基变换与坐标变换

合集下载

线性代数-基变换与坐标变换

线性代数-基变换与坐标变换
一、基变换公式与过渡矩阵
问题:在 n 维线性空间 V中,任意 n 个线性 无关的向量都可以作为 V 的一组基.对于不同的 基,同一个向量的坐标是不同的.
那么,同一个向量在不同的基下的坐标有什 么关系呢?换句话说,随着基的改变,向量的坐 标如何改变呢?
设1,2 , ,n及1, 2 , , n是线性空间Vn的
1 , 2
,
,n
P
x2'.
xn
xn'
x1 x1'

x2
P
x2'
.
xn xn'
由 于 矩 阵P可 逆, 所 以
x1'
x1
x2'
P
1
x2 .
xn'
xn
例1 在 P[ x]3中取两个基
1 x3 2 x2 x, 3 x3 2 x2 x 1, 及 1 2 x3 x2 1, 3 2 x3 x2 x 2,
过渡矩阵 P是可逆的.
二、坐标变换公式
定理1 设Vn中的元素 ,在基1 , 2 , , n下的坐标

( x1 , x2 , , xn )T ,
在基1 , 2 ,
,
下的坐
n
标为
( x1', x2 ', , xn ')T ,
若两个基满足关系式
1, 2, , n 1,2, ,n P
则有坐标变换公式
x1 x1'
x1'
x1
x2
P
x2'
,

x2'
P
1
x2 .
xn xn'
xn'

高等代数第三节 基

高等代数第三节 基

加法封闭
(km lm )αm V
(2)对αV ,k R
数乘封闭
kα (kk1)α1 (kk2)α2 (kkm )αm V
V 是向量空间。
2. 向量组生成的向量空间
定义 V x k1α1 k2α2 kmαm | k j R, j 1,2, , m
称为由α1, α2, , αm生成的向量空间,记为L(α1, α2, , αm ) 或span(α1, α2, , αm ).
证毕
2. 基的性质
4. V 可由基α1, α2, , αr所生成,即
V L(α1, α2, , αr ).
证明
α1, α2, , αr是V的基,
αV , 数l1,l2, ,lr ,使
α l1α1 l2α2 lrαr ,
α L(α1, α2, , αr ) V L(α1, α2,
, αr ).
α1, α2决定的平面.
z
z
L
α
y
y
x x
(3)设αR3且α 0, Lα为过原点O,方向为α的直线.
(4) R3 Lε1, ε2, ε3 .
3. 子空间
定义 对两(1)个Vn1维V向2,量集合V1与V2 , 若
(2) V1,V2都是向量空间,
例则称 4 (V11)是设Vm2的n子, α空i 间R(n. i 1,2, , m),则
秩r1 秩r2, 即dimV1 dimV2.
证毕
2. 基的性质
7. F n中任意n个线性无关的向量1,2 n组成一组基;
8. Fn中的向量组S是基 S={1,2 n}由n个 线性无关的向量组成.
9. n维向量空间V中的任意线性无关子集S可以扩充 为V的基.

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

1基变换与坐标变换

1基变换与坐标变换

1 2
1 1
3 2 1 1 1 1
2 1
1 0
1 2 2 2 0 1 1 1
1 0 0 0 0 1 1 1
~ 初等行变换
0 0
1 0
0 1
0 0
1 0
1 0
0 0
0 1
0 0 0 1 1 1 1 1
1 0 0 0 0 1 1 1
0 1 0 0 1 1 0 0 1 0 0 0
(2) W1 W2 W1 W2 W1;
(3) W1 W2 W1 W1 W2; (4) W1 W2 W1 W2 W1 W2或W2 W1 .
定义7 1 , 2 , , r是V中的一组向量,
L1 , 2 , , r
11 2 2 r r 1 , , r F
称为1 , 2 , , r 生成(张成)的子空间.
(4)若向量组
1 ,2 ,
,
是线性空间
r
V
的一个
基,则 V 可表示为
V x 11 2 2 r r 1 , , r F
V :基所生成的线性空间 1 , 2 , , r :向量x在基1 , 2 , , r下的坐标
例7 在线性空间P[ x]3中,p1 1,p2 x,p3 x 2,
p4 x 3是一组基,而q1 1,q2 x 2,q3 x 22, q4 x 23也是一组基.
线性空间的性质
(1) 零元素是唯一的. (2) 负元素是唯一的.
(3) 0 0; 1 ; 0 0.
(4) 如果 0,则 0或 0.
定义2 设 x(1) , x(2) , , x(k) 是线性空间V 中的任一组
向量,1, 2 , , k 是F 中任一组数,
k
y 1 x(1) 2 x(2) k x(k ) i x(i ) i 1

基变换与坐标变换

基变换与坐标变换

本节内容已结束 !! 本节内容已结束 本节内容已结束 ! 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 !! 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 若想结束本堂课 ,, 请单击返回按钮 . 若想结束本堂课 , 若想结束本堂课 请单击返回按钮 . 若想结束本堂课 , 若想结束本堂课 请单击返回按钮 .. , 若想结束本堂课 , 请单击返回按钮 . 请单击返回按钮 请单击返回按钮 .. . 请单击返回按钮 请单击返回按钮 请单击返回按钮 请单击返回按钮 . .
5 14 11 7 3 72 2 1 2 3 1 1 139 14 20 7

高等代数北大版64

高等代数北大版64

,?
n
)
? ? ??
a2 an
? b2 M ? bn
? ? ??
若? 1,? 2,L ,? n 线性无关,则
? a1 ?
? b1 ?
(? 1,? 2 ,L
,?
n
)
? ? ??
aaM2n ????
?
(?
1,?
2 ,L
,?
n
)
? ? ??
bbMn2 ????
?
? a1 ? ? b1 ?
? ? ??
aaMn2 ????
1)? 1,? 2 ,L ,? n ? V ,a1,a2,L , an , b1,b2,L , bn ? P
? a1 ?
? b1 ?
? a1 ? b1 ?
(? 1,? 2 ,L
,?
n
)
? ? ??
aaMn2 ????
?
(?
1
,?
2
,L
,? n )????bbMn2 ???? ? (? 1,? 2,L
§6.4 基变换与坐标变换
一、向量的形式书写法
1、V为数域 P上的 n 维线性空间,? 1,? 2 ,L ,? n 为
V 中的一组向量, ? ? V ,若
? ? x1? 1 ? x2? 2 ? L ? xn? n
则记作
? x1 ?
?
? (? 1 ,? 2 ,L
,?
n
)
? ? ??
xxMn2 ????
§6.4 基变换与坐标变换
二、基变换
1、定义 设V为数域P上n维线性空间,?1 ,?2 ,L ,?n ;
?1?,?2?,L ,?n? 为V中的两组基,若

基变换与坐标变换

基变换与坐标变换

基变换与坐标变换基变换与坐标变换是数学中的一个概念,它们都是研究变换形式的基础工作。

它们是将一个空间中的向量投影到另一个空间的过程。

基变换是指一种变换,它使空间的向量的基本特征保持不变。

坐标变换是指把数据由一种坐标系转换为另一种坐标系的过程,如从极坐标转换到直角坐标。

基变换可以分为几何和代数两种形式,每种形式都有不同的用途。

几何变换是指对点或向量空间中的向量应用一定的变换,来改变其形状或尺寸。

几何变换可以表示为一组线性方程,其作用是把输入空间中的点映射到输出空间中的点。

常见的几何变换包括旋转和缩放。

代数变换是指把一个空间中的点映射到另一个空间中的点,通过使用多项式来完成。

代数变换可以用来改变一个点的位置,形状,尺寸等属性,例如抛物线变换和二次变换等。

坐标变换是把一种坐标系的数据转换到另一种坐标系的过程。

坐标变换的基本原理是把一个物体的坐标从一个坐标系(原坐标系)转换到另一个坐标系(目标坐标系)。

常见的坐标变换有从极坐标到直角坐标的变换,从直角坐标到极坐标的变换,从笛卡尔坐标到其他坐标系的变换以及曲面坐标变换等等。

在工程中,基变换和坐标变换都经常被用来实现特定的工程目标。

基变换可以被用来改变数据的形状,比如在图像处理中,可以使用基变换来缩放和旋转图像。

坐标变换可以被用来将一个坐标系的数据转换到另一个坐标系,比如在机器人攻击中,可以使用坐标变换来实现从直角坐标到极坐标的变换。

总而言之,基变换和坐标变换在数学和工程中是非常重要的概念。

基变换可以用来改变空间中向量的特征,而坐标变换则可以用来将一种坐标系的数据转换到另一种坐标系。

它们在许多领域中都有重要用途,例如图像处理,机器人控制,计算机视觉,空间分析等方面,广泛应用于实际工程中。

坐标变换原理

坐标变换原理

坐标变换原理
坐标变换是一种数学操作,用来在不同的坐标系间进行转换。

它是将一个点或对象的位置从一个坐标系转换到另一个坐标系的方法。

在二维平面坐标系中,通常使用笛卡尔坐标系和极坐标系。

笛卡尔坐标系使用x和y轴来表示一个点的位置,而极坐标系使用半径和角度来表示。

坐标变换可以通过简单的公式来实现:
1. 笛卡尔坐标系转换为极坐标系:给定一个点的笛卡尔坐标(x, y),可以通过以下公式计算其极坐标(r, θ):
r = √(x² + y²)
θ = arctan(y/x)
2. 极坐标系转换为笛卡尔坐标系:给定一个点的极坐标(r, θ),可以通过以下公式计算其笛卡尔坐标(x, y):
x = r * cos(θ)
y = r * sin(θ)
这些公式将一个点在不同坐标系中的位置进行相互转换。

通过这些转换,可以在不同坐标系之间准确地描述和定位对象的位置。

除了坐标系之间的转换,还可以进行其他类型的坐标变换,如平移、缩放和旋转。

在平移中,点的位置通过添加一个固定的偏移量来改变。

在缩放中,点的位置通过乘以一个缩放因子来改变。

在旋转中,点的位置通过应用旋转矩阵来改变。

通过这些坐标变换,可以单独或组合地对对象进行不同类型的变换,使其在平面内按照所需的方式移动、缩放和旋转。

这在计算机图形学和计算机视觉中经常使用,用于实现图像转换、模型变换等应用。

坐标变换为我们提供了一种非常有用的工具,可以方便地在不同坐标系中进行准确的位置描述与处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、向量的形式意义及运算
1.定义
定义1 V为数域 P上的 n 维线性空间,
1,2,L ,n为V 中的一组向量,记作(1,2 ,L ,n ) ,
称之为向量矩阵,给出定义:
1)若有两组向量 (1,2,L ,n ) (1, 2,L , n )
1 1,2 2,L ,n n;
2) (1,2,L ,n ) (1, 2,L , n ) (1 1,2 2,L ,n n );
为了写起来方便,我们引入一种形式的写法.
把基写成一个 1 n 矩阵,于是 (1) 可写成如下矩
阵形式:
a11 a12 a1n
(1,2 ,
,n )
(1 , 2 ,
,
n
)
a21 an1
a22 an2
a2n ann
矩阵
a11 a12 a1n
A
a21 an1
a22 an2
3) k(1,2 ,L ,n ) (k1, k2,L , kn ), k P;
4)V为数域 P上的 n 维线性空间,1,2,L ,n 为 V中的一组向量, V ,若
x11 x22 L xnn
则记作
x1
(1,2 ,L
,
n
)
xM2
xn
5)V为数域 P 上 n 维线性空间,1,2,L ,n ;
(1,2 ,L ,n )A (1,2 ,L ,n )B
(1,2 ,L ,n )( A B);
(1,2 ,L ,n ) A (1, 2 ,L , n ) A
(1 1,2 2 ,L ,n n ) A ;
若1,2 ,L ,n 线性无关,则
(1,2 ,L ,n )A (1,2 ,L ,n )B A B.
3) (1 , 2 , … , n )A + (1 , 2 , … , n )A = (1 + 1 , 2 + 2 , … , n + n ) A .
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 与简单性质
§6 子空间的交与和
§3 维数·基与坐标
§7 子空间的直和
§4 基变换与坐标变换 §8 线性空间的同构
第四节 基变换与坐标变换
主要内容
向量的形式意义及运算 基变换 坐标变换公式 举例
我们知道,在n维线性空间V中,任意n个线性 无关的向量都可取作线性空间V的一组基.V中任 一向量在某一组基下的坐标是唯一确定的,但是在 不同基下的坐标一般是不同的.因此在处理一些问 题是时,如何选择适当的基使我们所讨论的向量的 坐标比较简单是一个实际的问题.为此我们首先要 知道同一向量在不同基下的坐标之间有什么关系, 即随着基的改变,向量的坐标是如何变化的.
1, 2,L , n 为V中的两组向量,若
1 a111 a212 L an1n
2
L
n
L
a121
LL
a1n1
L
a222 L
LLLL
a2n2 L
L
an 2 n
LL
ann n
则记作
a11 a12 L
(1, 2 ,L
,n)
(1,2 ,L
,
n
)
a21 L
a22 L
L L
an1 an2 L
5)若由基1,2 ,L ,n到基1, 2 ,L , 过n 渡矩阵为A, 由基 1, 2 ,L , n到基 1, 2 ,L ,过n 渡矩阵为B,则 由基 1,2 ,L ,n到基 1, 2 ,L ,过n 渡矩阵为AB.
3. 运算规律
设 1 , 2 , … , n 和 1 , 2 , … , n 是 V 中两个
1. 定义
定义2 设 1 , 2 , … , n 与1 , 2 , …, n 是
n维线性空间 V 中两组基,它们的关系是
1 a111 a21 2 an1 n ,
2
a121
a22 2
an2 n
,
(1)
n a1n1 a2n 2 ann n .
称 (1) 为基变换公式.
2. 基变换公式的矩阵形式
若1,2 ,L ,n 线性无关,则
a1
b1 a1 b1
(1,2 ,L,n)源自a2 M(1,2 ,L
,
n
)
b2 M
a2 M
b2 M
an
bn an bn
2) 1,2 ,L ,n;1, 2 ,L , n为V中的两组向量,
矩阵 A, B P nn,则
((1,2 ,L ,n )A)B (1,2,L ,n )( AB);
a2n ann
称为由基 1 , 2 , … , n 到1 , 2 , …, n 的过渡矩 阵. 由于1 , 2 , …, n 是线性无关的,所以过渡
矩阵 A 的列向量组线性无关,因此,过渡矩阵 A
是可逆的.
注意 :
1) 基变换公式的矩阵形式是“形式的”. 因为 在这里把向量作为矩阵的元素,一般来说没有意义. 不过在这个特殊的情况下,这种约定的用法是不会 出毛病的.
2) 过渡矩阵 A 的第 j 列 (a1j , a2j , … , anj ),
就是第二组基向量 j 在第一组 1 , 2 , … , n下的
坐标.
3)过渡矩阵都是可逆矩阵;反过来,任一可逆 矩阵都可看成是两组基之间的过渡矩阵. 4)若由基 1,2 ,L ,n到基1, 2 ,L , 过n 渡矩阵为A, 则由基1, 2 ,L , n到基1,2 ,L ,n 过渡矩阵为A-1.
二、基变换
引理 V为数域 P上的 n 维线性空间,
1,2,L ,n为V 中的一组线性无关向量,而
1 a111 a212 L an1n
2
L
n
L
a121
LL
a1n1
L
a222 L
LLLL
a2n2 L
L
an 2 n
LL
ann n
则 1, 2 ,L , n 线性无关 aij 0.
a1n
a2n L
ann
2.运算规律
1)1,2 ,L ,n V ,a1,a2 ,L ,an ,b1,b2 ,L ,bn P
a1
b1
a1 b1
(1,2 ,L
,
n
)
a2 aMn
(1,2 ,L
,
n
)
b2 bMn
(1 , 2 ,L
,
n
)
a2
an
b2 M bn
向量组, A = ( aij ) , B= ( bij ) 是两个 n n 矩阵,则
1) ((1 , 2 , … , n )A)B=(1 , 2 , … , n )(AB)
2) (1 , 2 , … , n )A + (1 , 2 , … , n )B = (1 , 2 , … , n ) (A+B) ;
相关文档
最新文档