微积分发展史

合集下载

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1. 运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2. 曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3. 有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4. 当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler )、伽利略(Galileo )、费马(Fermat)、笛卡尔(Descartes )、卡瓦列里(Cavalieri )等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)至V质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

微积分学的发展史

微积分学的发展史

微积分学的发展史微积分学是数学的一个重要分支,它研究变量在某一变化过程中的变化规律,广泛应用于物理学、工程学、经济学等领域。

本文将回顾微积分学的发展历程,从其历史起源到现代应用,以便更好地理解这一重要学科。

微积分学起源于17世纪,当时科学家们开始研究物体的运动规律,例如物体的速度、加速度等。

这些研究需要数学工具来分析变化过程,于是微积分学应运而生。

微积分的最初发展由牛顿和莱布尼兹两大巨头分别独立给出,他们从不同的角度解决了微积分的基本问题。

牛顿是一位著名的物理学家,他在研究力学的过程中创立了微积分学。

他将物体的运动规律表示为数学方程,然后通过求解这些方程来获得物体的运动轨迹和性质。

这种做法为微积分学提供了重要的物理背景和实践应用,推动了微积分学的发展。

莱布尼兹是一位杰出的数学家,他在研究代数和几何的过程中独立发展出了微积分学。

他将数学中的无限小量、极限等概念引入微积分学,为微积分学提供了更为严格和系统的数学基础。

莱布尼兹的贡献为微积分学在数学领域的发展和应用打下了坚实的基础。

笛卡尔是一位杰出的哲学家和数学家,他在研究几何学的过程中提出了笛卡尔引理,为微积分学提供了重要的哲学基础。

该引理表明,几何图形可以由其元素之间的关系来确定,这种思想为微积分学中极限、导数等概念的形成提供了重要的启示。

欧拉是一位杰出的数学家和物理学家,他在研究力学和流体力学的过程中提出了欧拉公式,为微积分学在物理学领域的应用提供了重要的工具。

该公式可以用以描述物体在受力作用下的运动规律,为微积分学在物理学中的应用提供了重要的实例。

现代微积分学已经发展成为一门极其重要的学科,它在物理学、工程学、经济学等领域都有广泛的应用。

例如,在物理学中,微积分可以描述物体的运动规律、电磁场、引力场等;在工程学中,微积分可以用于优化设计、控制工程、计算机图形学等;在经济学中,微积分可以用于预测市场趋势、金融风险管理、人口模型等。

随着科学技术的发展,微积分学的应用前景将更加广阔。

微积分的发展历史

微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。

2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。

3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。

牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。

这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。

4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。

5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。

这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。

6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。

来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。

7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。

爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。

8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。

函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。

微积分的发展史

微积分的发展史

微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。

微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。

一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。

二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。

三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。

四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。

五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。

同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。

六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。

第7讲微积分发展史

第7讲微积分发展史

第7讲微积分发展史微积分是近代自然科学和工程技术中广泛应用的一种基本数学工具,它创立于17世纪后半叶的西欧,是适应当时社会生产发展和理论科学的需要而产生的,同时又深刻地影响着生产技术和自然科学的发展。

微积分堪称是人类智慧最伟大的成就之一。

一、微积分产生的背景微分和积分的思想早在古代就已经产生了。

公元前3世纪,古希腊数学家、力学家阿基米德的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲面的体积等问题中就隐含着近代积分的思想。

极限理论作为微积分的基础,也早在我国的古代就有非常详尽的论述,但当时人们习惯于研究常量和有限的对象,遇到无穷时往往束手无策。

生产力和科学技术的不断发展,为微积分的诞生创造了条件。

1492年哥伦布发现了新大陆,由此证实了大地是球形;1543年,哥白尼发表的《天体运行论》确立了“日心说”;开普勒在1609年提出了有关行星绕日运动的第一、第二定律,1618年他又提出了第三定律;1609年,伽利略用自制的望远镜观察了月亮、金星、木星等星球,把人们的视野引向遥远的地方。

这些科学家拓展了人们对世界的认识,引起了人类思想上的巨变。

16世纪,西欧出现资本主义的萌芽,产生了新的生产关系,社会生产力有了很大的发展。

从17世纪开始,随着社会的进步和生产力的发展,在航海、天文、矿山建设、军事技术等方面有许多课题需要解决,数学也开始进入了“变量数学”时代。

通过这些向数学提出了如下4个问题:(1)由距离和时间的关系求瞬时速度和瞬时加速度;反之,由速度求距离,由加速度求速度。

(2)确定物体运动方向(切线方向)或光学中曲线的切线问题。

(3)求最大、最小值问题。

(4)一般的求积(面积、体积)问题,曲线长问题,以及物体的质量、重心等问题。

在17世纪30年代创立的解析几何学里,可以用字母表示流动坐标,用代数方程刻画一般平面曲线,用代数演算代替对几何量的逻辑推导,从而把对几何图形性质的研究转化为对解析式的研究,使数与形紧密地结合起来。

微积分发展简史

微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。

在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。

在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。

但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。

他的"割圆术"开创了圆周率研究的新纪元。

刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。

用他的话说,就是:"割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。

大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。

其次明确提出了下面的原理:"幂势既同,则积不容异。

"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。

并应用该原理成功地解决了刘徽未能解决的球体积问题。

欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。

较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

但他的方法并没有被数学家们所接受。

后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。

之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。

微积分的历史与发展

微积分的历史与发展

微积分的历史与发展微积分是数学中的一门重要学科,它研究的是变化和连续性的数学分支。

微积分的历史可以追溯到古希腊时期,而其发展经历了许多重要的里程碑。

本文将介绍微积分的历史与发展,从古代到现代逐步展开,帮助读者了解该学科的演进过程。

古代的微积分先驱们展示了对变化的基本理解。

在古希腊,数学家Zeno of Elea以悖论而闻名,他提出了无限可分割的运动悖论。

这种思想激发了人们对变化和连续性的思考,并为后来微积分的发展奠定了基础。

进入17世纪,微积分的概念正式开始形成。

众所周知的牛顿和莱布尼茨被公认为微积分的创始人。

牛顿以其经典力学和引力定律的发现而著名,而莱布尼茨则发明了微积分符号和符号推导法。

他们的贡献为微积分奠定了坚实的数学基础,并将其应用于物理学和其他学科的发展中。

随着时间的推移,微积分得到了持续的发展和改进。

18世纪和19世纪,欧洲的数学家们继续推动微积分领域的研究。

拉格朗日、欧拉、高斯等数学家们为微积分理论提供了许多重要的贡献。

他们的研究使微积分得以从几何学的观点转向更加抽象和符号化的方法,这为后来微积分的发展提供了重要的基础。

20世纪,微积分进入了现代阶段,特别是与数学分析的发展相结合。

数学家们进一步探索了微积分的基础,发展了更加严格和深入的理论和方法。

对于微分学和积分学的理论基础的巩固和完善,使得微积分在数学和应用领域中的地位更加牢固。

在现代应用中,微积分广泛应用于物理学、工程学、计算机科学、经济学等学科。

例如,在物理学中,微积分被用于描述物体的运动、力学和量子力学等领域。

在工程学中,微积分为电路、信号处理和结构设计等提供了数学工具。

在计算机科学中,微积分为算法和数据分析提供了基础。

在经济学中,微积分被用于经济模型的建立和分析。

总结起来,微积分的历史与发展经历了漫长的过程,从古代的思考和猜测,到牛顿和莱布尼茨的创立,再到现代的深入研究和应用拓展。

微积分不仅是数学领域中的重要学科,也是许多其他学科中的基础和工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分发展史
摘要:本文将介绍微积分的由来以及发展过程以及他对于人类发展的重大意义。

并且在文章中也会对微积分的一些基本内容和理论等进行说明和归纳
关键词:微积分,微分,积分,建立
一、微积分学的建立
微积分在如今的数学领域中占到了非常重要的地位,并且作为一门学科,微积分是研究函数的微分、积分以及有关概念和应用的数学分支。

它的起源可以追溯到其诞生的2000多年前,比如,古代的人用方砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”等等,都涉及到了以“直”代“曲”
的极限观念,属于微积分的朴素思想,阿基米德更可称为时微积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓形那样复杂地曲边形地面积中,而且在求积时应用了各种微积分学地思想。

但微积分思想真正形成是在十七世纪,由牛顿总结和发展了前人的工作,几乎同时建立了微积分的方法和理论微积分的起源。

牛顿是从物理角度建立了微积分的思想,而德国数学家莱布尼兹从几何角度出发,独立地创立了微积分(1675-1676)。

这两位数学家总结出处理各种有关问题地一般方法,并揭示出微分学和积分学之间的本质联系。

两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。

这位日后的微积分学的进一步发展奠定了坚实而重要
的基础。

微积分的创立,极大地推动了数学地发展,过去很多
初等数学束手无策地问题,通过运用微积分,往往引刃而解。

使得微积分学地创立成为数学发展地一个里程碑式的事件。

二、微积分建立的重要意义
恩格斯曾经说过:“在一切理论成就中,未必再有什么像十七世
纪下半叶微积分的发现那样被看作人类精神的最高胜利了。


果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就
正是在这里。

”在微积分建立之前,人类基本还处于农耕文明时
期。

但在微积分建立之后它为创立许多新的学科提供了源泉。

可以说微积分的建立是人类头脑最伟大的创造之一,是人类智
慧的结晶,它极大地推动了科学地进步,并且对社会也有深远
的影响。

有了微积分,就有了工业革命,它是世界近代科学的
开端,同时也摧毁了笼罩在天体上的神秘主义、迷信和神学,
对社会产生了极大的影响,使人们进入了现代化的社会。

这一
切都表面了微积分学的产生是人类历史上的一次空前飞跃。

三、微积分理论的基本介绍和归纳
微积分学是微分学和积分学的总称。

微积分学基本定理指出,
求不定积分与求导函数是互为逆运算的过程,而把上下限代入
不定积分即得到积分值,微分则是倒数值与自变量增量的乘积。

作为一种数学的思想微分就是“无限细分”,而积分就是“无限求
和”。

牛顿称微积分为“流数术理论”,在“流数术”中,有三个重要
的概念:流动量、流动率、瞬。

牛顿的流数术以力学中的点的
连续运动为原型,把随时间连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为倒数。

所谓“瞬”这个概念,如牛顿所说是一种刚刚产生的无限小的量,如一个无限小的时间间隔称为一个瞬。

牛顿把全部微积分问题分为两大类,他用运动学上的术语表达为:“速度”与“路程”。

速度相当于现在的导函数,“路程”相当于现在的原函数,“时间”被简单地作为所有变量的公共自变量,流数术所提出的中心问题是:1、已知连续运动的路程,求给定时刻的速度(即微分法);2、已知运动速度,求给定时间内经过的路程(即积分法)。

德国数学家莱布尼兹当时把微积分称为“无穷小算法”。

他的微积分符号的使用最初体现在1675年的手稿中。

1686年他在《教师学报》杂志上发表了微积分的论文《潜在的几何与不可分量和无限的分析》。

他是历史上的符号创造家之一:用df表示微分,r表示导数,dx表示n阶微分,∫表示积分。

由于“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

学习微积分学,首要的一步就是要了解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。

所以必须要利用代数处理代表无限的量,这时就精心构造了“极
限”的概念。

在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量ε。

也就是说,除的术不是零,所以有意义,同时ε可以取任意小,只要满足在δ区间,都小于ε,我们就说它的极限就是这个数。

虽然这个概念给出的比较取巧,但是,它的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。

因此这个概念是成功的。

参考文献:《高等数学》(北京高等教育出版社.2008)、《托马斯微积分》。

相关文档
最新文档