《平行线的判定》教案

合集下载

平行线的判定 教案

平行线的判定 教案

平行线的判定教案教案标题:平行线的判定教案目标:1. 理解平行线的定义和性质。

2. 学会使用不同方法判定平行线。

3. 运用所学知识解决与平行线相关的问题。

教学重点:1. 平行线的定义和性质。

2. 平行线的判定方法。

教学难点:1. 运用所学知识解决与平行线相关的问题。

教学准备:1. 平行线的定义和性质的课件或教材。

2. 平行线判定的示意图或实物。

教学过程:一、导入(5分钟)1. 引入平行线的概念,让学生回顾并复习平行线的定义。

2. 提问:如何判断两条线段是平行的?二、知识讲解(15分钟)1. 讲解平行线的性质:平行线在同一平面内,永不相交,且任意一条直线与平行线的交线与另一条平行线的交线平行。

2. 介绍平行线的判定方法:a. 判定法一:同位角相等法。

当两条直线被一条横截线所切割时,同位角相等,则这两条直线平行。

b. 判定法二:内错角相等法。

当两条直线被一条横截线所切割时,内错角相等,则这两条直线平行。

c. 判定法三:平行线定理。

若两条直线分别与第三条直线相交,且同侧内角或同侧外角相等,则这两条直线平行。

三、示例演练(20分钟)1. 通过示意图或实物展示不同判定方法的应用。

2. 以具体的例题进行练习,引导学生运用不同的判定方法判断线段是否平行。

四、巩固练习(15分钟)1. 分发练习题,让学生独立完成。

2. 针对练习题进行讲解和答疑。

五、拓展延伸(10分钟)1. 提出一些与平行线相关的拓展问题,让学生思考并解答。

2. 鼓励学生探索和发现更多关于平行线的性质和判定方法。

六、总结归纳(5分钟)1. 总结平行线的定义和性质。

2. 归纳不同的平行线判定方法。

教学反思:本节课通过引入平行线的概念,讲解平行线的性质和判定方法,以及示例演练和练习题的训练,使学生能够熟练运用不同的判定方法判断线段是否平行。

同时,通过拓展延伸和总结归纳,培养学生的思维能力和归纳总结能力。

在教学过程中,要注重引导学生思考和解决问题的能力,提高学生的学习兴趣和主动性。

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案一、教学目标1. 知识目标:掌握平行线的判定方法,包括同位角相等、内错角互补、对顶角相等以及平行线的特性,为解决与平行线相关的几何问题打下基础。

2. 技能目标:培养学生观察、分析和推理的能力,提升解决几何问题的能力。

3. 情感目标:通过合作学习和解决实际问题的过程,培养学生的团队合作精神,增强自信心。

二、教学重点和难点1. 教学重点:学习平行线判定的方法和技巧,掌握平行线的基本特性。

2. 教学难点:理解平行线的概念及其判定方法,运用所学知识解决实际问题。

三、教学准备黑板、白板、书籍、平行尺、草纸、教学案例等。

四、教学过程Step 1 引入新知1. 引导学生思考:你们对“平行线”有什么了解?该如何判定两条线是否平行?2. 出示两条线段 AB 和 CD,让学生观察并比较。

引导学生表示平行的概念。

3. 引导学生讨论并总结两条线段平行的条件,如同位角相等、内错角互补、对顶角相等等。

Step 2 学习平行线判定方法1. 同位角相等:绘制两条平行线,引导学生观察同位角的性质和关系,并通过示例教案演示同位角相等的判定方法。

2. 内错角互补:绘制两条交叉的线段,引导学生观察内错角的性质和关系,并通过示例教案演示内错角互补的判定方法。

3. 对顶角相等:绘制两条平行线与第三条交叉线,引导学生观察对顶角的性质和关系,并通过示例教案演示对顶角相等的判定方法。

4. 引导学生总结并记忆平行线的判定方法,培养学生观察、分析和推理的能力。

Step 3 拓展知识与应用1. 引导学生运用所学知识解决实际问题。

例如:已知直线 AB 和直线 CD,点 P 为两直线之间的一个点,如何判定直线 PA 和直线 PB 是否平行?2. 给学生分组讨论并解决教师提供的实际问题,加深对平行线判定方法的理解和掌握。

Step 4 总结归纳1. 通过学生的合作探究和问题解决,教师对平行线的判定方法进行总结,并与学生一起归纳出判定平行线的要点和方法。

《平行线的判定 》教案(优质)

《平行线的判定 》教案(优质)

5.2.2平行线的判定第1课时平行线的判定1.掌握两直线平行的判定方法;(重点)2.了解两直线平行的判定方法的证明过程;3.灵活运用两直线平行的判定方法证明直线平行.(难点)一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画.二、合作探究探究点一:应用同位角相等,判断两直线平行如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.探究点二:应用内错角相等,判断两直线平行如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.探究点三:应用同旁内角互补,判断两直线平行如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.探究点四:平行线的判定方法的运用【类型一】利用平行线判定方法的推理格式判断如图,下列说法错误的是()A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a∥c,利用了平行公理,正确;B选项中,若∠1=∠2,则a∥c,利用了“内错角相等,两直线平行”,正确;C选项中,∠3=∠2,不能判断b∥c,错误;D选项中,若∠3+∠4=180°,则a∥c,利用了“同旁内角互补,两直线平行”,正确.故选C.方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.【类型二】根据平行线的判定方法,添加合适的条件如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请你写出三种方案,并说明理由.解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.解:(1)可以测量∠EAB与∠D,如果∠EAB=∠D,那么根据“同位角相等,两直线平行”,得出AB与CD平行;(2)可以测量∠BAC与∠C,如果∠BAC=∠C,那么根据“内错角相等,两直线平行”,得出AB与CD平行;(3)可以测量∠BAD与∠D,如果∠BAD+∠D=180°,那么根据“同旁内角互补,两直线平行”,得出AB与CD平行.方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.三、板书设计平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行平行线的判定是平行线内容的进一步拓展,是进一步学习平行线的有力工具,为学习平行线的性质、三角形、四边形等知识打下基础,在整个初中几何中占有非常重要的地位.学生虽然已经学了平行线的定义、平行公理,具备了探究直线平行的基础,但学生在文字语言、符号语言和图形语言之间的转换能力比较薄弱,在逻辑思维和合作交流的意识方面发展不够均衡,还需逐渐提高。

《平行线的判定 》教案设计6

《平行线的判定 》教案设计6

课题 5.2.2平行线的判定(1)教学设计【学情分析】学生情况:目前班上学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行公理及推论及用三角板和直尺画平行线的方法,这些内容为学好这节课打下了基础。

【内容分析】"平行线的判定"是第五章《相交线与平行线》第二节内容,在这一课时里,通过让学生实际操作,探索“两条直线被第三条直线所截,如果同位角相等,那么两条直线平行”的判定方法,并在此基础上,运用推理的方法,推出“内错角相等,两直线平行”。

本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。

本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。

【教学目标】(1)让学生在合作交流实践操作过程中归纳出平行线判定的方法,并能学会运用。

(2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。

(3)体会数学中的转化思想【教学重点】:运用平行线的判定方法进行简单的推理【教学难点】:判定方法的形成过程中逻辑推理及书写格式.【教学过程】:一、创设情境:小明有一块木板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段;小明身边只有一个量角器,他想通过测量某些角的大小就能知道这个木板的上下边缘是否平行,他该怎么做呢?二、复习回顾:1、在同一平面内两直线的位置关系: ________________________________2、________________________________的两直线叫做平行线3、判定两条直线平行的方法有两种:________________________________三、动手操作、探索新知:(1)、回顾用直尺和三角板画平行线的方法要求:过已知直线a外一点p画a的平行线b步骤:1_____________2_____________3_____________4_____________展示课件:平行线的画法。

数学教案-平行线的判定

数学教案-平行线的判定

数学教案-平行线的判定一、教学目标1.知识目标:掌握平行线的概念和判定方法。

2.能力目标:能够通过定理和性质判定两条直线是否平行。

3.情感目标:培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点1.教学重点:平行线的判定方法。

2.教学难点:通过性质和定理判定两条直线是否平行的方法。

三、教学准备1.教材:数学教科书、教学PPT。

2.工具:黑板、彩色粉笔、直尺。

四、教学过程步骤一:导入新知(5分钟)1.教师提出问题:“什么是平行线?如何判断两条直线是否平行?”2.通过让学生讨论来回答这个问题,并引导学生了解平行线的概念。

步骤二:引入判定平行线的定理和性质(10分钟)1.教师通过演示和讲解,引入平行线的判定定理和性质。

2.第一种判断方法是“同位角相等定理”,通过同位角相等来判定直线是否平行。

3.第二种判断方法是“内错角相等定理”,通过内错角相等来判定直线是否平行。

4.第三种判断方法是“平行线的性质”,通过直线和平行线之间的性质来判定直线是否平行。

步骤三:举例演练(30分钟)1.教师通过示意图和具体例子,演示和讲解判定平行线的方法。

2.学生根据教师的引导,进行课堂练习。

步骤四:学习体会(10分钟)1.教师引导学生进行总结:通过本节课学习,你们学到了什么?你们能够独立解决什么问题?2.学生积极发言,分享自己的学习体会和解决问题的思路。

五、课堂作业1.预习下一节课的内容。

2.完成课堂练习题。

六、板书设计- 平行线的判定方法- 同位角相等定理- 内错角相等定理- 平行线的性质七、教学反思通过本节课的教学,学生对平行线的判定方法有了初步的了解,能够通过定理和性质判定两条直线是否平行。

在教学过程中,学生参与度较高,积极思考问题并提出自己的解决方法。

然而,我也注意到部分学生在练习过程中还存在一些困难,应该在下节课中给予更多的帮助和指导。

《平行线的判定教案》教师法师,轻松搞定平行线的讲解

《平行线的判定教案》教师法师,轻松搞定平行线的讲解

《平行线的判定教案》教师法师,轻松搞定平行线的讲解一、教学目标(1)了解平行线的基本定义和性质;(2)掌握平行线的判定方法及实际应用;(3)培养学生的逻辑思维能力和直观理解能力。

二、教学方法(1)导入法:激发学生学习兴趣;(2)适当抽象化方法:强调概念的本质和内涵;(3)实践方法:通过丰富多样的例题,提高学生的实际应用能力。

三、教学步骤1.导入通过以下问题开展导入:平面中,一条直线为什么不能有一个以上的平行线?2.讲解(1)基本定义和性质平行线的定义:在同一个平面内,如果两条直线在平面内无限延长,它们的交点是无限远,那么这两条线就是平行线。

平行线的性质:平行线之间的距离始终相等,并且不存在交点。

(2)判定方法(A)同位角判定法:在同一直线上有两个与另外一条直线相交的直线,如果同侧内角或同侧外角相等,则这两条直线平行。

(B)平行线判定法:两条直线的任意两个内角的和为180度即为平行线。

(3)实际应用在现实生活中,平行线经常出现在建筑、道路等方面,例如建筑中的梁柱、尺、竖直线、地下管道、电缆等。

因此,学生能够将判定平行线的方法应用于实际生活中,在实际中通过计算距离、建构图形等方式比较容易判定平行线。

3.实践让学生做以下实践例题,加深对平行线判定方法的理解:【例题】如图,已知AB平行COR,OB与CD垂直,求∠AOB和∠COD的大关系。

(1)根据AB平行COR,可以得到∠AOB+∠BOC=180度,因此∠AOB和∠COD的和为180度;(2)根据OB与CD垂直得到∠AOC=90度,因此∠COD-∠AOB=90度;(3)将第(1)步的结果带入第(2)步的公式中,得到∠COD=135度,∠AOB=45度;(4)∠COD大于∠AOB,因此答案为:∠COD>∠AOB。

四、总结通过教学,学生可以掌握平行线的基本定义和性质,掌握平行线的判定方法及实际应用,培养学生的逻辑思维能力和直观理解能力,同时也可以提高他们的数学素养。

人教版初中数学教案(最新6篇)

人教版初中数学教案(最新6篇)平行线的判定教案篇一一、教学目标1、了解推理、证明的格式,理解判定定理的证法。

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

二、学法引导1、教师教法:启发式引导发现法。

2、学生学法:积极参与、主动发现、发展思维。

三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答。

(二)难点使用符号语言进行推理。

(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点。

2、通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排1课时《·》五、教具学具准备三角板、投影仪、自制胶片。

六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课。

2、通过教师指导,学生探索新知,练习巩固,完成新授。

3、通过学生自己总结完成小结。

七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。

平行线的判定教案

平行线的判定教案一、教学目标:1. 知识目标:明确平行线的定义,能够判定两条直线是否平行。

2. 能力目标:掌握判定平行线的方法和步骤。

3. 情感目标:培养学生对几何概念的理解和兴趣。

二、教学重难点:1. 判定平行线的方法和步骤。

2. 培养学生的逻辑思维能力。

三、教学准备:1. 教学课件、教学黑板。

2. 学生课本、书写工具。

四、教学过程:Step 1. 导入新课1. 利用几个几何图形,引出平行线的概念并进行定义。

引导学生思考相交直线的性质,然后引出平行线的定义:“如果两条直线在同一个平面内,且不相交,则称这两条直线为平行线。

”2. 让学生思考一些已经学过的实例,判断是否是平行线,并给出判断的理由。

Step 2. 判定平行线的方法和步骤1. 介绍判定平行线的两个常用方法:同位角定理和平行线定理。

2. 同位角定理的介绍和讲解:(1)同位角定义:两条直线被一条穿过的直线所夹的两对同位角互相等于,即∠1 = ∠2,∠3 = ∠4。

(2)同位角定理:如果两条直线被一条穿过的直线所夹的同位角互相等于,那么这两条直线是平行线。

(3)通过给出实例让学生演示使用同位角定理判定两条直线是否平行的方法。

3. 平行线定理的介绍和讲解:(1)平行线定义:两条直线如果在同一个平面内没有交点,则称这两条直线为平行线。

(2)平行线定理:如果两条直线被一条直线所截,在这两条直线两边所夹的内角如果和为180°,则这两条直线是平行线。

(3)通过给出实例,让学生演示使用平行线定理判定两条直线是否平行的方法。

Step 3.练习与拓展1. 在黑板上画一些图形,让学生根据已学的方法和步骤进行判断是否是平行线。

2. 小组合作:让学生分为小组,互相出题然后进行判定是否是平行线。

3. 拓展训练:给学生一些延伸题,巩固所学知识。

Step 4. 总结与归纳对所学的判定平行线的方法和步骤进行总结归纳。

五、课堂作业1. 课后完成练习册上关于平行线的题目。

(初中数学教案)平行线的判定初中数学教案

平行线的判定学校数学教案教学建议1、教材分析(1)学问结构:由平行线的画法,引出平行线的判定公理〔同位角相等,两直线平行〕.由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是推断两直线平行的依据,也为下一节,学习平行线的性质打下了根底.本节内容的难点是:理解由判定公理推出判定定理的证明过程.同学刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可识别出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使同学初步理解证明的步骤和根本方法,能依据所学学问在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分表达一条主线索:“充分试验—认真观看—形成猜想—实践检验—明确条件和结论.〞老师可演示教材中所示的教具,还可以让每个同学都用三角板和直尺画出平行线.在此过程中,留意角的变化状况.事实充分,同学可以理解,假犹如位角相等,那么两直线肯定会平行.平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行〞.老师可组织同学按所给图形进行争辩.如何利用和几何的公理、定理来证明这个明显成立的事实.也可多叫几个同学进行重复.逐步使同学观赏到数学证明的严谨性.另一个定理的发觉与证明过程也与此类似.教学设计例如1一、教学目标1.了解推理、证明的格式,把握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简洁的推理论证.3.通过模型演示,即“运动—变化〞的数学思想方法的运用,培育同学的“观看—分析〞和“归纳—总结〞的力量.二、学法引导1.老师教法:启发式引导发觉法.2.同学学法:独立思考,主动发觉.三、重点·难点及解决方法〔一〕重点在观看试验的根底上进行公理的概括与定理的推导.〔二〕难点判定定理的形成过程中规律推理及书写格式.〔三〕解决方法1.通过观看试验,奇妙设问,解决重点.2.通过引导正确思维,严格呈现推理书写格式,明确方法来解决难点、疑点.四、课时支配l课时五、教具学具预备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过试验观看,引导思维,概括出公理及定理的推导,并以练习进行稳固.3.通过老师提问,同学答复完成归纳小结.七、教学步骤〔-〕明确目标教学建议1、教材分析(1)学问结构:由平行线的画法,引出平行线的判定公理〔同位角相等,两直线平行〕.由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是推断两直线平行的依据,也为下一节,学习平行线的性质打下了根底.本节内容的难点是:理解由判定公理推出判定定理的证明过程.同学刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可识别出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使同学初步理解证明的步骤和根本方法,能依据所学学问在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分表达一条主线索:“充分试验—认真观看—形成猜想—实践检验—明确条件和结论.〞老师可演示教材中所示的教具,还可以让每个同学都用三角板和直尺画出平行线.在此过程中,留意角的变化状况.事实充分,同学可以理解,假犹如位角相等,那么两直线肯定会平行.平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行〞.老师可组织同学按所给图形进行争辩.如何利用和几何的公理、定理来证明这个明显成立的事实.也可多叫几个同学进行重复.逐步使同学观赏到数学证明的严谨性.另一个定理的发觉与证明过程也与此类似.教学设计例如1一、教学目标1.了解推理、证明的格式,把握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简洁的推理论证.3.通过模型演示,即“运动—变化〞的数学思想方法的运用,培育同学的“观看—分析〞和“归纳—总结〞的力量.二、学法引导1.老师教法:启发式引导发觉法.2.同学学法:独立思考,主动发觉.三、重点·难点及解决方法〔一〕重点在观看试验的根底上进行公理的概括与定理的推导.〔二〕难点判定定理的形成过程中规律推理及书写格式.〔三〕解决方法1.通过观看试验,奇妙设问,解决重点.2.通过引导正确思维,严格呈现推理书写格式,明确方法来解决难点、疑点.四、课时支配l课时五、教具学具预备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过试验观看,引导思维,概括出公理及定理的推导,并以练习进行稳固.3.通过老师提问,同学答复完成归纳小结.七、教学步骤〔-〕明确目标把握平行线判定公理和第一个判定定理及运用其进行简洁的推理论证.〔二〕整体感知以情境设计,引出课题,以模型演示,引导同学观看,、分析、总结,讲授新知,以变式训练稳固新知,在整节课中,较充分地表达了规律推理.〔三〕教学过程创设情境,引出课题师:上节课我们学习了平行线、平行公理及推论,请同学们推断以下语句是否正确,并说明理由〔出示投影〕.1.两条直线不相交,就叫平行线.2.与一条直线平行的直线只有一条.3.假如直线、都和平行,那么、就平行.同学活动:同学口答上述三个问题.【教法说明】通过三个推断题,使同学回忆上节所学学问,第1题在于强化平行线定义的前提条件“在同一平面内〞,第2题不仅回忆平行公理,同时使同学生疏学习几何,语言肯定要精确、标准,同一问题在不同条件下,就有不同的结论,第3题复习稳固平行公理推论的同时提示同学,它也是判定两条直线平行的方法.师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗依据什么同学:能判定垂直,依据垂直的定义.师:在同一平面内不相交的两条直线是平行线,你有方法测定两条直线是平行线吗同学活动:同学思考,如何测定两条直线是否平行老师在同学思考未得结论的状况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必需找其他可以测定的方法,有什么方法呢同学活动:同学思考,在前面复习平行公理推论的状况下,有的同学会提出,再作一条直线,让。

平行线的判定教案

《平行线的判定》教案一、教学目标1、了解平行线的判定方法的推理过程。

2、灵活运用平行线的三个判定方法解决一些简单的问题。

3、让学生通过直观感受,操作认知等实践活动,加强对图形的认识和感受。

二、教学重点、难点重点:平行线的三种判定方法。

难点:运用三种判定方法进行简单的推理。

三、教学过程(一)情景引入图1,2中的直线平行吗?你是怎么判断的?思考:怎样使得两根木条保持平行呢?教师引导学生思考,可借助一根直线,构成三线八角。

(二)探究新知探究一:平行线的判定定理11、动手画一画:固定木条b与c,转动木条a,你能画出木条a与木条b的几种位置关系?a a ab 2 1 b 2 1 b 2 1当∠1>∠2时当∠1=∠2时当∠1<∠2时直线a和b 不平行,直线a和b 平行,直线a和b 不平行,2、思考:木条a何时与木条b平行?此时∠1与∠2有什么数量关系?∠1=∠2,∠1与∠2是同位角由此我们可以得到平行线的一种判定方法两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

由此你能得出什么结论?同位角相等,两直线平行。

几何语言∵__∠1__=__∠2__(已知)∴__a_∥__b_(同位角相等,两直线平行)探究二:平行线的判定定理2 l讨论:如图,如果∠1=∠2,那么a与b平行吗?你能证明吗? a2b 1学生口述理由,教师点评,并板书。

由此你能得出什么结论? 内错角相等,两直线平行。

几何语言∵__∠1__=__∠2__(已知)∴__a_∥__b_(内错角相等,两直线平行)探究三:平行线的判定定理3讨论:如图,如果∠1+∠2=180°,那么a与b平行吗?你能证明吗? a2b 1教师引导,点评并板书。

由此你能得出什么结论?同旁内角互补,两直线平行。

几何语言∵__∠1__+__∠2__=180°(已知)∴__a_∥__b_(同旁内角互补,两直线平行)思考:两条直线垂直于同一条直线,这两条直线平行吗?你能说明理由吗? c(用同位角相等,内错角相等,同旁内角互补都能证明)总结:在同一平面内,垂直于同一条直线的两条直线平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线的判定》教案
教学目标
1、经历探索两直线平行条件的过程,理解两直线平行的条件.
2、初步了解推理论证的方法,会正确的书写简单的推理过程.
重点
探索两直线平行的条件.
难点
理解“同位角相等,两条直线平行”;会正确的书写简单的推理过程.
教学过程
一、情景导入.
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定.
二、直线平行的条件
以前我们学过用直尺和三角尺画平行线,如图(课本P12图5.2-5)在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变.
简化图5.2-5,得图3.
D
C
B
A
图3
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单地说:同位角相等,两条直线平行.
符号语言:∵∠1=∠2∴AB∥CD.
如图(课本P13图5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线.
如图,(1)如果∠2=∠3,能得出a ∥b 吗?(2)如果∠2+∠4=1800,能得出a ∥b 吗?
(1)∵∠2=∠3(已知)∠3=∠1(对顶角相等)
∴∠1=∠2(等量代换)
∴a ∥b (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗? 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单地说:内错角相等,两直线平行.
符号语言:∵∠2=∠3,∴a ∥b .
(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)
∴∠2=∠1(同角的补角相等)
∴a ∥b .(同位角相等,两条直线平行)
你能用文字语言概括上面的结论吗?
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
简单地说:同旁内角互补,两直线平行.
符号语言:∵∠4+∠2=180°,∴a ∥b .
例 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
解:这两条直线平行.
∵b ⊥a c ⊥a (已知)
∴∠1=∠2=90°(垂直的定义)
∴b ∥c (同位角相等,两直线平行)
你还能用其它方法说明b ∥c 吗?
方法一:如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明. c b
a 21
c b a 21
(1) (2)
注意:本例也是一个有用的结论.
四、课堂练习
3 2 b a
c
4 1 c b a 2
1
1、课本P14练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?
2、课本P14第2题.
五、课堂小结:怎样判断两条直线平行?。

相关文档
最新文档