2014届高考数学专题汇编10:三角函数

合集下载

2014年全国高考数学理科(三角函数部分)解析汇编

2014年全国高考数学理科(三角函数部分)解析汇编

= sin(x + ϕ) cosϕ + cos(x + ϕ)sinϕ ∴ f (x) = sin(x + ϕ) cosϕ − cos(x + ϕ) sinϕ
= sin[(x + ϕ) −ϕ] = sin x

解:由正弦定理 a = b = c = 2R 化简题式得: sin A sin B sin C
∵b−c = 1 a 4
∴b = 3a,c = 1 a
4
2
由余弦定理得:
cos A =
b2
+ c2
− a2
=
9 a2 16
+
1 a2 4
− a2
=−1
2bc
2⋅3a⋅1 a
4
42
= 1 cos x sin x − 3 cos2 x + 3
2
2
4
= 1 sin 2x − 3 (2 cos2 x −1)
= 43.612 + 352 − 2 × 43.61× 35× cos 38.12o ≈26.93 米
【天津市·第 12 题】在△ABC 中,内角 A,B,C 所
对的边分别是 a,b,c,已知 b-c= 1 a,2sinB=3sinC, 4
则 cosA 的值为
解:由正弦定理和 2sinB=3sinC 得: c = 2 b 3
解:由
tan α
=
1+ sin β cos β
得:
sin α cosα
=
1+ sin β cos β
即 sinα cos β − cosα sin β = cosα
∴ sin(α
−β)

专题09 三角函数填空题丨十年(2014-2023)高考数学真题分项汇编(解析版)(共25页)

专题09 三角函数填空题丨十年(2014-2023)高考数学真题分项汇编(解析版)(共25页)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!1十年(2014-2023)年高考真题分项汇编—三角填空题目录题型一:三角函数的概念.............................................1题型二:三角恒等变换...............................................2题型三:三角函数的图像与性质.......................................7题型四:正余弦定理................................................13题型五:三角函数的综合应用 (20)题型一:三角函数的概念1.(2020年浙江省高考数学试卷·第14题)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【答案】1解析:设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.2.(2021高考北京·第14题)若点(cos ,sin )A θθ关于y 轴对称点为(cos(),sin())66B ππθθ++,写出θ的一个取值为___.【答案】512π(满足5,12k k Z πθπ=+∈即可)解析: (cos ,sin )A θθ与cos ,sin 66B ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称,即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈,则5,12k k Z πθπ=+∈,当0k =时,可取θ的一个值为512π.故答案为:512π(满足5,12k k Z πθπ=+∈即可).3.(2023年北京卷·第13题)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p为假命题的一组,αβ的值为α=__________,β=_________.【答案】①.9π4②.π3解析:因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02<<<αβ,则00tan tan <αβ,取1020122π,2π,,k k k k =+=+∈Z ααββ,则()()100200tan tan 2πtan ,tan tan 2πtan k k =+==+=αααβββ,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k -=+-+=-+-αβαβαβ,因为()1200π2π2π,02k k -≥-<-<αβ,则()()12003π2π02k k -=-+->>αβαβ,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k ====αβ,即9ππ,43αβ==满足题意.故答案为:9ππ;43.4.(2020年浙江省高考数学试卷·第13题)已知tan 2θ=,则cos 2θ=________;πtan()4θ-=______.【答案】(1).35-(2).13解析:2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++,tan 1211tan()41tan 123πθθθ---===++,5.(2014高考数学陕西理科·第13题)设20πθ<<,向量(sin 2,cos 2),(cos ,1)a b θθθ== ,若a ∥b ,则=θtan _______.【答案】12解析:()sin 2,cos θθ=a ,()cos ,1θ=b ,因为//a b ,所以2sin 2-cos =0θθ,22sin cos -cos =0θθθ,即1tan 2=θ.题型二:三角恒等变换1.(2022年浙江省高考数学试题·第13题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.【答案】①.10②.45解析:2παβ+=,∴sin cos βα=,即3sin cos αα-=,31010sin cos 1010αα⎫-=⎪⎪⎭,令10sin 10θ=,310cos 10θ=,()αθ-=,∴22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 210k παθπθ⎛⎫=++== ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.故答案为:31010;45.2.(2020江苏高考·第8题)已知22sin ()43πα+=,则sin 2α的值是____.【答案】13【解析】22221sin ())sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=,故答案为:133.(2019·江苏·第13题)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是.【答案】10【解析】法1:tan tan (1tan )2π1tan 3tan 4ααααα-==-+⎛⎫+ ⎪⎝⎭,解得,tan 2α=或1tan 3α=-.所以πsin 22cos 2)42ααα⎛⎫+=+ ⎪⎝⎭=222222sin cos cos sin 2cos sin αααααα+-⋅+=2222tan 1tan 21tan ααα+-⋅+=210.法2:令4xy απα=⎧⎪⎨+=⎪⎩,则3tan 2tan 2sin()2x y y x =-⎧⎪⎨-=⎪⎩,即3sin cos 2sin cos 2sin cos cos sin 2x y y x y x y x =-⎧⎪⎨-=⎪⎩,解得2sin cos 532cos sin 10x y x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以πsin 2sin()sin cos cos sin 4x y x y x y α⎛⎫+=+=+ ⎪⎝⎭4.(2018年高考数学课标Ⅱ卷(理)·第15题)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.【答案】12-解析:因为sin cos 1,cos sin 0αβαβ+=+=,所以22sin cos 2sin cos 1αβαβ++=,22cos sin 2cos sin 0αβαβ++=,相加得22sin()1αβ++=,所以1sin()2αβ+=-.5.(2014高考数学江苏·第5题)已知函数x y cos =与)2sin(ϕ+=x y (ϕπ<0≤),它们的图象有一个横坐标为3π的交点,则ϕ的值是.【答案】6π解析:由题意cos sin(2)33ππϕ=⨯+,即21sin()32πϕ+=,所以2236k ππϕπ+=+或252()36k k ππϕπ+=+∈Z ,即22k πϕπ=-或2()6k k πϕπ=+∈Z .又0ϕπ≤<,所以6πϕ=.6.(201512题)°°sin15sin 75+的值是________【答案】62.解析:法一、sin15sin 75sin15cos1545)2+=+=+=.法二、sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==.法三、sin15sin 75442+=+=.7.(2015高考数学江苏文理·第8题)已知tan 2α=-,1tan()7αβ+=,则tan β的值为_______.【答案】3解析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++-8.(2017年高考数学江苏文理科·第5题)若π1tan(,46α-=则tan α=______.【答案】75解析:11tan()tan 7644tan tan[()]14451tan()tan 1446ππαππααππα+-+=-+===---,故答案为75.9.(2017年高考数学北京理科·第12题)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.【答案】79-【解析】因为α和β关于y 轴对称,所以2k αβππ+=+,那么1sin sin 3βα==,22cos cos 3αβ=-=,这样()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-.【10.(2016高考数学浙江理科·第10题)已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =,b =.【答案】12【命题意图】本题主要考查三角恒等变换、三角函数的基本性质等知识,意在考查学生的运算求解能力.解析:由于22cos sin 21cos 2sin 2)14x x x x x π+=++=++,所以A =,1b =.11.(2016高考数学四川理科·第11题)22cossin 88ππ-=_________.【答案】22【解析】222cossin cos 2cos 88842ππππ-=⨯==.12.(2016高考数学上海理科·第7题)方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________.【答案】6π,56π解析:31 2sinx cos x =+,即2322sin sinx x =-,所以22sin 3sin 20x x +-=,解得1sin 2x =或sin 2x =-(舍去),所以在区间[]π2,0上的解为566ππ或.13.(2016高考数学课标Ⅱ卷理科·第13题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b =.【答案】2113【解析】由平方关系可得:312sin ,sinC 513A ====所以63sin sin(A C)sin cos cos sin 65B AC A C =+=+=再由正弦定理得:sinB 21sin 13a b A ==.14.(2016高考数学江苏文理科·第14题)在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是.【答案】8.解析:法1:由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =,可得sin cos cos sin 2sin sin B C B C B C +=(*),由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>,在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=,又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--,则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>,由(#)得1tan tan 0B C -<,解得1t >2222tan tan tan 111t A B C t t t=-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8,当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 2tan 2tan 4B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.法2:同法1得到tan tan 2tan tan B C B C+=故()()2tan tan tan tan 1tan tan tan tan 22tan tan 1B C B C A B C B C B C ++=-+=-因为三角形为锐角三角形,所以tan 0,tan 0B C >>tan tan 2tan tan B C B C +=≥所以有tan tan 1B C ≥,当且仅当取到等号时为直角三角形,故tan tan 1B C >()222tan tan 12tan tan 2tan tan 1tan tan 1B C B CB C B C +=--其中令tan tan 1B C t =>则()221tan tan tan 212811t A B C t t t ⎡⎤==-++≥⎢⎥--⎣⎦当且仅当2t =时取到等号故()min tan tan tan 8A B C =法3:同法2得到tan tan 2tan tan B C B C+=易知tan tan tan tan tan tan tan 2tan tan 2A B C A B C A B C =++=+≥所以,tan tan tan 8A B C ≥.15.(2017年高考数学上海(文理科)·第15题)设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于.【答案】1【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=.题型三:三角函数的图像与性质1.(2021年高考全国甲卷理科·第16题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x为________.【答案】2解析:由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7(2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.2.(2020年高考课标Ⅲ卷理科·第16题)关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③解析:对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.3.(2020江苏高考·第10题)将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x π=-【解析】3sin[2(3sin(2)6412y x x πππ=-+=-,72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈,当1k =-时524x π=-,故答案为:524x π=-4.(2020北京高考·第14题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,所以2=,解得sin 1ϕ=,故可取2ϕπ=.故答案为:2π(2,2k k Z ππ+∈均可).5.(2022年高考全国乙卷数学(理)·第15题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3解析:因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2π3cos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+==⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0>ω,所以当0k =时min 3ω=;故答案为:36.(2019·北京·理·第9题)函数f (x )=sin 22x 的最小正周期是__________.【答案】2π.【解析】函数()2sin 2f x x ==1cos 42x -,周期为2π.7.(2018年高考数学江苏卷·第7题)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是.【答案】6π-解析:由题意可得2sin()13πϕ+=±,所以232k ππϕπ+=+,()6k k Z πϕπ=-+∈,因为22ππϕ-<<,所以0,6k πϕ==-.8.(2018年高考数学北京(理)·第11题)设函数()cos()(0)6f x x πωω=->,若()(4f x f π≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23解析:∵()()4f x f π≤对任意的实数x 都成立,∴(4f π为()f x 的最大值,∴,46k k Z ππωπ-=∈,解得28,3k k Z ω=+∈,又∵0ω>,∴ω的最小值为23.9.(2014高考数学上海理科·第12题)设常数a使方程sin x x a =在闭区间[]0,2π上恰有三个解123,,x x x ,则123________x x x ++=.【答案】7π3解析:三角方程sin x x a =在一个周期(]0,2π内的解至多有两个,所以原方程在闭区间[]0,2π恰有三个解可知,sin 00a =,即a =,解三角方程[]sin 0,2x x x π=∈,可得12312370,,233x x x x x x πππ===⇒++=.10.(2014高考数学上海理科·第1题)函数()212cos2y x =-的最小正周期是_____________.【答案】π2解析:()212cos 2cos 4y x x =-=-,则π2T =.11.(2014高考数学课标2理科·第14题)函数()sin(2)-2sin cos(+)f x x x =+ϕϕϕ的最大值为_________.【答案】1解析:f x ()sin(x 2ϕϕϕ=+ )-2sin cos(x+)x x sin(cos(ϕϕϕϕϕϕ=++)cos +)sin -2sin cos(x+)x x sin(sin 1ϕϕϕϕ=+=≤)cos -cos(x+)sin 所以最大值为112.(2014高考数学北京理科·第14题)设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为.【答案】π解析:结合图像得22326422T ππππ++=-,即T =π.13.(2014高考数学安徽理科·第11题)若将函数()sin(2)4f x x π=+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是.14201511的最小正周期是,单调递减区间是.【答案】π,]87,83[ππππk k ++,Z k ∈.解析:1cos 2sin 223()1sin(222242x x f x x π-=++=-+,故最小正周期为π,单调递减区间为]87,83[ππππk k ++,Z k ∈.15.(2017年高考数学课标Ⅱ卷理科·第14题)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是.【答案】1【命题意图】本题考查三角函数同角基本关系及函数性质—最值,意在考查考生转化与化归思想和运算求解能力【解析】解法一:换元法∵()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,22sin cos 1x x +=∴()21cos 4f x x x =-+设cos t x =,[]0,1t ∈,∴()214f x t =-++函数对称轴为[]0,12t =∈,∴()max 1f x =16.(2018年高考数学课标Ⅲ卷(理)·第15题)函数()πcos 36f x x ⎛⎫=+⎪⎝⎭在[]0,π的零点个数为.【答案】3解析:由()ππ03π62f x x k =⇒+=+,k ∈Z ,解得ππ93k x =+,k ∈Z 由ππ0π0π013993k x k ≤≤⇒≤+≤⇒≤+≤即1833k -≤≤由k ∈Z ,可得0,1,2k =,故函数()f x 在[]0,π的零点个数为3.17.(2016高考数学课标Ⅲ卷理科·第14题)函数sin y x x =-的图像可由函数sin y x x=+的图像至少向右平移_____________个单位长度得到.【答案】23π【解析】因为sin 2sin(3y x x x π=+=+,2sin 2sin()2sin[()333y x x x x πππ==-=+-,所以函数sin y x x =-的图像可由函数sin y x x =+的图像至少向右平移23π个单位长度得到.18.(2016高考数学江苏文理科·第9题)定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是.【答案】7.解析:画出函数在[]0,3π上图象草图,可以发现共7个交点.60B =︒,223a c ac +=,则b =________.【答案】解析:由题意,13sin 24ABC S ac B ac === ,所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =(负值舍去).故答案为:.2.(2021年高考浙江卷·第14题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,AM =AC =___________,cos MAC ∠=___________.【答案】(1).(2).解析:由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以AC =;在AMC 中,由余弦定理得222cos213AC AM MC MAC AM AC +-∠===⋅.故答案为23913.3.(2020年高考课标Ⅰ卷理科·第16题)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥ ,3AB =1AC =,由勾股定理得222BC AB AC =+=,同理得6BD =,6BF BD ∴==,在ACE △中,1AC =,3AE AD ==,30CAE ∠= ,由余弦定理得22232cos301321312CE AC AE AC AE =+-⋅=+-⨯= ,1CF CE ∴==,在BCF 中,2BC =,6BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.4.(2019·浙江·第14题)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上.若45BDC ∠=︒,则BD =,cos ABD ∠=.【答案】1225,7210【解析】由题可得3sin 5A =,4cos 5A =,由正弦定理得=sin sin (18045)BD AB A ︒-︒,解得25BD =,所以2cos cos(45)10ABD A ∠=︒-=.5.(2019·全国Ⅱ·理·第15题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若6b =,2a c =,3B π=,则ABC △的面积为.【答案】63【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得3,23c c ==-23a c ==113sin 4323 3.222ABC S ac B ∆==⨯=【点评】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.6.(2018年高考数学浙江卷·第13题)在ABC △中,角,,A B C 所对的边分别为,,a b c ,若7,2,60a b A ===︒,则sin B =,c =.【答案】217,3解析:sin sin a bA B=,∴sin 21sin 7b A B a ==,代入2222cos a b c bc A =+-,整理得2230c c --=,解得3c =.7.(2014高考数学天津理科·第12题)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_________.【答案】14-解析:由已知得23b c =,因为14b c a -=.不妨设3,2b c ==,所以4a =,所以cos A =222124b c a bc +-=-.8.(2014高考数学四川理科·第13题)如图,从气球A 上测得正前方的河流的两岸B,C 的俯角分别为67°,30°,此时气球的高度是46m ,则河流的宽度BC 约等于m .(用四舍五入法将结果精确到个位.参考数据:676737373sin cos sin cos ︒≈0.92,︒≈0.39,︒≈0.60,︒≈≈1.73)【答案】60解析:92AC =,9292sin sin 370.6060sin sin 670.92AC BC A B =⋅=⋅=⨯=9.(2014高考数学山东理科·第12题)在ABC ∆中,已知tan AB AC A ⋅= ,当6A π=时,ABC ∆的面积为.【答案】16解析:由tan AB AC A = 得tan 2||||cos 3A AB AC A == ,所以1||||sin 2ABC S AB AC A∆=12112326=⨯⨯=.10.(2014高考数学课标1理科·第16题)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为__________.3解析:由2a =且(2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c+-=-∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=224b c bc bc =+-≥,∴1sin 32ABC S bc A ∆=≤,11.(2014高考数学广东理科·第12题)在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b Bc C b 2cos cos =+,则ab=【答案】2.解析:法一:角化边.222222222a b c a c b b c b ab ac+-+-⋅+⋅=,化简即可.法二:边化角,角化边.sin cos sin cosB 2sin sin(B C)2sin B C C B B+=⇒+=sin 2sin 2A B a b=⇒=12.(2014高考数学江苏·第14题)若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是.【答案】624-解析:由正弦定理得22a b c +=,由余弦定理结合基本不等式有:2222222222231231()2242242cos22224a ab a b a b a b cC ab ab ab ab ++-+-++-===-24≥=,当且仅当a =时等号成立.13.(2014高考数学福建理科·第12题)在ABC ∆中,,3,2,60===bc AC A则ABC ∆的面积等于__________.【答案】.解析:∵ABC ∆中,60A =︒,4AC =,BC =,由正弦定理得:sin sin BC ACAB=,∴234sin 60sin B =︒,解得sin 1B =,90B ∴=︒,30C =︒,∴14sin302ABC S ∆=⨯⨯︒=.故答案为:.14.(2015高考数学重庆理科·第13题)在ABC ∆中,120oB =,AB =,A的角平分线AD =,则AC =_______.解析:由正弦定理得sin sin AB ADADB B=∠,即sin sin120ADB =∠︒,解得sin 2ADB ∠=,45ADB ∠=︒,从15BAD DAC ∠=︒=∠,所以1801203030C =︒-︒-︒=︒,2cos30ACAB =︒=.15.(2015高考数学新课标1理科·第16题)在平面四边形ABCD中,75A B C∠=∠=∠=,B 2BC =,则AB 的取值范围是.【答案】)解析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE=,解得BE ,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BCFCB BFC =∠,即o o2sin 30sin 75BF =,解得BF ,所以AB,16.(2015高考数学天津理科·第13题)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC∆的面积为,12,cos ,4b c A -==-则a 的值为.【答案】8解析:因为0A π<<,所以15sin 4A ==,又1sin 2428ABC S bc A bc bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.17.(2015高考数学广东理科·第11题)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =,1sin 2B =,6C =π,则b =.【答案】1解析:因为1sin 2B =且(0,)B π∈,所以6B π=或56B π=,又6C π=,所以6B π=,23A BC ππ=--=,又a =sin sin a b A B =即32sin sin 36b ππ=,解得:1b =,故应填入1.18.(2015高考数学福建理科·第12题)若锐角ABC ∆的面积为,且5,8AB AC ==,则BC 等于________.【答案】7解析:由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==3sin 2A =,(0,)2A π∈,所以3A π=.由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =.19.(2015高考数学北京理科·第12题)在ABC △中,4a =,5b =,6c =,则sin 2sin A C=.【答案】1解析:222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯20.(2017年高考数学浙江文理科·第14题)已知ABC ∆,4,2AB AC BC ===,点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是_______,cos BDC ∠=_______.【答案】2,4【解析】取BC 中点为O,AO =,sin sin 4CBD OBA ∠=∠=,所以BDC ∆的面积为115sin 22BC BD OBA ⨯⨯⨯∠=.又2πCBD BDC ∠+∠=,cos cos(π2)CBD BDC ∠=-∠2112cos 4BDC =-∠=-,解得cos 4BDC ∠=.21.(2017年高考数学浙江文理科·第11题)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,6S =_______.【答案】2【解析】6133=6(11sin 60)22S ⨯⨯⨯⨯︒=.22.(2016高考数学上海理科·第9题)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】733解析:由已知3,5,7a b c ===,利用余弦定理可求得2223571cos 2352C +-==-⨯⨯所以3sin 2C =,由正弦定理得232R =,所以733R =.交BC 于D ,则AD =_________.【答案】2解析:如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =+由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:13212AD b +===+.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =+由正弦定理可得,2sin 60sin sin b B C == ,解得:62sin 4B +=,2sin 2C=,因为1+>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.2.(2016高考数学上海理科·第13题)设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为.【答案】4解析:当2a =时,5sin(3)sin(32)sin(3)333πππx x πx -=-+=+,5(,)(3,3πb c =又4sin(3)sin[(3)]sin(3)333πππx πx x -=--=-+,4(,)(3,3πb c =-注意到[0,2)c π∈,所以只有2组:5(23,)3π,,4(23,)3π-,满足题意;当2a =-时,同理可得出满足题意的()c b a ,,也有2组,故共有4组.3.(2022年浙江省高考数学试题·第17题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是_______.【答案】[12+解析:以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,8,22A ⎛⎫- ⎪ ⎪⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤ ,所以221cos 4512x y +≤+≤ ,故222128PA PA PA +++ 的取值范围是[12+.故答案为:[12+.2.(2014高考数学浙江理科·第17题)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15m ,AC =25m ,∠BCM =30°,则tan θ的最大值是__________.(仰角θ为直线AP 与平面ABC 所成角)【答案】539解析:152590AB cm AC cm ABC ==∠=︒ ,,,20BC cm ∴=,过P 作PP BC '⊥,交BC 于P ′,连接AP ',则tan θ=,设BP x '=,则20CP x '=﹣,由30BCM ∠=︒,得3020PP CP tan x '='︒=(﹣),在直角ABP ' 中,2AP 225x '=+∴2320tan 3225x x θ-=+ 令220y 225xx -=+,则函数在20[0]x ∈,单调递减,∴0x =时,取得最大值为=.若P ′在CB 的延长线上,3020PP CP tan x '='︒=+(),在直角ABP ' 中2AP 225x '=+,∴2320 tan 3225x x θ+=+ 令()2220y 225x x+=+,则0y '=可得x =时,函数取得最大值,故答案为:.5.(2023年新课标全国Ⅰ卷·第15题)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[2,3)解析:因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).6.(2023年新课标全国Ⅱ卷·第16题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =______.【答案】32-解析:设1211,,,22A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=,由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知,()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=.因为28ππsin 033f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,所以()2sin 4π3f x x ⎛⎫=- ⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=-⎪⎝⎭,()23πsin 4ππ32f ⎛⎫∴=-=- ⎪⎝⎭.故答案为:32.7.(2015高考数学湖北理科·第13题)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75 的方向上,仰角为30 ,则此山的高度CD =m .【答案】6100解析:依题意, 30=∠BAC , 105=∠ABC ,在ABC ∆中,由180=∠+∠+∠ACB BAC ABC ,所以 45=∠ACB ,因为600=AB ,由正弦定理可得 30sin 45sin 600BC =,即2300=BC m ,在BCD Rt ∆中,因为 30=∠CBD ,2300=BC ,所以230030tan CD BC CD == ,所以6100=CD m .8.(2015高考数学上海理科·第13题)已知函数()sin f x x =⋅若存在12,,,m x x x 满足1206m x x x π≤<<<≤ ,且()()()()()()()*12231122,m m f x f x f x f x f x f x m m N --+-++-=≥∈ ,则m 的最小值为.【答案】8解析:对任意的,i j x x ,()()()()max min 2i j f x f x f x f x -≤-=,欲使m 取最小值,尽可能多的让()1,2,,i x i m = 取最值点,考虑到1206m x x x π≤<<<≤ ,()()()()()()()*12231122,m m f x f x f x f x f x f x m m N --+-++-=≥∈ ,按照下图所示取值可以满足条件1x 2x 3x 4x 5x 6x 7x 8x yx 所以m 的最小值为8;。

2014年高考数学三角函数、解三角形汇编

2014年高考数学三角函数、解三角形汇编

2014年高考数学三角函数、解三角形1.已知函数2()2sin ()234f x x x π=--,ππ42x ⎡⎤∈⎢⎥⎣⎦, (1)求()f x 的最大值和最小值;(2)若方程()f x m =仅有一解,求实数m 的取值范围.2.已知函数()4cos sin()1(0)6f x x x πωωω=-+>的最小正周期是π. (1)求()f x 的单调递增区间;(2)求()f x 在[8π,38π]上的最大值和最小值.3.已知函数2()2cos sin(2)1f x x x π=-+-.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]2π上的最小值和最大值.4.已知函数2()cos(2)2sin 13f x x x =--+π.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.5.已知向量()1cos ,1,(1,)a x b a x ωω=+= (ω为常数且0ω>),函数x f ⋅=)(在R 上的最大值为2.(1)求实数a 的值;(2)把函数()y f x =的图象向右平移6πω个单位,可得函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,求ω取最大值时的单调增区间.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c 且cos 3cos C a c B b-=. (1)求sin B ;(2)若b a c ==,求ABC ∆的面积.7.设函数()f x a b =⋅,其中向量(sin 21,sin 2,6a x b x x R π⎛⎫⎛⎫==--∈ ⎪ ⎪⎝⎭⎝⎭ 。

(1)求()f x 的最小值,并求使()f x 取得最小值的x 的集合。

(2)将函数()f x 图像沿x 轴向右平移,则至少平移多少个单位长度,才能使得到的函数()g x 的图像关于y 轴对称。

8.已知函数22())2sin ()312f x x x ππ-+-,钝角ABC ∆(角,,A B C 对边为,,a b c )的角B 满足()1f B =.(1)求函数()f x 的单调递增区间;(2)若3,b c ==,B a .9.设函数f (x )=sin 3x πω⎛⎫+ ⎪⎝⎭+sin 3x πω⎛⎫- ⎪⎝⎭ωx (其中ω>0),且函数f (x )的图象的两条相邻的对称轴间的距离为2π. (1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.10.已知函数f (x )=tan 34x π⎛⎫+ ⎪⎝⎭. (1)求f 9π⎛⎫ ⎪⎝⎭的值; (2)设α∈3,2ππ⎛⎫ ⎪⎝⎭,若f 34απ⎛⎫+ ⎪⎝⎭=2,求cos 4πα⎛⎫- ⎪⎝⎭的值.11.已知函数()sin f x m x x =+,(0)m >的最大值为2.(Ⅰ)求函数()f x 在[]0,π上的值域;(Ⅱ)已知ABC ∆外接圆半径3=R ,()()sin 44f A f B A B ππ-+-=,角,A B 所对的边分别是,a b ,求b a 11+的值.12.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,ABC ∆的面积S 满足c o s 2S b c A =. (Ⅰ)求角A 的值;(Ⅱ)若a =B 的大小为x,用x 表示c 并求的取值范围.13.在ABC ∆中,内角,,A B C 的对边分别为,,a b c . 已知cos -2cos 2-cos A C c a B b = . (1)求sin sin C A 的值; (2) 若1cos ,24B b ==,求ABC ∆的面积.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c o s c o s c o s a C b C c B c A -=-,且C =120°.(1)求角A ;(2)若a =2,求c .15.已知函数2()1cos 22sin (),6f x x x x R π=+--∈.(Ⅰ)求()f x 的最小正周期和对称中心;(Ⅱ)若将()f x 的图像向左平移(0)m m >个单位后所得到的图像关于y 轴对称,求实数m 的最小值.16.(本小题满分12分)设()sin (sin cos )f x x x x =+.(Ⅰ)求()f x 最大值及相应x 值;(Ⅱ)锐角ABC △中,满足()1f A =.求()sin 2B C +取值范围.17.在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++(1)求角A 值;(2)求C B cos sin 3-的最大值.18.已知:ABC c b a ∆分别是锐角,,三个内角A ,B ,C 所对的边,向量)sin ,cos 2(),sin 32,(sin A A b A A a ==,设b a A f ⋅=)((1)若32)(=A f ,求角A ;(2)在(1)的条件下,若2,tan 2tan tan ==+a Aa C c Bb ,求三角形ABC 的面积.19.在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,且满足cos (3)cos b C a c B =- (1)求B cos ;(2)若4BC BA ⋅= ,b =a ,c 的值.20.在ABC ∆中,,,A B C 的对边分别为,,a b c 且cos ,cos ,cos a C b B c A 成等差数列.(1)求B 的值;(2)求22sin cos()A A C +-的范围.21.已知ABC ∆中,角A 、B 、C 的对边分别为a b c 、、,且)c o s c o s c B b C-=. (1)求角B 的大小;(2)设向量8(cos 21,cos ),(1,)5A A +-m =n =,且⊥m n ,求tan()4A π+的值参考答案1.(1) m ()2ax f x =,min ()4f x =-(2)({}2,34⎤-⋃-⎦【解析】试题分析:(1)先用余弦的二倍角公式将其降幂,再用诱导公式及化一公式将其化简为()()sin f x A x k ωϕ=++或()()cos f x A x k ωϕ=++的形式,再根据正弦或余弦的最值情况求其最值。

2014年高考数学(文)真题分类汇编:三角函数

2014年高考数学(文)真题分类汇编:三角函数

三角函数1.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45【答案】D2.[2014·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 【答案】C3.[2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称【答案】D4.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y=tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A5.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 【答案】C6.[2014·安徽卷] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π4【答案】C7.[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定【答案】[解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.8.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增【答案】B9.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 【答案】B10.[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位【答案】A11.[2014·四川卷] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度 【答案】A12.[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C1.[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 【答案】A5.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19 B.13 C .1 D.72【答案】D5.[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.【答案】π613.[2014·重庆卷] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.【答案】2212.[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 【答案】π14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.【答案】3216.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.【答案】4312.[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 【答案】π [解析] 因为y =32sin 2x +1+cos 2x 2=sin ⎝⎛⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.[2014·北京卷] 在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.【答案】2 15814.[2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. 【答案】113.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.【答案】π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.14.[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是______.14.6-24[解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab =34a 2+12b 22ab -24≥234a 2·12b 22ab -24=6-24,当且仅当3a 2=2b 2,即a b =23时等号成立.16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-3【答案】15018. [2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间. 【解析】方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .16.[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 【解析】 由三角形面积公式,得12×3×1·sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.16.[2014·北京卷] 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.【解析】(1)f (x )的最小正周期为π. x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.17.[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 16.[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.16.[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 【解析】(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.18.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .【解析】由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C )=tan A +tan Ctan A tan C -1=-1,所以B =135°.17.[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.【解析】(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13. 因此△ABC 的面积S =12ab sin C =12×3×32×13=322.18.[2014·重庆卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.【解析】(1)由题意可知c =8-(a +b )=72.由余弦定理得cos C =a 2+b 2-c22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得sin A ·1+cos B 2+sin B ·1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知a +b =3c .又a +b +c =8,所以a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,所以b =3.15.[2014·江苏卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55.(1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 【解析】(1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎫-2 55+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55× ⎝⎛⎭⎫-2 55=-45,cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α= ⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45=-4+3 310.17.[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC→=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.【解析】(1)由BA →·BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13×79+2 23×4 29=2327.21.[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x1+sin x+2xπ-1.证明: (1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.【解析】证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ). 由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎭⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎭⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 a -c =66b ,sin B =6sin C . (1)求cos A 的值;(2)求cos ⎝⎛⎫2A -π6的值.【解析】(1)在△ABC 中,由b sin B =c sin C,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.(2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 【解析】(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22, 所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 19.[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-6【解析】 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大.17.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. 【解析】(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3.17.[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.【解析】(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13. 因此△ABC 的面积S =12ab sin C =12×3×32×13=322.16.[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.【解析】(1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)由题设有b 2=ac ,c =2a , ∴b =2a .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.。

专题08 三角函数选择题丨十年(2014-2023)高考数学真题分项汇编(解析版)(共35页)

专题08   三角函数选择题丨十年(2014-2023)高考数学真题分项汇编(解析版)(共35页)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!1十年(2014-2023)年高考真题分项汇编三角函数选择题目录题型一:三角函数的概念..............................................................................................1题型二:三角恒等变换..................................................................................................3题型三:三角函数的图像与性质.................................................................................8题型四:正余弦定理....................................................................................................26题型五:三角函数的综合应用 (33)题型一:三角函数的概念一、选择题1.(2020年高考课标Ⅱ卷理科·第2题)若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0【答案】D解析:方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈,所以34244,k k k Zππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<故选:D .方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误;当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确;故选:D .【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.2.(2020年高考课标Ⅰ卷理科·第9题)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A .3B .23C .13D .9【答案】A【解析】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3απα∈∴== .故选:A .【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.3.(2021年高考全国甲卷理科·第9题)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B .55C .3D .3【答案】A 解析:cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,15cos 4α∴==,sin 15tan cos 15ααα∴==.故选:A .【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.4.(2020年高考课标Ⅲ卷理科·第9题)已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .2【答案】D解析:2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭ ,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.题型二:三角恒等变换一、选择题1.(2023年新课标全国Ⅰ卷·第8题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-【答案】B解析:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B2.(2023年新课标全国Ⅱ卷·第7题)已知α为锐角,1cos 4α=,则sin 2α=().A .358B .158-C .354D .14-【答案】D解析:因为21cos 12sin 24αα+=-=,而α为锐角,解得:sin 2α=514==.故选:D .3.(2021年高考浙江卷·第8题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是()A .0B .1C .2D .3解析:法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>,故三式中大于12的个数的最大值为2,故选C .法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<==,故三式中大于12的个数的最大值为2,故选C .4.(2021年新高考Ⅰ卷·第6题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .65【答案】C解析:将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++,故选C .5.(2022新高考全国II 卷·第6题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+⎪⎝⎭,则()A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-解析:由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=,所以()tan 1αβ-=-,故选:C6.(2019·上海·第16题)已知)tan(tan tan βαβα+=⋅.①存在α在第一象限,角β在第三象限;②存在α在第二象限,角β在第四象限;A.①②均正确;B .①②均错误;C .①对,②错;D .①错,②对【答案】D【解析】(推荐)取特殊值检验法:例如:令31tan =α和31tan -=α,求βtan 看是否存在.(考试中,若有解时则认为存在,取多组解时发现没有解,则可认为不存在),选D.(一般方法)设tan ,tan ,x y αβ==则2()1x yxy xy xy x y xy +=⇒-=+-;以y 为主元则可写成:22(1)0,x y x y x +-+=其判别式23(1)4x x ∆=--;设函数()()2314g x x x =--,并设12x x <,则()()()12221211221222222121212()24()11320222g x g x x x x x x x x x x x x x x x -=+--++-⎛⎫⎛⎫=-+-------< ⎪ ⎪⎝⎭⎝⎭即()g x 单调递减;而()()01,14g g ==-,故()0g x =的零点在()0,1上,设为a ;则当x a <时,()0g x >,当x a ≥时,()0g x ≤;故存在0x >使得23(1)40x x ∆=-->而对方程()2210x y x y x +-+=,根据韦达定理,1221211x y y x y y x -⎧+=⎪⎪⎨⎪⋅=⎪⎩存在0x >时,而01x <<使得对应的y 存在,而此时12120y y y y +<⎧⎨⋅>⎩,故此时y 必为负数,即β在Ⅱ或Ⅳ象限;也同样存在0x <,使得对应的y 存在,此时12120y y y y +<⎧⎨⋅>⎩,故此时必存在一个y 值为负数,另一个y为正数,即β在Ⅱ、Ⅳ象限或Ⅰ、Ⅲ象限均可,故选D .【点评】本题主要考三角恒等变换、不等式综合.7.(2019·全国Ⅱ·理·第10题)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos 21αα=+,则sin α=()A .15B.5C.3D.5【答案】B【解析】∵2sin 2cos 21α=α+,∴24sin cos 2cos α⋅α=α.0,2πα⎛⎫∈ ⎪⎝⎭,∴cos 0α>,sin 0α>,∴2sin cos α=α,又22sin cos 1αα+=,∴25sin 1α=,21sin 5α=,又sin 0α>,∴sin 5α=,故选B .【点评】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案.本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.8.(2018年高考数学课标Ⅲ卷(理)·第4题)若1sin 3α=,则cos 2α=()A .89B .79C .79-D .89-【答案】B解析:2217cos 212sin 1239αα⎛⎫=-=-⨯= ⎪⎝⎭,故选B .9.(2014高考数学课标1理科·第8题)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则()A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】B解析:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B 10.(2015高考数学重庆理科·第9题)若tan 2tan 5πα=,则3cos()10sin()5παπα-=-()A .1B .2C .3D .4【答案】C 解析:由已知,3cos(10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin555ππππππ+=-33cos cos 2sin 510510sin cos 55ππππππ+==155(cos cos )(cos cos )21010101012sin 25πππππ++-3cos103cos 10ππ==,选C .11.(2015高考数学新课标1理科·第2题)sin 20cos10cos160sin10︒︒-︒︒=()A .32-B .32C .12-D .12【答案】D解析:原式=oooosin 20cos10cos 20sin10+=osin 30=12,故选D .考点:本题主要考查诱导公式与两角和与差的正余弦公式.12.(2015高考数学陕西理科·第6题)“sin cos αα=”是“cos 20α=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A解析:因为22cos 2cos sin 0ααα=-=,所以sin cos αα=或sin cos αα=-,因为“sin cos αα=”⇒“cos 20α=”,但“sin cos αα=”⇐/“cos 20α=”,所以“sin cos αα=”是“cos 20α=”的充分不必要条件,故选A .13.(2016高考数学课标Ⅲ卷理科·第5题)若3tan 4α=,则2cos 2sin 2αα+=()A .6425B .4825C .1D .1625【答案】A 【解析】由3tan 4α=,得3sin 5α=,4cos 5α=或3sin 5α=-,4cos 5α=-所以2161264cos 2sin 24252525αα+=+⨯=,故选A.14.(2016高考数学课标Ⅱ卷理科·第9题)若π3cos 45α⎛⎫-=⎪⎝⎭,则sin 2α=()A .725B .15C .15-D .725-【答案】C 【解析】∵3cos 45πα⎛⎫-=⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .题型三:三角函数的图像与性质一、选择题1.(2023年全国乙卷理科·第6题)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D .2【答案】D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D .2.(2023年全国甲卷理科·第10题)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A .1B .2C .3D .4【答案】C解析:因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C .3.(2021年新高考Ⅰ卷·第4题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭【答案】A解析:因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫ ⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件,故选A .4.(2017年高考数学新课标Ⅰ卷理科·第9题)已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin 2cos 2cos 23326C y x x x ⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移π12个单位得到2C ,故选D .5.(2020年高考课标Ⅰ卷理科·第7题)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()()A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.6.(2022高考北京卷·第5题)已知函数22()cos sin f x x x =-,则()A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增【答案】C解析:因为()22cos sin cos 2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错;对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错;对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对;对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错.故选,C .7.(2022年高考全国甲卷数学(理)·第12题)已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c >>D .a c b>>【答案】A 【解析】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A8.(2022年浙江省高考数学试题·第6题)为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+⎪⎝⎭图象上所有的点()A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度【答案】D解析:因为ππ2sin 32sin 3155y x x ⎡⎤⎛⎫==-+ ⎪⎢⎝⎭⎣⎦,所以把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上的所有点向右平移π15个单位长度即可得到函数2sin 3y x =的图象.故选,D .9.(2022新高考全国I 卷·第6题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫=⎪⎝⎭()A .1B .32C .52D .3【答案】A解析:由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭.故选:A10.(2021高考北京·第7题)函数()cos cos 2f x x x =-是()A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为98【答案】D解析:由题意,()()()()cos cos 2cos cos 2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98.故选:D .11.(2020天津高考·第8题)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是()A .①B .①③C .②③D .①②③【答案】B【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51(sin()sin 122362f ππππ=+==≠,故②不正确;将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin(3y x π=+的图象,故③正确.故选:B .12.(2019·天津·理·第7题)已知函数()sin()(0,0,)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭()A .2-B .C D .2【答案】答案:C解析:()f x 是奇函数,,k k ϕπ∴=∈Z ,又因为,0ϕπϕ<∴=,()sin2x g x A ω=,因为()g x 的最小正周期为2π,且0ω>,所以2212ππω=,2ω=,sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =,()2sin 2f x x =,332sin 84f ππ⎛⎫== ⎪⎝⎭.13.(2019·全国Ⅱ·理·第9题)下列函数中,以2π为周期且在区间,42ππ⎛⎫⎪⎝⎭单调递增的是()()A .()cos 2f x x =B .()sin 2f x x =C .()cos f x x =D .()sin f x x=【答案】A【解析】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos 2y x =图象,由图象知,其周期为2π,在区间,42ππ⎛⎫⎪⎝⎭单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间,42ππ⎛⎫⎪⎝⎭单调递减,排除B ,故选A.【点评】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;③函数()y f x ==,再利用降幂公式及三角函数公式法求三角函数的周期,例如,cos 2y x ===,所以周期242T ππ==.14.(2019·全国Ⅰ·理·第11题)关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增③()f x 在[,]ππ-有4个零点④()f x 的最大值为2其中所有正确结论的编号是()A .①②④B .②④C .①④D .①③【答案】答案:C解析:作出函数sin ,sin ,sin sin y x y x y x x ===+的图象如图所示,由图可知,()f x 是偶函数,①正确,()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递减,②错误,()f x 在[,]ππ-有3个零点,③错误;()f x 的最大值为2,④正确,故选C .15.(2018年高考数学天津(理)·第6题)将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数()A .在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递增B .在区间3,4ππ⎡⎤⎢⎥⎣⎦上单调递减C .在区间53,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间3,22ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】A解析:将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎝⎭⎣⎦,当35,44x ππ⎡⎤∈⎢⎥⎣⎦时,352,22x ππ⎡⎤∈⎢⎥⎣⎦,函数值从1-增加到1,所以所得图象对应的函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递增,故选A .16.(2018年高考数学课标Ⅱ卷(理)·第10题)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是()A .π4B .π2C .3π4D .π【答案】A解析:由已知()sin cos 0f x x x '=--≤,得sin cos 0≥x x +,即04)≥x π+,解得322,()44≤≤k x k k Z ππππ-++∈,即[]3,,44a a ππ⎡⎤-⊂-⎢⎥⎣⎦,所以434≥≤a a a a ππ⎧⎪-<⎪⎪--⎨⎪⎪⎪⎩,得04≤a π<,所以a 的最大值是4π,故选A .17.已知函数()sin cos f x a x b x =-(a b ,为常数,0a x ≠∈R ,)的图象关于直线π4x =对称,则函数3π()4y f x =-是A.偶函数且它的图象关于点(π0),对称B .偶函数且它的图象关于点3π02⎛⎫⎪⎝⎭,对称()C.奇函数且它的图象关于点3π02⎛⎫⎪⎝⎭,对称D.奇函数且它的图象关于点(π0),对称【答案】D解:已知函数()sin cos f x a x b x =-(a 、b 为常数,0,)a x R ≠∈,∴22()sin()f x a b x ϕ=+-的周期为2π,若函数的图象关于直线4x π=对称,不妨设()sin()4f x x π=+,则函数3()4y f x π=-=3sin()sin()sin 44x x x πππ-+=-=,所以3()4y f x π=-是奇函数且它的图象关于点(,0)π对称,选D .18.设ππ22αβ⎛⎫∈- ⎪⎝⎭,,,那么“αβ<”是“tan tan αβ<”的A.充分而不必要条件B.必要而不充分条件()C.充分必要条件D.既不充分也不必要条件【答案】C解:在开区间(,)22ππ-中,函数tan y x =为单调增函数,所以设,(,),22ππαβ∈-那么""αβ<是"tan tan "αβ<的充分必要条件,选C .19.(2014高考数学浙江理科·第4题)为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像()A .向右平移4π个单位B .向左平移4π个单位C .向右平移12π个单位D .向左平移12π个单位【答案】C解析:函数33y sin x cos x =+=,故只需将函数23y cos x =的图象向右平移个单位,得2y ==的图象.故选:C .20.(2014高考数学四川理科·第3题)为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图像上所有的点()A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度【答案】A解析:因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到21.(2014高考数学陕西理科·第2题)函数()cos(26f x x π=-的最小正周期是()A .2πB .πC .2πD .4π【答案】B解析:应用()()sin f x A x ωφ=+与()()cos f x A x ωφ=+的最小正周期为2||T πω=.因为2=ω,所以2T ππω==,故选B .22.(2014高考数学辽宁理科·第9题)将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数()A .在区间7[,1212ππ上单调递减B .在区间7[,1212ππ上单调递增C .在区间[,63ππ-上单调递减D .在区间[,63ππ-上单调递增【答案】B解析:将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得函数为23sin 23sin 2233y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以23222232k x k πππππ+≤-≤+,解得7131212k x k ππππ+≤≤+,所以函数在区间713[,]1212k k ππππ++上单调递减,所以A,C 都不正确;2222232k x k πππππ-+≤-≤+,解得71212k x k ππππ+≤≤+,所以函数在区间7,1212k k ππππ⎡⎤++⎢⎥⎣⎦上单调递增,当k=0时,函数在在区间7[,]1212ππ上单调递增.23.(2014高考数学课标2理科·第12题)设函数xf x m()sin π=.若存在f x ()的极值点x 0满足x f x m 22200[()]+<,则m 的取值范围是()A .(,6)(6,)-∞-⋃+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-⋃+∞D .(,1)(4,)-∞-⋃+∞解析:π()3sinx f x m =的极值为3±,即200||[()]3,||2m f x x =£,2222200[()]3344m m x f x m \+³+\+<,,解得||2m >,故选C 。

2014年高考文科数学三角函数真题附答案

2014年高考文科数学三角函数真题附答案

2014年高考文科数学真题(三角函数)一.选择题(共10小题)1.(2014•广西)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣2.(2014•广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.3.(2014•河南)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>04.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④ D.①③5.(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度 B.向右平行移动1个单位长度C.向左平行移动π个单位长度 D.向右平行移动π个单位长度6.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是()A.B.πC.2πD.4π7.(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增8.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1 D.9.(2014•福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称10.(2014•安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.二.填空题(共8小题)11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为_________.12.(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()=_________.13.(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于_________.14.(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=_________.15.(2014•山东)函数y=sin2x+cos2x的最小正周期为_________.16.(2014•湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B= _________.17.(2014•福建)在△ABC中,A=60°,AC=2,BC=,则AB等于_________.18.(2014•北京)在△ABC中,a=1,b=2,cosC=,则c=_________;sinA=_________.三.解答题(共8小题)19.(2014•广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.20.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.21.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.22.(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.23.(2014•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.24.(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.25.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).26.(2014•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.2014年高考文科数学真题(三角函数)参考答案与试题解析一.选择题(共10小题)1.(2014•广西)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.2.(2014•广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:空间角.分析:由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.解答:解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.点评:本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.3.(2014•河南)若tanα>0,则()A.s inα>0 B.c osα>0 C.s in2α>0 D.c os2α>0考点:三角函数值的符号.专题:三角函数的求值.分析:化切为弦,然后利用二倍角的正弦得答案.解答:解:∵tanα>0,∴,则sin2α=2sinαcosα>0.故选:C.点评:本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题.4.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:根据三角函数的周期性,求出各个函数的最小正周期,从而得出结论.解答:解:∵函数①y=cos丨2x丨=cos2x,它的最小正周期为=π,②y=丨cosx丨的最小正周期为=π,③y=cos(2x+)的最小正周期为=π,④y=tan(2x﹣)的最小正周期为,故选:A.点评:本题主要考查三角函数的周期性及求法,属于基础题.5.(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接利用函数图象的平移法则逐一核对四个选项得答案.解答:解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.6.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x+)的最小正周期是π,故选:B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.7.(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.解答:解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.8.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.考点:余弦定理;正弦定理.专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.9.(2014•福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项A,B,再由cos=cos(﹣)=0即可得到正确选项.解答:解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.即f(x)=cosx.∴f(x)是周期为2π的偶函数,选项A,B错误;∵cos=cos(﹣)=0,∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.故选:D.点评:本题考查函数图象的平移,考查了余弦函数的性质,属基础题.10.(2014•安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值.分析:利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.解答:解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.点评:本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题.二.填空题(共8小题)11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.考点:三角函数的最值.专题:三角函数的求值.分析:展开两角和的正弦,合并同类项后再用两角差的正弦化简,则答案可求.解答:解:∵f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+cosxsinφ﹣2sinφcosx=sinxcosφ﹣sinφcosx=sin(x﹣φ).∴f(x)的最大值为1.故答案为:1.点评:本题考查两角和与差的正弦,考查了正弦函数的值域,是基础题.12.(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()=.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:哟条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.解答:解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈z,∴ω=,φ=,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.13.(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.考点:两角和与差的正弦函数;正弦函数的图象.专题:三角函数的求值.分析:由三角函数公式可得sin(x+)=,可知x+=2kπ+,或x+=2kπ+,k∈Z,结合x∈[0,2π],可得x值,求和即可.解答:解:∵sinx+cosx=1,∴sinx+cosx=,即sin(x+)=,可知x+=2kπ+,或x+=2kπ+,k∈Z,又∵x∈[0,2π],∴x=,或x=,∴+=故答案为:点评:本题考查两角和与差的三角函数公式,属基础题.14.(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ=.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由条件利用两个向量的数量积公式求得2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tanθ解答:解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,∴2sinθ﹣c osθ=0,∴tanθ=,故答案为:.点评:本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.15.(2014•山东)函数y=sin2x+cos2x的最小正周期为π.考点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期解答:解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.点评:本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.16.(2014•湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B=或.考点:余弦定理.专题:三角函数的求值.分析:利用正弦定理列出关系式,将a,sinA,b的值代入求出sinB的值,即可确定出B的度数.解答:解:∵在△ABC中,A=,a=1,b=,∴由正弦定理=得:sinB===,∵a<b,∴A<B,∴B=或.故答案为:或点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.17.(2014•福建)在△ABC中,A=60°,AC=2,BC=,则AB等于1.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长.解答:解:∵在△ABC中,A=60°,AC=b=2,BC=a=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即3=4+c2﹣2c,解得:c=1,则AB=c=1,故答案为:1点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.18.(2014•北京)在△ABC中,a=1,b=2,cosC=,则c=2;sinA=.考点:余弦定理.专题:三角函数的求值;解三角形.分析:利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.解答:解:∵在△ABC中,a=1,b=2,cosC=,∴由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;∵cosC=,C为三角形内角,∴sinC==,∴由正弦定理=得:sinA===.故答案为:2;点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.三.解答题(共8小题)19.(2014•广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.考点:正弦定理的应用;三角函数中的恒等变换应用.专题:解三角形.分析:由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+B)]=﹣tan(A+B)即可得出.解答:解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=点评:本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.20.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.21.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.22.(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos (α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.解答:解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cos2α﹣sin2α)•(sinα﹣cosα),即(sinα﹣cosα)=•(cosα﹣sinα)2•(sinα+cosα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.23.(2014•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.考点:三角函数中的恒等变换应用;函数奇偶性的性质.专题:三角函数的求值.分析:(1)把x=代入函数解析式可求得a的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.(2)利用f()=﹣和函数的解析式可求得sin,进而求得cos,进而利用二倍角公式分别求得sinα,cosα,最后利用两角和与差的正弦公式求得答案.解答:解:(1)f()=﹣(a+1)sinθ=0,∵θ∈(0,π).∴sinθ≠0,∴a+1=0,即a=﹣1∵f(x)为奇函数,∴f(0)=(a+2)cosθ=0,∴cosθ=0,θ=.(2)由(1)知f(x)=(﹣1+2cos2x)cos(2x+)=cos2x•(﹣sin2x)=﹣,∴f()=﹣sinα=﹣,∴sinα=,∵α∈(,π),∴cosα==﹣,∴sin(α+)=sinαcos+cosαsin=.点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.24.(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.考点:余弦定理的应用;正弦定理.专题:解三角形.分析:(Ⅰ)根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.(Ⅱ)利用两角和的余弦公式,结合正弦定理即可得到结论.解答:解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.25.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).考点:两角和与差的正弦函数.专题:三角函数的图像与性质.分析:(1)通过函数f(x)=Asin(x+),x∈R,且f()=,直接求A的值;(2)利用函数的解析式,通过f(θ)﹣f(﹣θ)=,θ∈(0,),求出cosθ,利用两角差的正弦函数求f(﹣θ).解答:解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=,∴f()=Asin(+)=Asin=,∴.(2)由(1)可知:函数f(x)=3sin(x+),∴f(θ)﹣f(﹣θ)=3sin(θ+)﹣3sin(﹣θ+)=3[()﹣()]=3•2sinθcos=3sinθ=,∴sinθ=,∴cosθ=,∴f(﹣θ)=3sin()=3sin()3cosθ=.点评:本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.26.(2014•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.考点:余弦定理的应用.专题:计算题;解三角形.分析:利用三角形的面积公式,求出sinA=,利用平方关系,求出cosA,利用余弦定理求出a的值.解答:解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.点评:本题考查三角形的面积公式、余弦定理,考查学生的计算能力,属于中档题.。

2014年全国个省市高考理科数学分类汇编:三角函数

2014年全国个省市高考理科数学分类汇编:三角函数

一、选择题 1、(新课标全国卷Ⅰ)8题 设)2,0(πα∈,)2,0(πβ∈,且ββαcos sin 1tan +=,则( ) A.23πβα=- B. 22πβα=- C. 23πβα=+ D. 22πβα=+2、(新课标全国卷Ⅱ)4题 钝角三角形ABC 的面积是21,2,1==BC AB ,则=AC ( ) A.5 B.5 C.2 D. 12'、(新课标全国卷Ⅱ)12题设函数mx x f πsin 3)(=.若存在)(x f 的极值点0x 满足[]22020)(m x f x <+,则m 的取值范围是( )A.),6()6,(+∞⋃--∞B. ),4()4,(+∞⋃--∞C. ),2()2,(+∞⋃--∞D. ),1()1,(+∞⋃--∞ 3、(大纲卷-广西卷)3题设︒=33sin a ,︒=55cos b ,︒=55tan c ,则( ) A.c b a >> B.a c b >> C.a b c >> D. b a c >> 4、(安徽卷)6题设函数))((R x x f ∈满足x x f x f s i n )()(+=+π.当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D. 21- 5、(湖南卷)9题已知函数)sin()(ϕ-=x x f ,且0)(320=⎰dx x f π,则函数)(x f 的图像的一条对称轴是( )A.65π=x B. 127π=x C. 3π=x D. 6π=x 6、(四川卷)3题为了得到函数x y x y 2sin )12sin(=+=的图像,只需把函数的图像上所有的点( )A.向左平行移动21个单位长度 B. 向右平行移动21个单位长度 C.向左平行移动1个单位长度 D. 向右平行移动1个单位长度7、(浙江卷)4题 为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3cos 2=的图像( )A.向右平移4π个单位B. 向左平移4π个单位 C.向右平移12π个单位 D. 向左平移12π个单位8、(陕西卷)2题 函数)62cos()(π-=x x f 的最小正周期是( )A.2πB.πC. π2D. π4 9、(辽宁卷)9题将函数)32sin(π+=x y 的图像向右平移2π个单位长度,所得图像对应的函数( )A.在区间]127,12[ππ上单调递减B. 在区间]127,12[ππ上单调递增 C. 在区间]3,6[ππ-上单调递减 D. 在区间]3,6[ππ-上单调递增二、填空题1、(新课标全国卷Ⅰ)16题已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,2=a ,且C b c B A b s i n )()s i n )(s i n 2(-=-+,则△ABC 面积的最大值为 .2、(新课标全国卷Ⅱ)14题函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为 . 3、(大纲卷-广西卷)16题若函数x a x x f sin 2cos )(+=在区间)2,6(ππ是减函数,则a 的取值范围是 .4、(安徽卷)11题 若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . 5、(广东卷)12题在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知,2cos cos b B c C b =+则=ba. 6、(四川卷)13题如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 m.C(用四舍五入法将结果精确到个位,参考数据: 7、(陕西卷)13题 设20πθ<<,向量)1,(cos ),cos ,2(sin θθθ==,若//,则=θtan .8(山东卷)12题在 △ABC 中,已知A tan =⋅,当6π=A 时,△ABC 的面积为 .9、(福建卷)12题在 △ABC 中,60=A ,32,4==BC AC ,则△ABC 的面积为 . 10、(天津卷)12题△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知C B a c b sin 3sin 2,41==-,则A cos 的值为 . 11、(江苏卷)5题已知函数x y cos =与)2sin(ϕ+=x y (πϕ<≤0),它们的图像有一个横坐标为3π的交点,则ϕ的值是 . 12、(江苏卷)14题若△ABC 的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是 . 三、解答题 1、(新课标全国卷Ⅰ)未考 2、(新课标全国卷Ⅱ)未考 3、(大纲卷-广西卷)17题共10分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知31tan ,cos 2cos 3==A A c C a ,求B . 4、(安徽卷)16题12分设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且3=b ,1=c ,B A 2=. (Ⅰ)求a 的值; (Ⅱ)求)4sin(π+A 的值.5、(广东卷)16题12分已知函数,),4sin()(R x x A x f ∈+=π且23)125(=πf . (1) 求A 的值; (2) 若),2,0(,23)()(πϑθθ∈=-+f f 求)43(ϑπ-f . 6、(广东卷)18题12分如图,在平面四边形ABCD 中,7,2,1===AC CD AD .(Ⅰ)求CAD ∠cos 的值; (Ⅱ)若621sin ,147cos =∠-=∠CBA BAD ,求BC 的长. BD7、(四川卷)16题12分 已知函数)43sin()(π+=x x f .(Ⅰ)求)(x f 的单调递增区间; (Ⅱ)若α是第二象限角,,2cos )4cos(54)3(απαα+=f 求ααsin cos -的值. 8、(浙江卷)18题14分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知b a ≠,3=c ,B B A A B A cos sin 3cos sin 3cos cos 22-=-.(Ⅰ)求角C 的大小; (Ⅱ)若54sin =A ,求△ABC 的面积. 9、(湖北卷)17题11分某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系: )24,0[,12sin12cos310)(∈--=t t t t f ππ.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在那段时间实验室需要降温? 10、(陕西卷)16题12分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .(Ⅰ)若a 、b 、c 成等差数列,证明:)sin(2sin sin C A C A +=+; (Ⅱ)若a 、b 、c 成等比数列,求B cos 的最小值. 11、(江西卷)16题12分已知函数)2cos()sin()(θϑ+++=x a x x f ,其中R a ∈,)2,2(ππϑ-∈.(Ⅰ)当4,2πθ==a 时,求)(x f 在区间],0[π上的最大值与最小值;(Ⅱ)若)2(πf =0,1)(=πf ,求a ,θ的值.12、(重庆卷)17题共13分,(Ⅰ)小问5分,(Ⅱ)8分 已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π. (Ⅰ)求ϖ和ϕ的值; (Ⅱ)若43)2(=αf (326παπ<<),求)23cos(πα+的值. 13、(山东卷)16题12分已知向量),,2(sin ),2cos ,(n x x m ==函数x f ⋅=)(,且)(x f y =的图像过点(3,12π)和点(2,32-π). (Ⅰ)求n m ,的值(Ⅱ)将)(x f y =的图像向左平移ϕ(0<ϕ<π)个单位后得到函数)(x g y =的图像,若)(x g y =的图像上各最高点到点(0,3)的距离的最小值为1,求)(x g y =的单调递增区间.14、(福建卷)16题13分已知函数21)cos (sin cos )(-+=x x x x f . (Ⅰ)若20πα<<,且22sin =α,求)(αf ; (Ⅱ)求函数)(x f 的最小正周期及单调递增区间. 15、(北京卷)15题13分 如图,在△ABC 中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD . (Ⅰ)求BAD ∠sin ; (Ⅱ)求BD ,AC 的长.F16、(天津卷)15题13分 已知函数R x x x x x f ∈+-+⋅=,43cos 3)3sin(cos )(2π. (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在闭区间]4,4[ππ-上的最大值和最小值. 17、(辽宁卷)17题12分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a >c .已知.3,31c o s ,2===⋅b B 求:(Ⅰ)a 和c 的值; (Ⅱ))cos(C B -的值. 18、(江苏卷)15题14分 已知),2(ππα∈,55sin =α. (1) 求)4sin(απ+的值;(2) 求)265cos(απ-的值.。

2014年高考真题数学解答题:三角函数(理科)

2014年高考真题数学解答题:三角函数(理科)

2014年高考真题数学解答题:三角函数(理科)1.(2014.(1(2)求.2.(2014.(1)求()f x 的单调递增区间; (2)若α是第二象限角,,求cos sin αα-的值.3.(2014.陕西)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (1)若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (2)若c b a ,,成等比数列,求B cos 的最小值.4.(2014.山东)已知向量(,cos2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.5.(2014.江西)已知函数()sin()cos(2)f x x a x θθ=+++,(1时,求()f x 在区间[0,]π上的最大值与最小值;(2,求,a θ的值.6.(2014.,x R ∈,且 (1)求A 的值;(27.(2014.(1,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.8.(2014.对称,且图像上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)若.9.(2014.天津)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .1)求角C 的大小;(2)求ABC ∆的面积.10.(2014.辽宁)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.内角A ,B ,C 所对的边分别为,,a b c ,已知21)求角C 的大小;(2)已知4b =,ABC ∆的面积为6,求边长c 的值.形ABCD 中,13.(2014.湖北)某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11C ,则在哪段时间实验室需要降温?14.(2014.大纲卷)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知3cos 2cos a C c A =,B.15.(2014.北京)如图,在ABC ∆中,点D 在BC 边上,且2CD =,.16.(2014.安徽)设ABC 的内角,,A B C 所对边的长分别是,,a b c ,且3,1,2b c A B === (1(2.2014年高考真题数学解答题:三角函数(理科)参考答案1.(1(2 【解析】试题分析:(1)的值,根据两角和的正弦公式,可知还要求得cos α,由于,所以cos 0α<,利用同角关系可得;(2差的余弦公式我们知要先求得sin 2,cos 2αα,而这由二倍角公式结合(1)可很容易得到.本题应该是三角函数最基本的题型,只要应用公式,不需要作三角函数问题中常见的“角”的变换,“函数名称”的变换等技巧,可以算得上是容易题,当然要正确地解题,也必须牢记公式,及计算正确.试题解析:(1(2)由(1【考点】三角函数的基本关系式,二倍角公式,两角和与差的正弦、余弦公式.2.(1(2 【解析】看作一个整体,根据正弦函数sin y x =的单调递增区间便可得间.(2求三角函数值时,首先考虑统一角,故利用和角公式和函数得:意这里不能将.若sin cos 0αα+=,则 若sin cos 0αα+≠,则 【考点定位】三角函数的性质、三角恒等变换三角函数的求值.3.(1)证明见解析;(2 【解析】试题分析:(1)因为c b a ,,成等差数列,所以2a c b +=,再由三角形正弦定理得sin sin 2sin A C B+=,又在ABC∆中,有()B A B π=-+,所以sin sin[()]sin()B A C A C π=-+=+,最后得:()sin sin 2sin A C A C +=+,即得证;(2)因为c b a ,,成等比数列,所以2b a c=,由余弦定理得根据基本不等式222a c ac +≥(当且仅当a c =时等号成立)(当且仅当a c =时等号成立),所以B cos 试题解析:(1)c b a ,,成等差数列2a c b ∴+=由正弦定理得sin sin 2sin A C B +=sin sin[()]sin()B A C A C π=-+=+()sin sin 2sin A C A C ∴+=+(2)c b a ,,成等比数列2b ac∴=222a c ac+≥(当且仅当a c=时等号成立)(当且仅当a c=时等号成立)(当且仅当a c=时等号成立)所以Bcos的最小值为考点:正弦定理;余弦定理;基本不等式.4.(I(II )函数()y g x=的单调递增区间为【解析】试题分析:(1)由题意知()sin2cos2f x a b m x n x=∙=+.根据()y f x=的图象过点(2)由(依题意知到点0,3()的距离为1的最高点为0,2().由222,k x k k Zπππ-≤≤∈,得得到()y g x =的单调递增区间为2试题解析:(1)由题意知:()sin 2cos2f x a b m xn x =∙=+. 因为()y f x =的图象过点(2)由(设()y g x =的图象上符合题意的最高点为0(,2)x ,由题意知:2011x +=,所以00x =,即到点0,3()的距离为1的最高点为0,2().由222,k x k k Z πππ-≤≤∈,得所以,函数()y g x =的单调递增区间为考点:平面向量的数量积,三角函数的化简,三角函数的图象和性质.5.(1-1. (2【解析】试题分析:(1合基本三角函数性质求最值:因为[0,]x π∈,从而,故()f x 在[0,]π上-1.(2)两个独立条件求两个未知数,联立方程组求解即可. 由得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又知cos 0,θ≠试题解析:解(1因为[0,]x π∈,从而故()f x 在[0,]π上的最大值为-1. (2)由得2cos (12sin )02sin sin 1a a a θθθθ-=⎧⎨--=⎩,又知cos 0,θ≠解得考点:三角函数性质 6.(1(2【解析】试题分析:(1代入函数()f x 的解析式求出A 的值;(2)先利用已知条件θ的某个三角函数值,然后将代入函数()f x 的解析式,并结合诱导公式对. 试题解析:(1)(20,2πθ⎛∈ ⎝,sin 0θ>,则 34f π⎛∴- 【考点定位】本题考查诱导公式、同角三角函数的基本关系以及两角和的三角函数,综合考查三角函数的求值问题,属于中等题. 7. ;(2) π,【解析】试题分析:(1)求出角α的余弦值,再根据函数即可求得结论.(2) 由正弦与余弦的二倍角公式,以及三角函f x化简.根据三角函数周期的公式即可的结论.根据函数的单调递数的化一公式,将函数()增区间,通过解不等式即可得到所求的结论.试题解析:(1)因为,所以.所以12(2)因为-.由得f x的单调递增区间为所以()考点:1.三角函数的性质.2.三角的恒等变形.8.(1(2【解析】试题分析:(1)由函数图像上相邻两个最高点的距离为π求出周期,再利用公式出ω的值;.x,由(2)由(1)知n2结合用同角三角函数的基本关系可求值,因为可由两角和与差的三角函数公式求出sin α从而用诱导公式求得. 解:(1)因()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期T π=,2,,因得0k =(2)由(1考点:1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.9.(1(2 【解析】试题分析:(1)求角C 的大小,由已知可利用降幂公式进行降幂,及倍角公式变形得,移项整理,有两角和与差的三角函数关系,得(2)求ABC∆的面积,面积,故求出sin B即可,故由()sin sinB A C=+即可求出sin B,从而得面积.(1得,A B≠,又()0,A Bπ+∈,得由a c<,得A C<,故,所以ABC∆的面积为点评:本题主要考查诱导公式,两角和与差的三角函数公式,二倍角公式,正弦定理,余弦定理,三角形面积公式,等基础知识,同时考查运算求解能力.10.(1)a=3,c=2;(2【解析】试题分析:(1)由2BA BC⋅=和ac=6.由余弦定理,得2213a c+=.解22613aca c=⎧⎪⎨+=⎪⎩,即可求出a,c;(2)在ABC∆中,a b c =>,所以C 为锐角,因此,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果.(1)由2BA BC⋅=得,cos 2c a B ⋅=,又ac=6.由余弦定理,得2222cos a c b ac B +=+.又b=3,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得a=2,c=3或a=3,c=2. 因为a>c,∴ a=3,c=2. (2)在ABC ∆中,,又因为a b c =>,所以C 为锐角,于是cos()cos cos sin sin B C B C B C -=+= 考点:1.解三角形;2.三角恒等变换.11.(1(2 【解析】试题分析:(1)再用两个角的和的余弦公式求)cos(B A +,由三角形三内角和定理可求得C cos ,从而求得角C ;(2)根据三角形的面积公式求出边a ,再由余弦定理求c 边.(1(2,4=b , 由余弦定理得C ab b a Ccos 2222-+=,所以考点:两个角和差公式、二倍角公式、余弦定理、三角形的面积公式. 12.【解析】试题分析:(1)在CDE ∆中已知两边与一角,利用余弦定理即可求出第三条边DC 的长度,再利用余弦定理即可求出角CED 的正弦值.(2)由(1)三角形DEC 的三条边,根据正余弦直角的关系可得角DEC 的余弦值(或者利用正余弦之间的关系也可求的),角,,DEC BEC AEB ∠∠∠之和为0180,其中两个角的正余弦值已知,则可以利用余弦的和差角公式求的角AEB 的余弦值,AE 长度已知,利用直角三角形AEB 中余弦的定义即可求的BE 长. 如图设CED α∠=(1)在CDE ∆中,由余弦定理可得2222cos EC CD DE CD DE EDC =+-∠,于是又题设可知 271CD CD =++,即260CD CD +-=,解得2CD =(30CD =-<舍去),在CDE∆中,由正弦定理可得23sin2213277CD EC π== (2)由题设可得,于是根据正余弦之间的关系可得,而,所以s s i n在Rt EAB ∆中考点:正余弦定理 正余弦和差角公式 直角三角形 正余弦之间的关系 13.(1)4C ;(2)在10时至18时实验室需要降温. 【解析】试题分析:(1)利用两个角的和的正弦公式把)(t f 变成的取值范围,从而求得)(t f 在)24,0[上的最大值与最小值;(2),得出t 的取值范围,从而得到结论.(1于是)(t f 在)24,0[上取得最大值12,取得最小值8. (2)依题意,当11)(>t f 时实验室需要降温.故在10时至18时实验室需要降温.考点:三角函数的实际运用,两个角的和的正弦公式,三角不等式的解法. 14.135B ? . 【解析】试题分析:由题设及正弦定理得:3sin cos 2sin cos ,A C C A =从而得tan A 与tan C 的关系式,由已知tan A 的值即可得tan C 的值,再利用三角形内角和定理及两角和的正切函数公式可求得tan B 的值,最后求得B Ð的大小. 试题解析:由题设和正弦定理得1.tan 3A =又考点:1.正弦定理;2.三角恒等变换.15.(1(2)7. 【解析】试题分析:(1)由条件,根据1cos sin 22=+αα求ADC ∠sin ,再由两个角的差的正弦公式求BAD ∠sin ;(2)根据正弦定理求出BD ,再由余弦定理求AC .(1)在ADC ∆中,因为 所以B ADC B ADC B ADC BAD ∠∠-∠∠=∠-∠=∠sin cos cos sin )sin(sin(2)在ABD ∆中,由正弦定理得 在ABC ∆中由余弦定理得B BC AB BC AB AC cos 2222⋅⋅-+=考点:同角三角函数的关系,两个角的差的正弦公式,正弦定理与余弦定理.16.(1(2【解析】试题分析:(1)根据2A B =,则有sin sin 22sin cos A B B B ==,再由正、余弦定理.可以求得.(2)由余弦定理可以求出,而0A π<<,所以.故(1)因为2A B=,所以s i n s i n 22s i n c o A B B B ==,由正、余弦定理得因为3,1b c ==,所以由余弦定理得.由于0A π<<,所以考点:1.正、余弦定理;2.三角函数恒等变形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题10:三角函数
1.(2012年海淀一模理11)若1tan 2α=
,则cos(2)απ
2
+= . 2.(2012年西城一模理5)已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )
A .2
B .1
C .
12 D .1
4
3.(2012年门头沟一模理4)在ABC ∆中,已知4
A π
∠=,3
B π
∠=
,1AB =,则BC 为
( )
1
1
4.(2012年东城11校联考理11)在ABC ∆中,角,,A B C 所对的边分别为c b a ,,,若
sin A C =, 30=B ,2=b ,则边c = .
5.(2012年房山一模11)已知函数()()ϕω+=x x f sin (ω>0, πϕ<<0)的图象如图所示,则ω=_ _,ϕ=_ _.
6.(2012年密云一模理6) 已知函数sin(),(0,||)2
y x π
ωϕωϕ=+><
的简图如右上图, 则
ω
ϕ
的值为( ) A. 6π B. 6π C. 3π D. 3π
7.(2012年西城二模理9)在△ABC 中,BC ,AC =,π
3
A =,则
B = _____. 8.(2012年海淀二模理1)若sin cos 0θθ<,则角θ是( ) A .第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第二或第四象限角
x y
O π2π
1
-1
9.(2012年朝阳二模理4)在△ABC 中, 2AB = ,3AC =
,0AB AC ⋅< ,且△ABC
的面积为3
2
,则BAC ∠等于( )
A .60 或120
B .120
C .150
D .30 或150
10.(2012年昌平二模理9)在∆ABC 中,4
,2,2π
===A b a 那么角C =_________.
11.(2012年东城二模理11)在平面直角坐标系xOy 中,将点
A 绕原点O 逆时针旋转 90到点
B ,那么点B 的坐标为____,若直线OB 的倾斜角为α,则sin2α的值为 . 12.(2012年海淀二模理11)在AB
C ∆中,若 120=∠A ,5c =,ABC ∆
的面积为,
则a = .
13.(2013届北京大兴区一模理科)
函数()cos f x x
=( )
A .在ππ
(,)22
-上递增 B .在π(,0]2-上递增,在π(0,)2上递减
C .在ππ
(,)22
-上递减 D .在π(,0]2-上递减,在π(0,)2上递增
14.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知函数sin()
y A x ωϕ=+的图象如图所示,则该函数的解析式可能..是( )
A .41
sin(2)55y x =+ B .31
sin(2)25y x =
+ C .441
sin()555
y x =-
D .441
sin()555
y x =+
15.(北京市丰台区2013届高三上学期期末考试 数学理试题)函数2sin()y x ωϕ=+在一个
周期内的图象如图所示,则此函数的解析式可能是( )
A .2sin(2)4
y x π
=- B .2sin(2)4y x π
=+
C .32sin()8
y x π
=+
D .72sin()216
x y π
=+
16.(2013届北京大兴区一模理科)函数
f x x x
()s i nc o s =的最大值是 。

17.(2013届北京海滨一模理科)在ABC ∆中,若4,2,a b ==1
cos 4
A =-
,则_____,s i n __
c C == 19.(2013届北京市延庆县一模数学理)在ABC ∆中,c b a ,,依次是角C B A ,,的对边,
且c b <.若6
,32,2π
=
==A c a ,则角=C .
20.(2013届门头沟区一模理科)在∆ABC 中,若2a =,3c =,tan B =,则
b = .
21.(北京市东城区2013届高三上学期期末考试数学理科试题)若3
sin 5
α=-
,且tan 0α>,则cos α= .
22.(北京市海淀区北师特学校2013届高三第四次月考理科数学)在△ABC 中,若
π
,4
B b ∠=
=,则C ∠= . 23.(北京市西城区2013届高三上学期期末考试数学理科试题)已知函数π
()sin(2)6
f x x =+
,其中π[,]6x a ∈-
.当3a π=时,()f x 的值域是______;若()f x 的值域是1
[,1]2
-,则a 的取值范围是______.
24.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))在ABC ∆中,若
8
15
sin ,41
cos ,4=-
==A B b ,则=a _______,=c ________.
25.(北京市丰台区2013届高三上学期期末考试 数学理试题 )已知ABC ∆中,
BC=1,sin C C =,则ABC ∆的面积为______.
26.(北京市昌平区2013届高三上学期期末考试数学理试题 )在ABC △中,若b =1c =,
tan B =,则a = .
27.(北京市石景山区2013届高三上学期期末考试数学理试题 )在ABC ∆中,若
2,60,a B b =∠=︒=,则BC 边上的高等于 .
28.(北京市房山区2013届高三上学期期末考试数学理试题 )在△ABC 中,角C B A ,,所对的
边分别为c b a ,,,,3,3
A a b π
===则=c ,△ABC 的面积等于 .。

相关文档
最新文档