只蜗牛C也同时从蜗牛B 的位置出发向蜗牛A 运动,当遇到蜗牛A后,立即返回向蜗牛B运动,遇到蜗牛B后又立即返回向蜗牛A运动,如此往返,直到蜗牛B追上蜗牛A 时,蜗牛C立即停止运动.若蜗牛C一直以2√5单位长度/秒的速度匀速运动,那么蜗牛C从开始运动到停止运动,运动的路程是多少个单位长度?一、1. C 2. B 3. D 4. C 5. C 6. B 7. B 8. C 9. A10. D 【点拨】因为一个三角形的三边长分别 12₂, k 72所以 72−12<k <12+72,所以3<k<4,所以k-6<0,2k-5>0.所以 √k 2−12k +36−|2k −5|=√(k −6)2−|2k −5|=6-k-(2k-5)=11-3k.二、11. 3212 14₄;11-π;3 √5 13.2 √6 cm14.√954【点拨】因为△ABC 的三边长分别为2 √6₆,3所以 S ADC =√14{22×(√6)2−[22+(√6)2−322]2} =√954. 15.1或3 或27 【点拨】①当底数为1时,无论指数为何数,等式都成立.令 √x3−2=1,解得x=27.②当底数 为 一1,指数 为偶数时,等式成立. 由 √x3−2=−1,得x=3.当x=3时,x--1=2,则x=3符合题意. ③当指数为0,底数不为0时,等式成立. 令x-1=0,得x=1.将x=1代入 √x3−2,得 √13− 2=√33−2≠0,所以当x=1时,等式成立.综上可知,x 的值为1或3或27.三、16.【解】(1)原式 =(√3)2−√3+2√3−2+2− √3=3. (2)原式 =4−2√6+8+3+4√6=2√6+15. 17.【解】移项,得 2√3x −√3x =√48+√12,所以 √3x =4√3+2√3, 所以 √3x =6√3,解得x=6.18.【解】原式 =(√2x)2−(√y)2−(√2x −√y)2=2x −y −2x +2√2xy −y =2√2xy −2y.当 x =34,y =12时,原式 =2√2×34×12−2× 12=√3−1, 19.【解】(1)因为 |2x −4|+(y +3)2+√x +y +z =0,所以2x-4=0,y+3=0,x+y+z=0, 所以x=2,y=-3,z=1, 所以x-2y+z=2+6+1=9,所以x-2y+z的平方根为±3.(2)由数轴可知,b<a<0<c,|c|>|a|,所以c--b>0,a-b>0,a+c>0,所以√c33+|c−b|−√(a−b)2+|a+c| =c+c-b-(a-b)+a+c=c+c-b-a+b+a+c=3c.20.【解】因√5₅的整数部分为2所以7+√5=9+a,7−√5=4+b即a=−2+√5,b=3−√5.所以ab−a+4b−3=(−2+√5)×(3−√5)−(−2+√5)+4×(3−√5)−3=−11+5√5+2−√5+12−4√5−3=0.21. 【解】(1)当h=50m时, t1=√505=√10(s).当h=100m时, ι2=√1005=√20=2√5(s).(2)因为l2t1=√5√10=√2,所以l₂是l₁√2₂倍22.【解】(1)设蜗牛A的速度为x单位长度/秒,蜗牛B的速度为4x单位长度/秒.依题意,得3√2(x+4x)=15.解得x=√22.所以4x=2√2.所以蜗牛A的运动速度√2₂单位长度/秒,蜗牛的运动速度为√2₂单位长度/秒运动√2₂秒时,蜗牛A的位置在一3处,蜗牛B的置在12处.在图上标注略.(2)设t秒时原点恰好处在两只蜗牛的正中间.依题意,得12−2√2t=3+√22t.解得t=9√25.答:9√25秒时,原点恰好处在两只蜗牛的正中间.(3)设y秒时蜗牛B 追上蜗牛A,依题意,得2√2y−√22y=15,解得y=5√2.所以蜗牛C从开始运动到停止运动,运动的路程为2√5×5√2=10√10(个).单位长度.。

((新人教版))八年级数学第二章《实数》单元测试卷(共4页)

((新人教版))八年级数学第二章《实数》单元测试卷(共4页)

八年级数学第二章《实数》单元测试卷 班级 姓名 学号一、选择题1、在下列各数3.1415、0.2060060006…、0、2.0 、π-、35、722、27无理数的个数是 ( )A 、 1 ;B 、2 ;C 、 3 ;D 、 4。

2、一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( )A 、整数;B 、分数 ;C 、有理数 ;D 、无理数3、下列六种说法正确的个数是 ( )A 、1 ;B 、2;C 、3;D 、4○1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○4无理数与无理数的和一定还是无理数 ○5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数4、下列语句中正确的是 ( )A 、3-没有意义;B 、负数没有立方根;C 、平方根是它本身的数是0,1;D 、数轴上的点只可以表示有理数。

5、下列运算中,错误的是( ) ①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A 、1个 ; B 、2个;C 、3个 ;D 、4个。

6、2)5(-的平方根是( )A 、5± ;B 、5;C 、5-;D 、5±。

7、下列运算正确的是( )A 、3311--=-;B 、 3333=- ;C 、 3311-=- ;D 、3311-=- 。

8、若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为 ( ) A 、1± ;B 、;C 、3或5 ;D 、5。

9、下列说法错误的是( )A 、2是2的平方根;B 、两个无理数的和,差,积,商仍为无理数;C 、—27的立方根是—3;D 、无限小数是无理数。

10、若9,422==b a ,且0<ab ,则b a -的值为 ( )A 、2-;B 、5± ;C 、5;D 、5-。

11、数 032032032.123是 ( )A 、有限小数 ;B 、无限不循环小数 ;C 、无理数 ;D 、有理数12、下列说法中不正确的是( )A 、1-的立方根是1-,1-的平方是1 ;B 、两个有理之间必定存在着无数个无理数;C 、在1和2之间的有理数有无数个,但无理数却没有;D 、如果62=x ,则x 一定不是有理数。

八年级数学上册 第二章 实数单元测试(含答案)

八年级数学上册 第二章 实数单元测试(含答案)

第二章实数单元测试一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.42.下列各式中正确的是()A.=±4B. =4C. =3D. =53.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数5.的算术平方根是()A.4B.±4C.2D.±26.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<1009.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.5:8B.3:4C.9:16D.1:2二.填空题.11.比较下列实数的大小(填上>或<符号=)①______12;②______0、5;③﹣+1______﹣.12.在数轴上表示﹣的点离原点的距离是______.13.已知|x|的算术平方根是8,那么x的立方根是______.14.若m、n互为相反数,则|m﹣5+n|=______.15.如果的平方根等于±2,那么a=______.16.计算+=______.17.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______.18.若0<a<1,且,则=______.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.四、求x值:20.求x值(1)2x2=8 (2)x2﹣=0 (3)(2x﹣1)3=﹣8 (4)340+512x3=﹣3.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?22.已知: =0,求实数a,b的值.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.参考答案一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.4【解答】解:下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,无理数是:,0、1010010001…,0、451452453454…,共3个.故选C.2.下列各式中正确的是()A.=±4B. =4C. =3D. =5【解答】解:A、,错误;B、,正确;C、负数没有算术平方根,错误;D、,错误;故选B.3.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定【解答】解:由题意得:<0,故可得()没有平方根.故选C.4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【解答】解:根据实数与数轴上的点是一一对应关系.5.的算术平方根是()A.4B.±4C.2D.±2【解答】解:∵(±2)2=4=,∴的算术平方根是2.故选C.6.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数【解答】解:A、(﹣3)2=9,9算术平方根是3,错误;B、=15,15的平方根是±,错误;C、当x=2时,x=0,正确;D、是无理数,错误,故选C8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<100【解答】解:∵正方形的面积为11,而3<x<4.故选B.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是()A.5:8B.3:4C.9:16D.1:2【解答】解:方法1:利用割补法可看出阴影部分的面积是10个小正方形组成的,所以阴影部分面积与正方形ABCD的面积比是10:16=5:8;方法2: =,()2:42=10:16=5:8.故选A.二.填空题.11.比较下列实数的大小(填上>或<符号=)①<12②>0、5③﹣+1 <﹣.【解答】解:① =140,122=144,∵140<144,∴<12.②∵﹣0、5=﹣1>1﹣1=0,∴>0、5.③∵﹣+1<﹣2+1=﹣1,∴﹣+1<﹣1,又∵﹣>﹣1,∴﹣+1<﹣.故答案为:<、>、<.12.在数轴上表示﹣的点离原点的距离是.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.13.已知|x|的算术平方根是8,那么x的立方根是4或﹣4 . 【解答】解:由题意得:|x|=64,即x=64或﹣64,则64或﹣64的立方根为4或﹣4.故答案为:4或﹣4.14.若m、n互为相反数,则|m﹣5+n|= 5 .【解答】解:m、n互为相反数,|m﹣5+n|=|﹣5|=5,故答案为:5.15.如果的平方根等于±2,那么a= 16 .【解答】解:∵(±2)2=4,∴=4,∴a=()2=16. 故答案为:16.16.计算+= 1 .【解答】解:原式=3π﹣9+10﹣3π =1.故答案为:1.17.点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A ,B 两点的距离为 4 .【解答】解:∵A 在数轴上表示的数为,点B 在数轴上表示的数为,∴A,B 两点的距离是:|3﹣(﹣)|=4, 故答案为:4.18.若0<a <1,且,则= ﹣2 . 【解答】解:∵a+=6,∴(﹣)2=a ﹣2+=6﹣2=4, ∵0<a <1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.【解答】解:(1)原式=2+4﹣=5;(2)原式==×=8×9=72;(3)原式=+3×3=;(4)原式=9+﹣2=8.四、求x值:20.求x值(1)2x2=8(2)x2﹣=0(3)(2x﹣1)3=﹣8(4)340+512x3=﹣3.【解答】解:(1)方程变形得:x2=4,开方得:x=2或x=﹣2;(2)方程变形得:x2=,开方得:x=±;(3)(2x﹣1)3=﹣8,开立方得:2x﹣1=﹣2,解得:x=﹣;(4)x3=﹣,开立方得:x=﹣.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?【解答】解:根据一个正数有两个平方根,它们互为相反数得:3x﹣4+2﹣x=0,即得:x=1,即3x﹣4=﹣1,则a=(﹣1)2=1.22.已知: =0,求实数a,b的值.【解答】解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.。

八年级数学上册《第二章实数》单元测试卷及答案-北师大版

八年级数学上册《第二章实数》单元测试卷及答案-北师大版

八年级数学上册《第二章实数》单元测试卷及答案-北师大版一、选择题1.下列各数中,为无理数的是( )A .327-B .0C 3D .3.524= ( )A .2B .±2C .-2D .43. -8的立方根是( )A .2-B .2C .2±D .不存在4.12 )A .点PB .点QC .点MD .点N5.2x -x 的值可以是( )A .0B .-1C .-2D .26.下列运算正确的是( )A 255=±B .0.40.2=C .()311--=-D .()22236m m n -=-7.7的值大概在( )A .-1到0之间B .0到1之间C .1到2之间D .2到3之间8.用我们数学课本上采用的科学计算器进行计算,其按键顺序如下,则计算结果为( )A .-5B .-1C .0D .59.如图,数轴上点A 表示的实数是( )A 51B 51C 31D 3110.已知12p <<()2212p p--=( )A .1B .3C .32p -D .12p -二、填空题11.25,-0.17与611和π4-中,无理数有 个. 1249的算术平方根为 ;比较大小:342 (用“>”,“<”或“=”连接)13.计算:()2021322-⎛⎫-÷-= ⎪⎝⎭.14.8x x 的最小正整数值为 .三、计算题15.计算:0|2|20234-+-四、解答题16.把下列各数的序号填在相应的大括号里:①12π,②16-,③0,9⑤5+,⑥227,8⑧ 3.24-,⑨3.1415926 整数:{ } 负分数:{ } 正有理数:{ } 无理数:{ }17.已知一个正数m 的两个平方根为37a -和3a +,求a 和m 的值.18.已知1a -的算术平方根是2,43a b +-的立方根是3,c 15ac b +的平方根.19.有一道练习题:对于式子2244a a a -+a 2.小明的解法如下:222442(2)2(2)222a a a a a a a a -+=-=--=+=.小明的解法对吗?如果不对,请改正.五、综合题20.已知m 是144的平方根,n 是125的立方根.(1)求m 、n 的值; (2)求()2m n +的平方根.21.阅读下面材料:.4692< 6<36的整数部分为26-2. 请解答下列问题;(122的整数部分是 ,小数部分是 ;(2)已知22的小数部分是m ,22的小数部分是n ,求m+n 的值.22.22的小数部分我们不可能全部写出来,但是由于12<<22的整数部分为12减去其整数部分1,差就是小数部分为21). 解答下列问题:(110的整数部分是 ,小数部分是 ;(26的小数部分为a 13b ,求a+b 6的值; (3)已知153+=x+y ,出其中x 是整数,且0<y <1,求x ﹣y 的相反数.23.定义:若两个二次根式a ,b 满足a b c ⋅=,且c 是有理数,则称a 与b 是关于c 的共轭二次根式.(1)若a 2是关于4的共轭二次根式,则a= (2)若33与63m +是关于12的共轭二次根式,求m 的值.参考答案与解析1.【答案】C【解析】【解答】解327-、0、3.53属于无理数.故答案为:C.【分析】无限不循环小数叫做无理数,对于开方开不尽的数,圆周率π都是无理数,据此判断. 2.【答案】A【解析】【解答】解:∵22=4∴4的算术平方根是242=.故答案为:A.【分析】一个正数x2等于a,则这个正数x就是a a x=(a、x都是正数).3.【答案】A【解析】【解答】解:∵(-2)3=-8∴-8的立方根为-2.故答案为:A.【分析】若a3=b,则a为b的立方根,据此解答.4.【答案】C【解析】【解答】解:91216<<91216<3124<<故答案为:C.【分析】被开方数的值越大,对应的算术平方根的值也越大,找到与被开方数相邻近的平方数是解题关键.5.【答案】D【解析】【解答】解:由题意得x-2≥0解得x≥2所以A、B、C三个选项都不符合题意,只有选项D符合题意.故答案为:D.【分析】根据二次根式的被开方数不能为负数列出不等式,求解得出x 的取值范围,从而即可一一判断得出答案.6.【答案】C【解析】【解答】A 255=,∴A 不符合题意;B 0.040.2=,∴B 不符合题意;C 、∵()311--=-,∴C 符合题意;D 、∵()2239m m -=,∴D 不符合题意; 故答案为: C.【分析】利用算术平方根、有理数的乘方和积的乘方的计算方法逐项判断即可。

2024~2025学年八年级数学上册第二章实数单元检测[含答案]

2024~2025学年八年级数学上册第二章实数单元检测[含答案]

1的结果是( )A .2BC .D .2.有一个数值转换器,原理如图所示.当输入的x 为-512时,输出的y 是 ( )A .-2B .C .D .3.如图,实数3在数轴上的大致位置是( )A .点AB .点BC .点CD .点D4a 的取值为( )A .0B .12-C .﹣1D .15用不等号连接起来为( )A B C D 6.已知有理数a 、b 、c 在数轴上的位置如图所示,试化简:2a a c b a b c -++--+-.( )A .-2bB .-bC .-2aD .a 7.最简二次根式与是同类二次根式,则a 为( )A .6B .2C .3或2D .18.下列关于实数a 说法正确的是( )A .a 的相反数是-aB .a 的倒数是-aC .a 的绝对值是±aD.a的平方是正数9.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③2(4)-的平方根是4-;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图为张小亮的答卷,他的得分应是()姓名张小亮得分?填空(每小题20分,共100分)①1-的绝对值是1 .②2的倒数是2-.③2-的相反数是2 .④1的立方根是1 .⑤1-和7的平均数是3 .A.100分B.80分C.60分D.40分11=.12.计算:2-=.13=x满足14.若0x-=,则1y x+的值为.15.如图,从一个大正方形中截去面积分别为8和18的两个小正方形,则图中阴影部分面积为.16.如图,已知Rt△ABC中,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D,则点D表示的数为.17.对于任意不相等的两个实数a 、b ,定义一种运算如下:a ⊗,如图3⊗8⊗5= .18.观察下列各式:2225(23)+=++=++=,2228(17)121(1+=++=++´=,…….请运用以上的方法化简= .19.计算:(2)(3)+)21.20.已知A =-B =,12C =-A 、B 、C 是可以合并的最简二次根式,求a 、b 及A B C +-的值.21.秦九韶(1208年~1268年),字道古,南宋著名数学家.与李冶、杨辉、朱世杰并称宋元数学四大家,他精研星象、音律、算术、诗词、弓剑、营造之学,他于1247年完成的著作《数学九章》中关于三角形的面积公式与古希腊几何学家海伦的成果并称“海伦−秦九韶公式”,它的主要内容是,如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,S 为三角形的面积,那么S =.(1)如图在ABC V 中,5BC =,6AC =,7AB =,请用上面的公式计算ABC V 的面积;(2)一个三角形的三边长分别为a ,b ,c ,15s p ==,10a =,求bc 的值,22.问题探究:因为21)3=-1,=因为21)3=+1,=因为2(27=-2=请你根据以上规律,结合你的经验化简下列各式:;23.[材料一]两个含有二次根式且非零的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.2=1)1)2+´-=,11互为有理化因式.(1的有理化因式是______(写出一个即可),2_______(写出一个即可);[材料二]如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.(2+[材料三]与分母有理化类似,将代数式分子、分母同乘分子的有理化因式,从而消去分子中的根式,这种变形叫做分子有理化.=(31.C故选C.2.D【分析】把-512按给出的程序逐步计算即可.【详解】由题中所给的程序可知:把-512取立方根,结果为-8,因为-8是有理数,所以再取立方根为-2,因为-2是有理数,所以再取立方根为因为.故选d.【点睛】本题考查了立方根,此类题目比较简单,解答此类题目的关键是弄清题目中所给的运算程序.3.C【详解】分析:根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案.详解:由3<4,得﹣4<﹣<﹣3,﹣1<3﹣<0,故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.4.B【详解】分析:二次根式一定是非负数,则最小值即为0,列方程求解即可.详解:0³,=时为最小值.即:210a+=,∴12 a=-.故选B.点睛:本题考查了二次根式有意义的条件.5.D【详解】≈1.414=1.380,1.380<1.414<1.442,故选D.6.A【详解】根据数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴-a>0,a+c<0,b−2a>0,b−c<0,则原式=-a-( a+c)-( b−2a)-(b−c)=-a-a-c-b+2a-b+c=-2b,故选A.7.B【详解】由题意可得a2+3=5a−3,解得a=2或a=3;当a=3时,a2+3=5a−3=12不是最简根式,因此a=3不合题意,舍去;因此a=2.故选B.8.A【详解】A.a的相反数是−a,故A正确;B.a的倒数是1a,故B错误;C.|a|是非负数,故C错误;D.a的平方是非负数,故D错误;故选A.9.C【分析】根据平方根和算术平方根、立方根的意义,逐一判断即可.【详解】①5是25的算术平方根,正确;②56是2536的一个平方根,正确;③()24-的平方根是4±,不正确;④立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点睛】此题主要考查了平方根、算术平方根、立方根的意义,熟练掌握概念是解题关键. 10.B【分析】根据绝对值、倒数、相反数、立方根以及平均数进行计算即可.【详解】解:−1的绝对值是1,2的倒数是12,−2的相反数是2,1的立方根为1,−1和7的平均数是3,答对了4题,故小亮得了80分,故选B .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.11= =【点睛】本题主要考查二次根式的分母有理化,利用平方差公式进行分母有理化计算是解题关键.12【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22éù-ëû【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键.13.2≤x<3【分析】因为二次根式的除法法则)0,0a b =³>,=:20,30-³->x x ,解得:23x £<.=,根据二次根式除法法则可得:2030x x -³ìí->î,解得:23x £<.故答案为:23x £<.【点睛】本题主要考查二次根式的除法法则,解决本题的关键是要熟练掌握二次根式除法法则.14.12-【详解】∵,∴x−y=0,y+2=0,解得:x=-2,y=-2.∴x y+1=(-2)-2+1=12-.故答案为12-.15.24【分析】此题考查了二次根式的应用,利用二次根式化简求出两个小正方形的边长,得到大正方形的边长,求出大正方形的面积,即可得到阴影面积,正确掌握二次根式的化简是解题的关键.==,∴大正方形的边长为=,∴大正方形的面积为(250=,∴图中阴影部分面积为5081824--=故答案为24.16.【详解】根据勾股定理可知D 点的坐标为故答案为点睛:此题主要考查了实数与数轴的对应关系,解题关键是先根据勾股定理求出AC=AD,.17【详解】根据新定义得:8⊗=.18+【分析】本题考查了复合二次根式的化简,完全平方公式的应用;按照题中提供的方法进行化简即可.===+.19.(2)6(3)1+(4)4【分析】本题主要考查了二次根式的混合计算:(1)先化简二次根式,再根据二次根式的加减计算法则求解即可;(2)根据二次根式的乘除混合计算法则求解即可;(3)先计算二次根式乘除法,再计算加减法即可;(4)先计算二次根式乘法,再计算加减法即可.【详解】(1==(2)解:==6=;(3)解:22=-32=-+1=+(4)2113=-31=-4=.20.1a =,45b =-,A B C +-=【分析】由A 、B 、C 是可以合并的最简二次根式可得A 、B 、C 的被开方数相等,由此可得关于a 、b 的方程,解出a 、b 的值后,即可求出A B C +-的值.【详解】解:∵A =-,B =C =A 、B 、C 是可以合并的最简二次根式,∴ 131a a +=-.∴1a =,则A =-B ,且()1012b +=.∴45b =-,则C =故A B C +-=-=【点睛】本题考查了最简二次根式和同类二次根式的定义以及合并同类二次根式的法则,正确理解题意,得出关于a 、b 的方程是求解的关键.21.(1)(2)78bc =【分析】本题考查二次根式的应用,解答本题的关键是明确题意,熟悉掌握海伦-秦九韶公式求三角形的面积.(1)根据题意,了解海伦-秦九昭公式,根据具体的数字先计算p 的值,然后再代入公式,计算三角形的面积即可;(2)根据2a b c p ++=得以得到20b c +=,再根据面积可以得到3002253bc -+=,计算即可.【详解】(1)由题意,18922BC AC AB p ++===,∴S ===.即ABC V 的面积为;(2)由题意,101522a b c b c p ++++===,∴20b c +=,∵S p ==,∴15S ==∴()()15153b c --=.∴()152253bc b c -++=,即3002253bc -+=∴78bc =.22.12+【分析】(1)因为22523=+=+,且2=为完全平方式,进一步因式分解,化简得出答案即可;(2)因为229112442æö=+=+ç÷èø122=´方式,进一步因式分解,化简得出答案即可.【详解】(112.【点睛】此题考查活用完全平方公式,把数分解成完全平方式,进一步利用二次根式的性质化简,注意在整数分解时参考后面的二次根号里面的数值.23.(1,2;(2)1;(3>【分析】本题考查分母有理化,估算无理数的大小及规律探索问题,熟练掌握分母有理化的步骤及方法是解题的关键.(1)根据有理化因式的定义即可求得答案;(2)根据所得规律计算即可;(3==【详解】(1)解:5=,;∵((22431´=-=,∴2的有理化因式是2+;,2;(2+1=-K1=-1=1=;(3>.理由如下:====,<<,>。

北师大版八年级数学上册《第二章实数》单元测试卷带答案

北师大版八年级数学上册《第二章实数》单元测试卷带答案

北师大版八年级数学上册《第二章实数》单元测试卷带答案一、单选题1.下列根式中,最简二次根式是( )A .4B .12C 8D .22.下列说法错误的是( )A .3±是9的平方根B 164±C .25的平方根为5±D .负数没有平方根3.下列运算正确的是( )A .222()a b a b +=+B .a 6a2=a 3(a ≠0)C 2a a =D .326()a a =4.根据表中的信息判断,下列判断中正确的是( )x 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17 2x 256 259.21262.44265.69268.96272.25275.56278.89282.24285.61289A 27.889 1.67=B .265的算术平方根比16.3大C .若一个正方形的边长为16.2,那么这个正方形的面积是262.44D .只有3个正整数n 满足16.416.5n <<5.下列式子正确的是( )A 3320212021-=B .164=C .93=±D .√(−2022)2=−20226.下列说法错误的是( )A .1的平方根是±1B .-1的立方根是-1C 2是2的平方根D .-3是2(3)-7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 3和﹣1,则点C 所对应的实数是( )A .3B .3C .3﹣1D .3+18.已知正实数m ,n 满足222m mn n =mn 的最大值为( )A .13B .23C 3D .239. 已知x ,x 2,x}表示取三个数中最小的那个数,例如:当x =9,x ,x 2,x}=992,9}=3.当x ,x 2,x}=116时,则x 的值为( ) A .116B .18C .14D .1210.观察下列二次根式的化简1221111111212S =++=+- S 2=√1+112+122+√1+122+132=(1+11−12)+(1+12−13) S 3=√1+112+122+√1+122+132+√1+132+142=(1+11−12)+(1+12−13)+(1+13−14),则20232023S =( ). A .12022B .20222021C .20242023D .20252024二、填空题11.下列各数:0.5 2π 1.264850349 02270.2121121112…(相邻两个2之间1的个数逐次加1),其中有理数有 个.12.实数16 03π 3.14159 2279- 0.010010001……(相邻两个1之间依次多一个0),其中,无理数有 个.13.数轴上有两个点A 和B ,点A 31,点B 与点A 相距3个单位长度,则点B 所表示的实数是 .14.一个正数x 的平方根是2a ﹣3与5﹣a ,则a = . 15.35 22,则这个三角形的面积为16.如图,在矩形ABCD 中4,6AB AD ==,点,E F 分别是边BC ,CD 上的动点,连接,AE AF ,将矩形沿,AE AF 折叠,使,AB AD 的对应边,AB AD ''落在同一直线上,若点F 为CD 的中点,则AE = .17.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是 ,点2P 表示的数是 .三、解答题18.计算:(1)15202(262324319.已知21a +的算术平方根是5,103b +的平方根是4,c ±1932a b c -+的平方根.20.已知6x -和314x +分别是a 的两个平方根,22y +是a 的立方根.(1)求a ,x ,y 的值;(2)求14x -的平方根和算术平方根.21.已知 (253530x y -++--= .(1)求 x , y 的值; (2)求 xy 的算术平方根.22.把一个长、宽、高分别为50cm ,8cm ,20cm 的长方体锻造成一个立方体铁块,问锻造的立方体铁块的棱长是多少 cm?23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m.(1)m = ______.(2)求11m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有26c +4d -互为相反数,求23c d +的平方跟.24.阅读以下信息,完成下列小题材料一:对数是高中数学必修一中的一个重要知识点,是高中运算的基础.材料二:对数的基本运算法则:对数公式是数学中的一种常见公式,如果x a N =(0a >,且1a ≠),则x 叫做以a 为底N 的对数,记做log a x N =,其中a 要写于log 右下.其中a 叫做对数的底,N 叫做真数.通常以10为底的对数叫做常用对数,记作lg;以e为底的对数称为自然对数,记作ln.(1)请把下列算式写成对数的形式:328=3101000=2416=(2)平方运算是对数运算的基础.完成下列运算:33=99=1212=(3)对数和我们在初中阶段学习的平方根的运算也有相似之处.请完成有关平方根的知识点的填空.平方根,又叫二次方根,表示为〔〕,其中属于的平方根称之为算术平方根(arithmetic square root),是一种方根.一个正数有个实平方根,它们互为,负数在范围内没有平方根,0的平方根是0参考答案1.【答案】D2.【答案】B3.【答案】D4.【答案】C5.【答案】A6.【答案】D7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】412.【答案】313.343214.【答案】﹣215.1516.【答案】517.【答案】12-;12-18.【答案】(1)2 5+2(2)4219.【答案】6±20.【答案】(1)64a = 2x =- 1y =;(2)3± 3.21.【答案】(1)(2530x -≥ 530y -≥ (253530x y -++--=530x ∴-= 530y --=解得: 53x =- 53y =+; (2)(535325322xy =+=-=xy ∴ 的算术平方根为22.22.【答案】解:35082020()cm ⨯⨯=答:立方体铁块的棱长是20cm.23.【答案】(1)2+2(2)2 (3)624.【答案】(1)2log 83= lg10003= 4log 162=(2)918log + 1215log + 27 (3)aa 两,相反数,实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第二章《实数》单元测试卷
2、 一个长方形的长与宽分别时 6、3,它的对角线的长可能是 (A) 整数 (B) 分数 (C) 有理数 (D) 无理数
3、 下列六种说法正确的个数是
与有理数的积一定仍是无理数
7、下列运算正确的是
10、若 a 2 -4,b 2 =9 ,且ab ::: 0 ,则a -b 的值

(
)
(A)
-2 (B)
- 5
(C)
5
(D)
-5
一 S
(B) S 的平方根是a (C) a 是S 的算术平方根(D)
(A) S =、a 班级 _______________ .选择题(30分)
姓名 ________________ 学号 _____________
1 在下列各数 0.51515354;、0、0.2、3二、 理数的个数是 22
~7
6.1010010001;、
13
1 71
(A) 1
(B) 2 (C) 3
(D)
4
(A) 1
(B) 2 (C) 3
(D) 4。

无限小数都是无理
⑦正数、负数统称有理数
③无理数的相反数还是无理数
@无理数与无理数的和一定还是无理数
⑤无理数与有理数的和一定是无理数
⑥无理数
4、 (A) (C)
F 列语句中正确的是 -9的平方根是-3
9的算术平方根是一 3
(B) (D)
9的平方根是3 9的算术平方根是3
-4 ,③.-22
二- 22

2,④
1
- 1
16 1 25
4
9 20
(B)
(C)
(D)
■ (-5)2 的平方根是
(A)
-5
(B)
(C)
-5
(D)
一 、、5
(A) 3 ―^ = -V -1
(B)
(C) 3 -1 = 3 -1
(D)
8、若a 、b 为实数,
"2
一1「一‘
4,则a b 的值为
(A)
-1
(B)
(C) (D)
9、已知一个正方形的边长为
a ,面积为S ,则
6、
5、 下列运算中,错误的是
,②.(二4)2
2 2 : 2 2
12、已知 x 、y 满足 x +4y +2x —4y+2=0 U #5x +16y = __________________ 三•解答题:(34分,1至5题每题4分,第6题8分,第7题6分)
2、(2 .3)(2 - ,3)
4、
1452 -242
5、
..(-64) (-81)
2、
5、
10丄的算术平方根是 ,■, 16的平方根是
6、 化简:.、48—3
7、 计算:3 125 61

利用计数器计算:•• 2401 --2 (结果保留 4个有效数字)
9、 已知a -2 •、.b • 3 =0,则(a -b )2
10、计算:,1 - x •. x -1 x -1 二
11、若a 、b 互为相反数,
d 互为负倒数,则 .a b 3 cd 二
12 6 24
1.
3、
在棱长为5的正方体木箱中,想放入一根细长的铁丝,则这根铁丝的最大长度可能
3
(2) (2x-1) = _8
7、一个长方形的长与宽的比是 5: 3,它的对角线长为.68,求这个长方形的长与宽(结果 保留两个有效数字)
冲浪题:(30分)
1、已知、a -1 (ab -2)2 =0,
111 1

的值
ab (a 1)(b 1) (a 2)(b 2) (a 2004)(b 2004)
2、已知 2004 - a + Ja - 2005 = a ,求 a — 20042 的值;
6、求x
(1) 2x 2
=8
3、观察下面式子,根据你得到的规律回答:
的值(要有过程)。

相关文档
最新文档