百分数与小数分数的互化(一)全解
(完整版)常用的∏倍及分数、小数和百分数的互化及单位换算

1、熟练的掌握常见分数和小数的互化,对于提高运算速度,增强数感,有着很好的帮助。
2、记忆方法:(1)可以用一张卡片盖住左边的分数,看着小数说出与相等的分数,再交换。
(2)C 列分数化小数的记法:分子乘5,小数点向左移动两位。
(3)D 、E 两列分数化小数的记法:分子乘4,小数点向左移动两位。
常见分数、小数互化表0625.0161二、常用的分数、小数及百分数的互化常用平方数常用立方数:13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729 常用特殊数的乘积25×3=75 25×4=100 25×8=200 125×3=375125×4=500 125×8=1000 625×16=10000 37×3=111本方法适合11~99所有平方的计算。
11X11=121 21X21=4141 31X31=961 41X41=1681 51X51=260112X12=148 22X22=484 32X32=1024 42X42=1764 52X52=2704从上面的计算我们可以得出公式:个位=个位×个位所得数的个位,如果满几十就向前进几,十位=个位×(十位上的数字×2)+进位所得数的末位,如果满几十就向前进几,百位=两个十位上的数字相乘+进位。
例:26×26=因为6×6=36 所以26×26的个位就是6,满30向前进3;十位=6×(2×2)+3=27,所以26×26的十位就是7,满20向前=进2;百位=2×2+2=6由此可见26×26=676如果没有满十就不用进位,计算更简便。
例:13×13个位=3×3=9 十位=3×(1×2)=6 百位=1×1所以13×13=16923×23个位=3×3=9 十位=3×(2×2)=12写2进1 百位=2×2+进1=5所以23×23=52946×46个位=6×6=○36 写6进3 十位=6×(4×2)+进3=○51写1进5 百位=4×4+进5=○21 写1进2 所以26×26=2116规律:(1)完全平方数的个位数字只能是0,1,4,5,6,9.(没有2,3,7,8)两个整数的个位数字之和为10,则它们的平方数的个位数字相同.(2)奇数的平方的个位数字是奇数,十位数字是偶数.(3)如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数.(4)偶数的平方是4的倍数;奇数的平方是4的倍数加1.(5)奇数的平方是8n+1型;偶数的平方为8n或8n+4型.(6)完全平方数的形式必为下列两种之一:3n,3n+1.(7)不能被5整除的数的平方为5n±1型,能被5整除的数的平方为5n型.(8)平方数的形式具有下列形式16n,16n+1,16n+4,16n+9.(9)完全平方数的各位数字之和的个位数字只能是0,1,3,4,6,7,9.(没有2,5,8)(10)如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数.(11)在两个相邻的整数的平方数之间的所有整数都不是完全平方数.(12)一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n).一个数如果是另一个整数的完全立方(即一个整数的三次方,或整数乘以它本身乘以它本身),那么我们就称这个数为完全立方数,也叫做立方数,如0,1,8,27,64,125,216,343,512,729,1000等.如果正整数x,y,z满足不定方程x2+y2=z2 ,就称x,y,z为一组勾股数.x,y必然是一个为奇数另一个为偶数,不可能同时为奇数或同时为偶数.z和z2必定都是奇数.五组常见的勾股数:32+42=52;52+122=132;72+242=252;82+152=172;202+212=2929+16=25;25+144=169;49+576=625;64+225=289;400+441=841记忆技巧:(a+b)2= a2 + b2 + 2ab (a-b)2=a2 + b2 -2ab| | | | | |a×a b×b 2×a×b a×a b×b 2×a×b例:132=(10+3)2=102+32+2×10×3=100+9+60=169882=(90-2)2=902+22-2×90×2=8100+4-360=7744用处:①训练计算能力,使计算更快更准确;②估计某数的平方根所处的范围,在判定某个较大的数n是不是质数时可以缩小其可能因子的筛选范围,只需检查3到之间的所有质数是不是n的因子即可,超过的都不必检查了.例如,判定2431是否为质数,因为492=2401<2431<2500=502,所以49<<50 ,2+4+3+1=10不能被3整除, 2341的个位既非0又非5,故只需检查7到47之间的所有质数能否整除2431即可,而53,59,61,67……等更大的质数都不用检查了,实际上2431=1117.③增加对数字的熟悉程度,比如162=256=28,322=1024=210,642=4096=212 ,另外一些特殊结构的数字应该牢记,如882=7744,112=121,222=484,(121和484从左到右与从右到左看是一样的)22222一、常用的π倍1π 3.14 17π53.38 92π254.342π 6.28 18π56.52 102π3143π9.42 19π59.66 112π379.944π12.56 20π62.8 122π452.165π15.7 21π65.94 132π530.666π18.84 22π69.08 142π615.447π21.98 23π72.22 152π706.58π25.12 24π75.36 162π803.849π28.26 25π78.5 172π907.4610π31.4 26π81.64 182π1017.3611π34.54 27π84.78 192π1133.5412π37.68 28π87.92 202π125613π40.82 29π91.06 212π1384.7414π43.96 30π94.2 222π1519.7615π47.1 62π113.04 232π1661.0616π50.24 72π153.86 242π1808.6482π200.96 252π1962.5小学单位换算一、长度(一)什么是长度?长度是一维空间的度量。
分数、小数、百分数的互化

=
:10=(
)小数(2010 年)
【目标范例】 例 4. 在 0.738231693450 的小数部分添上表示循环节的两点,使其变成循环 小数,已知小数点后第 100 位上的数字是 3,那么这个循环小数是多少? 【思路点拨】 0.738231693450 的小数部分中有 3 个数字 3,要使第 100 位上的数 字是 3,是哪一个数字 3?假若循环节正好是由这 12 个数字组成,那么 100÷ 12=8 „4,这 12 个数字组成的循环节第四个数字不是 3,因此不合题意;假若 循环节是从百分位上的 3 开始的,(100-1)÷11=9,那么第 100 个数字正好是循 环节最后的数字 0,不是数字 3,不合题意;假若是从千分位上的数字 8 开始,那 么 (100 -2) ÷10 =9 „8, 这样第 100 个数字是循环节的第 8 个数字 4, 不是 3,
9 10 6
) (2010 年) C. 甲>丙>乙 D.
B. 丙>乙>甲
).( 2012 年) C.
19 26
B .
20 25
D.
21 24
【实战演练】 一、填空题
1.分数 化成小数后,小数点后的第 2011 位上的数字是________。
7
4
2.分母是 8 的所有最简真分数的和是__________。 3.甲数是乙数的1 4,那么乙数是甲数的______% 4.一个百分数 87.5%化成小数是_________,化成分数是_________. 5.一个数的倒数与它相等,这个数是______,它比 2 少________%。 6.小数的小数部分最大的计数单位是_______,它是 80%的________。 7.3.807807„小数部分的第 807 位上的数字是,3. 80707„小数部分的第 708 位上的数字是_________。 8.分数10 8化成百分数是_______,写成小数是 9.如果最简真分数 二、选择题: 1.一堆煤,用了的是这堆煤的( A.40%千克
分数与百分数的互化(确定稿)

百分数 30%
3
课堂体验
3.把下面分数化成百分数。
8 125 8×8 = = 64 = 6.4 = 6.4% 1000 100 125×8
7 17.5 7×2.5 = = = 17.5% 40 100 40×2.5 78 78÷3 = 300 300÷3 26 = = 26% 100
4
课堂体验
1.把下面各数按从小到大的顺序排列起来。 0.85 5 6 7 8
小结
化成分母是100的分数,能 约分的要约分。
百分数
分数
百分数和分数的互化
把分数化成百分数,通常先把分数化成小数(除不尽
时,通常保留三位小数),再把小数化成百分数;把百
分数化成分数,先把百分数改写成分数,能约分的要约 成最简分数。
1
课堂体验
分数 3 10 7 8 1 3
小数
0.3
0.35
8.2%
248 24.8 = = 24.8 % 100 1000
小结
把小数点向右移动两位, 再在后面添上百分号
小数
百分数
练习
把下面各数化成百分数
0.25
0.08 0.055
1.7
3
百分数和小数的互化
1 把 0.15、1.3 、0.248 化成百分数。
0.15 = 15 = 15 % 100
1.3 = 1 3 = 13 = 130 10 10 100 = 130 %
分数、小数、百分数的互化
复习
1.把下面的小数化成分数
3 15 = 0.15 = 100 20 14 1.4 = =1 2 10 5 245 = 49 0.245= 1000 200
小结:小数化分数,先把小数化成分母 是10、100、1000的分数,再约分。
百分数,分数,小数之间的互化

百分数化小数的方法,百分数化分数的方法(一)百分数化小数的方法把百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位.例:把160%和0.8%化成小数.[分析]把160%化成小数时,只要把百分号去掉,把160的小数点向左移动两位,变成1.6就可以了,0.8%也是如此.解答:160%=1.6 0.8%=0.008(二)百分数化分数的方法百分数化成分数时,先把百分数改写成分数,能约分的要约分成最简分数.例:把160%和0.8%化成分数.(三)求一个数的百分之几是多少的实际问题的方法求一个数的百分之几是多少,和我们以前学习的求一个数的几分之几的问题的解决办法一样,都是用乘法来计算.在计算时,要根据具体情境,把百分数转化成分数或小数,再计算.例:黄豆营养很丰富,其中的蛋白质含量约占36%,脂肪含量约占18.4%,碳水化合物含量约占25%,250克黄豆中,蛋白质、脂肪和碳水化合物的含量分别约有多少克?[分析]根据分数乘法意义,求250克黄豆中蛋白质、脂肪和碳水化合物的含量,就是求250克的36%、18.4%和25%各是多少,只要用250分别乘它们所占的百分之几就可以了,在计算时,把百分数化成分数或小数再计算.解答:250×36% 或250×36%=250×=250×0.36=90(克)=90(克)250×18.4% 或250×18.4%=250×=250×0.184=46(克)=46(克)250×25% 或250×25%=250×=250×0.25=62.5(克)=62.5(克)答:250克黄豆中,蛋白质、脂肪和碳水化合物的含量分别是90克,46克,62.5克.[总结]百分数化成分数、小数的方法:百分数化分数,先写成分母是100的分数形式,再化成最简分数;百分数化小数:百分号先去掉,小数点左移两位.这月我当家教学目标1、会用方程解决有关百分数的简单实际问题,体会百分数在现实生活中的应用价值.2、在经历数据调查的过程中,体会百分数与统计的联系.3、在计算过程中,培养节约意识.教学过程知识要点(一)用方程解决“已知一个数的百分之几是多少,求这个数”的问题的方法“已知一个数的百分之几是多少,求这个数,”同以前学习的“已知一个数的几分之几是多少,求这个数”的解题方法基本是一致的,都是先要找准单位“1”,然后根据数据关系列出方程,再解方程,百分数的题同以前学习的分数应用题基本一致,解题方法也相同,但在计算时一般要先把百分数化成小数或分数再计算.例:小红家月支出统计表如下:根据这个统计表,计算出小红家这个月一共花了多少钱,并把统计表填写完整.[分析]求小红家这个月一共花了多少钱,可以根据食品花了500元,占总支出的40%来求,因为总支出为单位“1”,而且未知,所以可以设总支出为x,列方程求出总支出.总支出求出来了,则水电气所花钱数占总支出的百分比也可求出,用125÷1250即可,因为书报费占总支出的2%,书报费也可求出,用1250×2%即可,合计中的总钱数既是总支出:1250元,而合计中的百分比则是100%.其他一项可用总支出减去其余几项既得.解:设小红家这个月一共花了x元.40%x=500x=500÷40%x=1250答:小红家这个月一共花了1250元.水电气占总支出的百分比为125÷1250=0.1=10%书报花了2%×1250=25(元)其它花了1250-25-100-125-500=500(元)其它占总支出的百分比为500÷1250=0.4=40%家庭月支出统计表如下:[提示]在计算后要把各种支出的百分比加起来,看是否等于100%,但是当计算百分比使用“四舍五入”法时,计算得出的百分比有一定的偏差,再将所有百分比相加时,所得结果往往不等于100%.(二)点燃你的思维1、某小学五年级有学生50人,有一天缺席1人,求这一天的出席率.[分析]求出席率,就是求出席的人数占总人数的百分之几,但是出席人数不知,所以要用总人数减去缺席的人数求出出席率.解答(50-1)÷50=49÷50=98%答:这一天的出席率是98%.又用酒精灌满,然后再倒出全部溶液的25%,再用酒精灌满,那么这时的酒精占全部溶液的百分之几?[分析]解决这道题关键在于求出最后酒精有多少,要求酒精有多少,我们可以求出倒出的水是多少.而题目中都用的是分数,所以找准每个分数的单位1就变得更加重要了.答:这时酒精占全部溶液的75%.生每人也植20×(1-25%)=15棵树,则现在每人植树的棵数都是15棵,共植树多少棵也就能求出来了.解答20×(1-25%)×400=6000(棵)答:共植树6000棵.【模拟试题】(答题时间:30分钟)一、把下面的百分数化成小数或整数.36.5% 0.4% 320%67.8% 126.85% 6.34%200% 7% 5000%(4)六年级一班有50名学生,今天的出勤率是98%,今天有()人缺勤.四、应用题.1、王师傅在第一季度生产了340个零件,合格率是85%,第二季度生产了480个零件,合格率是95%,求王师傅这两个季度生产的产品的合格率?2、火车原来的速度是每小时90千米,提速后,火车的速度是每小时100千米,提速了百分之几?3、五年级一班男同学占全班总数的60%,女同学比男同学要少百分之几?。
人教版六年级上学期数学知识点梳理:《百分数和分数、小数的互化》

人教版六年级上学期数学知识点梳理:《百分数和分数、小数的互化》对于小学生来说,成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,因此六年级上学期数学知识点向大家推荐,希望同学们不断取得进步!《百分数和分数、小数的互化》知识点1、百分数化成小数的过程比较简单,因为从数值大小上讲,“百分数”就是分母为“百”的分数。
所以百分数化小数,可以先把百分数化成分母为100的分数,然后根据分数与小数互化的知识,将其化成小数。
如:40% =40/100=0.4140% =140/100 =1.427.5%=27.5/100=0.275 当然,有同学喜欢不喜欢把分子写作小数:27.5%=275/1000=0.275,这种做法也是合理的。
通过连等式前后数字形式的对比,我们总结出百分数化小数的方法:小数点左移两位,位数不够时加“0”,并去掉百分号。
2、小数化成百分数有两种方法:一种是先把小数化成不带小数点的分数,然后在将分母扩大或者缩小化为100,最后改写成百分数的形式。
例如:0.4=4/10=40/100=40%0.275=275/1000=27.5/100=27.5%1.4=14/10=140/100=140%需要注意的一点,小数化成分数只需要化成以10的倍数为分母的分数即可,不需要约分,例如0.4=4/10即可,不用像分数化小数那样约分成为2/5.(小朋友可以想想,为什么呢?)另一种方法比较快捷,直接将小数化成分母为100的分数,然后改写成百分数形式即可。
用这种方法重新做上面的几个小数化百分数的题目就是这样的:0.4=40/100=40%0.275=27.5/100=27.5/100=27.5%与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
百分数和小数的互化

巩固练习
1.把下面的小数化成百分数,百分数化成小 数。 2.1 0.313 18.5% 1.07 26.34% 59.8% 1.41 0.69
2.找出相等的两个数。
11%
0.55
0.11
27%
163% 0.02
1.63%
2%
0.27
55%
将0.341、34%、3 按从小到大的顺序排列起来。
) 0.6%( 0.0099 ) 2.21%(
1.93
) 0.0221 )
0.006
选择:1、48.3%百分号去掉,结果( B ) A.原数大小不变 B.扩大到原数的100倍 1 C.缩小到原数的100 2、56后面添上百分号,结果(C) A.原数大小不变 B.扩大到原数的100倍 C.缩小到原数的 1
=100 =0.28
28
2 5 =2.6
3
11 =11÷45≈0.24 45 (保留两位小数)
=7÷25=0.2 8
分数化小数的方法:
特殊情况:分母是10、100、1000……的分数直接写成小数。
分数
能转化成分母是10、100、1000……的分数可以先转化再写成小数。
小数
一般方法:分子除以分母。(除不尽时按要求保留几位小数)
1.79% (4)0.0179=( )=( 17.9%)
例1: 将0.24、1.4、0.123化成百分数。
复习小知识
1、小数: 分母是10、100、1000……的分数可以写成一位 小数、两位小数、三位小数……
百分数: 表示一个数是另一个数的百分之几。
例1: 将0.24、1.4、0.123化成百分数。
战略部署: 先独立思考,写出转化的过程。 再小组交流,说出转化的过程。
分数百分数小数的互化课件 (1)

先把下面的分数化成小数,再说一说 分数化小数的方法。
3 25
63 100
7 18
分母是10、100、1000……的分数化小数,可以直 接去掉分母,看分母中 1 后面有几个零,就在分子中 从最后一位起向左数出几位,点上小数点。 分母不是10、100、1000… …的分数化小数,要 用分母去除分子;除不尽的,可以根据需要按四舍五 入法保留几位小数。
(75 ) ( 3 ) 23 ( ) (1) 23% = (2) 75% = 100 = ( 4 ) 100 12.5)(125 ( ) (1 ) (3) 12.5% = 100 = 1000 =(8 )
想一想:把分数改写成百分数要注意什么? 把百分数改写成分数呢? 把分数改写成百分数可以先把分数改写成小 数,再改写成百分数。把百分数改写成分数 可以先改写成分母是100的分数,再约分。
A:扩大100倍
B:缩小100倍 C:减少100倍
选一选
1 B、缩小到原来的 100 C、扩大到原来的100倍
C
A、不变
B
1 B、缩小到原来的 100 C、扩大到原来的100倍
A、不变
判断: 1、0.6%=0.6 ( ) 2、30的后面添上“%”,得到的数比原数 扩大100倍。 ( ) 3、15.5%扩大10倍是155。( ) 4、把小数化成百分数,只要把小数点向 右移动两位,同时在后面添上百分号。 ( √ )
3 5
2 7
说说你是怎样用百分数来表示上面分数的?
先把分数改写成小数,再改写成百分数。
分别用分数、百分数和小数表示各图 的涂色部分。
13 分 数:( ) 25 小 数:( 0.52)
百分数:( 52% )
1 分 数:( 5 )
常见分数、小数、百分数互化

1 50
=0.0 2
= 2%
1 100
=0.0 1
= 1%
B列
1 8
=0.125 = 12.5%
3 8
=0.375 = 37.5%
5 8
=0.625 = 62.5%
7 8
=0.875 = 87.5%
1 10
=0.1
= 10%
3 10
=0.3
= 30%
7 10
=0.7
= 70%
9 10
=0.9
= 90%
3 8
=0.375 = 37.5%
5 8
=0.625 = 62.5%
7 8
=0.875 = 87.5%
1 10
=0.1
= 10%
3 10
=0.3
= 30%
7 10
=0.7
= 70%
9 10
=0.9
= 90%
C列
1 20
= 0.1
3 20
= 0.2
7 20
= 0.4
9 20
= 0.5
11 20
= 0.6
化小数的记法:分子 乘4,小数点向左移
23 25
=0.92 动两位。
24 25
=0.96
常见分数、小数、百分数互化
A列
1 2
=0.5 = 50%
1 4
=0.2 5
= 25%
3 4
=0.7 5
= 75%
1 5
=0.2 = 20%
2 5
=0.4 = 40%
3 5
=0.6 = 60%
4 5
=0.8 = 80%
21 25
=0.84
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)百分数转化成分数,即百分数写成分母为100的分数,再 进行约分。
三、迁移类推,应用规律
1.下面的正方形表示“1”,把各图中红色 部分按要求表示出来。
小数( 0.09 )
9 分数( 100 )
百分数(9 % )
三、迁移类推,应用规律
1.下面的正方形表示“1”,把各图中红色 部分按要求表示出来。
=
3 4
75 =100
=75%
120 ÷160=0.75=75% 答:六年级学生的达标率是75%。
四、及时练习,巩固应用
练习十八
4.科学小资料:
1 (1)空气中氧气约占 5 ;
(2)地球上现存的动物中昆虫约占
4 5
1 (3)我国陆地面积约占世界陆地(南极洲除外)面积的 14 。
Байду номын сангаас
;
你能用百分数表示其中的分数吗?
20.6%( < )2.06
0.05( = )5%
四、及时练习,巩固应用
6.一根电线长400米,已经用去了150米。 5 再用去多少米就一共用去这根电的 ? 8
四、及时练习,巩固应用
解析答案:
5 =0.625 8
400×0.625=250(米) 250-150=100(米)
5 答:再用去100米就用去这根电线的 。 8
第六单元 百分数(一)
第二节 百分数与小数、 分数的互化
第一单元:小数乘法
一、以旧引新,铺垫迁移
1.复习旧知 (1)把下面的小数化成分数,并说说怎样把 小数化成分数。 0.45
9 20
1.2
6 5
0.367
15 (8
(
)
(
)
)
根据小数的意义,先把小数化成分母是10、 100、1000的分数,再进行约分。
=150(人)
分数
答:有牙病的学生有150人
二、猜测验证,发现规律
发现规律: 小数、分数与百分数之间是可以互相转化的。
方法为:
(1)小数转化为百分数,即小数点向右移动两位,加上百分号。 (2)分数转化为百分数,即分数写成分母为100的分数,再写 成百分数。 (3)百分数转化为小数,即去掉百分号,小数点向左移动两位。
四、及时练习,巩固应用
解析答案:
1 20 (1) = =20% 5 100 4 80 (2) = =80% 5 100
1 (3) ≈0.071=7.1% 14
四、及时练习,巩固应用
5.在括号里填上“>”、“<”或“=”。 0.45( = )45% 1.5( > )13%
1 ( = )20% 5
9 ( < )100% 10
一、以旧引新,铺垫迁移
命中率指的是投中的次数占投篮次数的百分之几。
3 60 3 ÷ 5= 5 = 100 =60%
3 ÷5=0.6 =60%
4 ÷ 6 0.667=66.7%
答:王涛命中率是60%,李强的命中率是66.7 %。李强的命中率比较高。
一、以旧引新,铺垫迁移
解析例1: 3 ÷5=0.6 =60% 小数 4 ÷ 6 0.667=66.7% 百分数
小数( 0.55
11 分数( 20
)
)
百分数(55 % )
三、迁移类推,应用规律
2.把下面的小数分数改成百分数,百分数改成小数。
0.97
0.08
0.005
1 4
1 8
1 6
97%
8%
0.5%
25%
12.5%
16.7%
三、迁移类推,应用规律
0.97=97%
1 =25% 4
0.08=8%
1 =12.5% 8
五、回顾梳理,总结升华
这节课你都获得了哪些知识?
在本节课中你最大的收获是什么?
通过学习本节课内容,我们理解了百分数 和分数、小数进行互化的必要性,并且总 结出了百分数和小数、分数互化的规律, 能正确地把分数、小数化成百分数或把百 分数化成分数、小数。
小数点向右移动两位,再加上百分号。 如果除不尽,可约分到小数点后三位数。
一、以旧引新,铺垫迁移
解析例1:
3 ÷5=
4 ÷ 6=
3 5
=
60 100
=60%
分数
4 6
= 2 ≈0.667=66.7%
3
百分数
把分数改写成分母是100的分数, 再转化成百分数,如不能转化, 先转化成小数,再转化成百分数。
二、猜测验证,发现规律
例3 :
春蕾小学的一项调查表明,有牙病的学生人数 占全校学生人数的20%,春蕾小学共有750名 学生,有牙病的学生有多少人?
二、猜测验证,发现规律
解析例3:
750×20%=750×0.2=150(人) 百分数 750 ×20%=750× 百分数
20 100
小数 =750×
1 5
一、以旧引新,铺垫迁移
(2)把下面的分数化成小数,并说说怎样把 分数又怎样化成小数。
3 25 63 100 15 8
(0.12)
(0.63)
(1.875)
根据分数的意义,把分子除以分母,即是小数, 除不尽一般保留到小数点后三位数。
一、以旧引新,铺垫迁移
2.引入新题
例1:王涛和李强两个好朋友在篮球场比赛投 球。王 涛说:我5投3中。李强说:我6投4中。 他们两人的命中率分别是多少?谁的命中率高?
一、以旧引新,铺垫迁移
例2:把0.25、1.4 、 0.123化成百分数.
0.25=25 % 1.4=140 % 0.123=12.3 %
一、以旧引新,铺垫迁移
例2:把
3 1 3 、 、 1 化成百分数。 4 6 5
3 75 = =75% 4 100
1 6 ≈0.167=16.7 %
3 8 160 = = =160 % 1 5 5 100
0.005=0.5%
1 =16.7% 6
97%=0.97
8%=0.08
0.5%=0.05
16.7%=0.167
25%=0.25 12.5%=0.125
四、及时练习,巩固应用
3.六年级有学生160人,以达到国家体育锻炼标准的有 120人,六年级学生的体育达标率是多少? 120 ÷160= 或
120 160