可线性化的非线性回归模型
课件:第4章 非线性回归模型

第四章 非线性回归模型
1
§4.1 非线性回归模型的类 型
一、非线性回归模型的特点
非线性回归模型的特点, 是与线性回归模型相比得到的特点
考虑标准线性回归模型: Y 0 1X1 2 X 2 k X k u
特点: (1)被解释变量是解释变量的线性函数 (2)被解释变量是回归系数的线性函数 非线性回归模型,则不满足以上两条之一, 或全部 或者说被解释变量是解释变量和回归系数的非线性函数 其一般形式为
根据最小二乘准则,使残差平方和e’e最小
寻找ˆ1
,
ˆ2
,,
ˆ
,使
p
minQ [Yi f ( X1i , X 2i ,, X ki; ˆ1, ˆ2,, ˆp )]2
18
(二)估计方法
1、求解方程组
Q
ˆ1
0
Q
ˆ2
...
Q
ˆk
0 0
问题: (1)偏导不一定好求 (2)方程组很难求解
19
• 将f在新的参数值附近展开,得到一个新的线性 模型,再次用OLS估计,…
• 直到收敛为止, i,l1 i,l (允许误差)
i,l
22
(3)实例
• 课本例3,非线性消费模型 C 0 1Y 2 u
取初始点(0,0 , 1,0 , 2,0)(1,1,1)
f (0 , 1, 2 ) 0 1Y 2
(3)估计: (4)图形:
(5)应用:X Y(Y变化弱)
12
4、指数函数(Y单ln)
(1)模型:Y Ae1X12 X 2 u
(2)线性化:lnY ln A 1X1 2 X 2 u 变量替换为: Y * 0 1X 12 X 2 u
(3)应用:X Y变化强
第三节可直线化的非线性回归分析

米氏常数的测定
基本原则:将米氏方程 变 化 成 相 当 于 y=ax+b 的 直线方程,再用作图法 求出Km。
例:双倒数作图法
1.0
斜率=Km/Vmax
0.8
0.6
1/v
1 Km 1 1 V Vmax [S] Vmax
0.4
-1/Km 0.2
1/Vmax
0.0
-4 -2
0
2
4
6
1/[S](1/mmol.L-1)
2 2
bm
X2Xm
X 2Y
b1
X1 X m b2
X 2 X m bm
X
2 m
X
mY
由于SS1
X12,SS2
X 22,,SSm
X
2;
m
SP12 X1 X 2,,SP1m X1 X m,SP2m X 2 X m,;
SP1y X1Y,SP2 y X 2Y,,SPmy X mY ;
SP2
SP2m
SP1m b1 SP2m b2
SPm bm
若系数矩阵用A表示,未知元矩阵用b表示,常 数矩阵用K表示: Ab=K
为求解式中的b,一般应先求出A的逆矩阵A-1,令:
c11 c12
A1
(cij )
c 21
c 22
cm1 cm2
c1m c2m
8 10
酶的Km在实际应用中的意义
鉴定酶:通过测定Km,可鉴别不同来源或相同来源但在不 同发育阶段,不同生理状态下催化相同反应的酶是否是属 于同一种酶。
判断酶的最适底物(天然底物) 。 计算一定速度下底物浓度。 了解酶的底物在体内具有的浓度水平。 判断反应方向或趋势。 判断抑制类型。
03-非线性回归模型的线性化

yˆt aˆxtbˆ
• 用来测量当 xt变化 1%时 yt变化 % • 柯布-道格拉斯生产函数模型就是幂函数模型
Qt Lat Ct eut
• 其中Qt表示生产量,Lt表示生产力投入,Ct表示资本投入 量, ,, 是需要被估计的回归系数
• 请对上述模型线性化
• 若回归系数 1 时,该模型是报酬不变型; • 若回归系数 1 时,该模型是报酬递增型; • 若回归系数 1 时,该模型是报酬递减型。 • 例3-1 • 利用柯布--道格拉斯生产函数模型评价中国台湾农业生产
• 例3-5
(b1<0, b2>0, b3<0)
(6) 生长曲线 (logistic) 模型
yt
k
1 e f (t)ut
k
1 e abtut
美国人口统计学家Pearl和Reed广泛研究了有机体的生长,得到了上述数学
模型。生长模型(或逻辑斯谛曲线,Pearl-Reed曲线)常用于描述有机体生
长发育过程。其中k和0分别为yt的上限和下限。
•当a>0,
Lim
t
yt
,k当a>0,b>0,
Lim
t-
yt
0
•曲线有拐点,坐标是 ( Lnb , k,) 但是曲线关于拐点不对称
ae
•对于龚伯斯曲线线性化的前提也是必须知道k的取值,
•线性化过程
yt* Lnb at ut 0 1t ut
其中
yt*
Ln
k yt
1
•案例3-1,3-2,3-3.
yt 0 1xt* ut
变量yt 和xt* 已变换成为线性关系。
(4) 双曲线函数模型
非线性回归

Y=C(1)*L^C(2)*K^C(3)
Coefficient Std. Error t-Statistic Prob.
C(1) 0.529234 0.271242 1.951155 0.0677 C(2) 0.181060 0.141299 1.281400 0.2173 C(3) 0.882769 0.070815 12.46589 0.0000
t
其中Y表示产量;L表示劳动力投入量;K表示资本投 入量;1 是常数;这种生产函数是美国经济学家柯布 和道格拉斯根据1899-1922年美国关于生产方面的数 据研究得出的。
参数的取值范围为: 1 0 2 , 3 (0,1)
这是一个非线性模型,无法用OLS法直接估计.
(一)转化为线性模型进行估计
R-squared
0.994213 Mean dependent var
218506.3
Adjusted R-squared
0.993532 S.D. dependent var
82602.34
S.E. of regression 6643.194 Akaike info criterion
(注意序列C中总保留着刚建立模型的参数 估计值,若不重新设定,则系统自动将这些 值作为参数的默认初始值)。
但迭代估计是一种近似估计,并且参数初始 值和误差精度的设定不当还会直接影响模型 的估计结果。因此,对于可线性化的非线性 模型,最好还是将其转化成线性模型进行估 计。
两边取对数得
ln Y ln 1 2 ln L 3 ln K u
键入一下命令: GENR LNY=log(Y) GENR LNL=log(L) GENR LNK=log(K) LNY C LNL LNK
计量经济学基础-非线性回归模型

第四节 非线形回归模型一、 可线性化模型在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。
在计量经济分析中经常使用的可线性化模型有对数线性模型、半对数线性模型、倒数线性模型、多项式线性模型、成长曲线模型等。
1.倒数模型我们把形如:u xb b y ++=110;u x b b y ++=1110 (3.4.1) 的模型称为倒数(又称为双曲线函数)模型。
设:xx 1*=,y y 1*=,即进行变量的倒数变换,就可以将其转化成线性回归模型。
倒数变换模型有一个明显的特征:随着x 的无限扩大,y 将趋于极限值0b (或0/1b ),即有一个渐进下限或上限。
有些经济现象(如平均固定成本曲线、商品的成长曲线、恩格尔曲线、菲利普斯曲线等)恰好有类似的变动规律,因此可以由倒数变换模型进行描述。
2.对数模型模型形式:u x b b y ++=ln ln 10 (3.4.2)(该模型是将ub e Ax y 1=两边取对数,做恒等变换的另一种形式,其中A b ln 0=)。
上式lny 对参数0b 和1b 是线性的,而且变量的对数形式也是线性的。
因此,我们将以上模型称为双对数(double-log)模型或称为对数一线性(log-liner)模型。
令:x x y y ln ,ln **==代入模型将其转化为线性回归模型: u x b b y ++=*10* (3.4.3)变换后的模型不仅参数是线性的,而且通过变换后的变量间也是线性的。
模型特点:斜率1b 度量了y 关于x 的弹性:xdx y dy x d y d b //)(ln )(ln 1== (3.4.4) 它表示x 变动1%,y 变动了多少,即变动了1b %。
模型适用对象:对观测值取对数,将取对数后的观测值(lnx ,lny )描成散点图,如果近似为一条直线,则适合于对数线性模型来描述x 与y 的变量关系。
浅谈非线性回归模型的线性化

浅谈非线性回归模型的线性化广东省惠州市惠阳区崇雅中学高中部 卢瑞勤(516213)回归分析在各个领域中都有十分重要的作用,比如:在财务中可以用回归分析进行财务预测;在医疗检验中可以用回归分析进行病理预报等等。
高中新课标教材就在《必修3》和《选修2-3》中分别增加了《线性回归》和《回归分析》的内容,介绍了求线性回归方程的方法。
但在实际问题中,变量间的关系并非总是线性关系,本文结合本人的教学实践,对教材中的这两部分内容进行适当延伸,谈谈对一些可线性化的非线性回归模型的线性化问题,供各位同行在教学时参考。
一、什么是可线性化的非线性回归模型线性回归模型的基本特征是预报变量可以表示成解释变量和一个系数相乘的和,即预报变量y 可以表示成解释变量i x (i =1,2,3,……)的如下形式:0112233y a a x a x a x =++++,其中变量ix 是以其原型(而不是以ni x 或其它)的形式出现,变量y 是各变量i x 的线性函数。
而有些回归模型不具备这个特点,但是可以通过适当的代数变换转化成这种形式,我们称这类回归模型为可线性化的回归模型。
在本文中,我们只讨论只有一个解释变量可线性化的非线性回归模型的线性化。
二、非线性回归模型的线性化的基本思路非线性回归模线性化的基本思路是:由已知数据,确定解释变量和预报变量,作出散点图,根据经验,确定回归曲线的类型,然后作适当的代数变换,若变换后散点图体现较好的线性关系,即可将其化成线性形式求解,最后还原到原来的回归曲线。
如果回归曲线可用多种形式表示,可以各自将其线性化后求解,再用相关系数2R 进行拟合效果分析,2R 越大,拟合效果越好,所求的回归方程也就越精确。
三、非线性回归模型的线性化的常用方法可线性化的非线性回归模型有以下几种常见类型:(1)双曲线型,其形式为1a b y x =+,其变换为1y y '=, 1x x'=,变换后的形式为y b ax ''=+ (2)幂函数型,其形式为by ax = ,可以变形为ln ln ln y a b x =+,作变换ln y y '= ,ln x x '= ,变换后的形式为y a bx ''=+(3)指数函数型,其形式为bxy ae = ,以变形为ln ln y a bx =+,作变换ln y y '=,ln a a '= ,变换后的形式为y a bx ''=+(4)对数函数型,其形式为ln y a b x =+,作变换ln x x '=,变换后的形式为y a bx '=+ 下面以高中新课标数学教材《选修2-3》一道习题为例加以说明【例】在某地区的一段时间内观察到的不小于某震级x 的地震个数y 数据如下表,试建立回归方程表述二者之间的关系。
非线性回归预测法——高斯牛顿法(詹学朋)知识分享

非线性回归预测法——高斯牛顿法(詹学朋)非线性回归预测法前面所研究的回归模型,我们假定自变量与因变量之间的关系是线性的,但社会经济现象是极其复杂的,有时各因素之间的关系不一定是线性的,而可能存在某种非线性关系,这时,就必须建立非线性回归模型。
一、非线性回归模型的概念及其分类非线性回归模型,是指用于经济预测的模型是曲线型的。
常见的非线性回归模型有下列几种: (1)双曲线模型:i ii x y εββ++=121 (3-59) (2)二次曲线模型:i i i i x x y εβββ+++=2321 (3-60)(3)对数模型:i i i x y εββ++=ln 21 (3-61)(4)三角函数模型:i i i x y εββ++=sin 21 (3-62)(5)指数模型:i x i i ab y ε+= (3-63)i i i x x i e y εβββ+++=221110 (3-64)(6)幂函数模型:i b i i ax y ε+= (3-65)(7)罗吉斯曲线:i x x i iie e y εββββ++=++1101101 (3-66)(8)修正指数增长曲线:i x i i br a y ε++= (3-67)根据非线性回归模型线性化的不同性质,上述模型一般可细分成三种类型。
第一类:直接换元型。
这类非线性回归模型通过简单的变量换元可直接化为线性回归模型,如:(3-59)、(3-60)、(3-61)、(3-62)式。
由于这类模型的因变量没有变形,所以可以直接采用最小平方法估计回归系数并进行检验和预测。
第二类:间接代换型。
这类非线性回归模型经常通过对数变形的代换间接地化为线性回归模型,如:(3-63)、(3-64)、(3-65)式。
由于这类模型在对数变形代换过程中改变了因变量的形态,使得变形后模型的最小平方估计失去了原模型的残差平方和为最小的意义,从而估计不到原模型的最佳回归系数,造成回归模型与原数列之间的较大偏差。
§3.5 可以化为线性的多元非线性回归模型

一、非标准线性回归模型 二、可线性化的非线性回归模型 三、不可线性化的非线性回归模型
一、非标准线性回归模型---变量直接置换 非标准线性回归模型---变量直接置换 --1、倒数变换模型 、
1 1 1 Yi = β0 + β1 + ui或 = β0 + β1 + ui Xi Y Xi i
中 国 城 镇 居 民 人 均 食 品 消 费
1800 1600 1400 1200 1000 800 600 400 200 82 84 86 88 90 92 94 96 98 00 Q
特征: 特征: 消费行为在 1981~1995年间表 现出较强的一致性 1995年之后呈现出 另外一种变动特征。
Q = f ( X / P0 , P1 / P0 )
(**)
为了进行比较,将同时估计( 为了进行比较,将同时估计(*)式与(**)式。 式与(**)
首先,确定具体的函数形式 根据恩格尔定律 恩格尔定律,居民对食品的消费支出与居 恩格尔定律 民的总支出间呈幂函数 幂函数的变化关系: 幂函数 对数变换:
令Yi = lnYi 或 Xi = ln Xi
* *
4、多项式模型: 、多项式模型:
Yi = β0 + β1Xi + β2 Xi +... + βk Xi + i
2 k
令X = Xi , j =1,2,..., k
* i j
5、S型曲线模型 、 型曲线模型
1 Yi = α + βe Xi + i
(****)式也可看成是对(***)式施加如下约束而得 β1 + β 2 + β 3 = 0