07下高数A试卷二

合集下载

2007数二真题答案详细解析

2007数二真题答案详细解析

2007数二真题答案详细解析年数学二的真题是高考数学题目中一道相对较难的题目。

本文将对这道题目进行详细解析,分析其解题思路和解题方法,帮助读者更好地理解和掌握数学常识。

本题属于数学二试卷中的选择题,题目如下:已知数列{a_n}的通项公式为:a_n=n(n-1)^2,(n=1,2,3,...)。

则有命题:S_n=a_1+a_2+...+a_n=(n^2-1)^2。

要判断该命题的真假,我们需要先对数列{a_n}进行分析。

观察数列的通项公式a_n=n(n-1)^2,我们可以发现n(n-1)^2是一个关于n 的三次多项式。

三次多项式的一般形式可以表示为:P(n) = an^3 + bn^2 + cn + d其中a、b、c、d是常数。

在这个问题中,我们需要验证命题S_n=(n^2-1)^2是否成立,也就是判断数列的前n项和等于(n^2-1)^2。

为了方便计算,我们将等式两边展开:S_n = a_1 + a_2 + ... + a_n = (1(1-1)^2) + (2(2-1)^2) + ... + (n(n-1)^2)= (1*0^2) + (2*1^2) + ... + (n(n-1)^2)= 0 + 2 + 8 + ... + n(n-1)^2现在我们需要找到这个数列的通项公式,这样才能求出前n项的和。

观察数列0, 2, 8, ... ,我们可以发现这个数列的通项与原数列{n(n-1)^2}相差一个常数。

因此,我们推测该数列的通项公式为:b_n = n(n-1)^2 + k其中k是常数。

为了求解该数列的通项公式,我们可以先求解数列0, 2, 8, ... 的通项公式,再进行适当的变换。

观察数列0, 2, 8, ... ,我们可以发现这个数列中的每一项均等于相应的n(n-1)^2的2倍。

因此,该数列的通项公式为:b_n = 2n(n-1)^2现在我们已经得到了数列{b_n}的通项公式,我们可以将其代入前面的求和公式中,得到:S_n = b_1 + b_2 + ... + b_n = 2(1(1-1)^2) + 2(2(2-1)^2) + ... + 2(n(n-1)^2)= 2(1*0^2) + 2(2*1^2) + ... + 2(n(n-1)^2)= 2(0 + 2 + 8 + ... + n(n-1)^2)= 2(0^3 + 1^3 + 2^3 + ... + (n-1)^3)现在我们需要求解数列0^3 + 1^3 + 2^3 + ... + (n-1)^3的和。

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案

2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚 5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB.-C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2) C.D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .13- D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,, 7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A.4B.4C.2D.28.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )ABCD12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→ .全国卷Ⅱ理科数学(必修+选修Ⅱ)二.请把填空题答案写在下面相应位置处:13. 14 15. 16.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y .(1)求函数()yf x =的解析式和定义域;(2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.AEBCFSD21.(本小题满分12分) 设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数.22.(本小题满分12分)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B二、填空题13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin cos sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值18.解:(1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故 01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===. 1180202100C C 160(1)C 495P ξ===. 2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系xyz .设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD , 所以EF ∥平面SAD .(2)不妨设(100)A ,,, 则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点AEBCFSD H G M111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭ ,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.cos MD EA MD EA MD EA <>==,. 所以二面角A EF D --的大小为20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==. 得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =----- ,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一:由(1)可知302n a <<,故0n b >.那么,221n nb b +- 2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132n n a a +-=, 所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a - 即 1n nb b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使 23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则 2()66g t t at '=- 6()t t a =-. 当t 变化时,()()g t g t ',变化情况如下表:当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。

07级工科《高等数学》下试题.doc

07级工科《高等数学》下试题.doc

《高等数学》(下)试题(A)闭卷(7)适合专业年级:07环科、电商、计算机、食工、电气、贪质、建环;水利、农机;木科、土管(农)、环规;地理、土管(测);生态、城管等姓名_学号专业______________ 班级____________木试题•一共五道大题,共4页,满分100分,考试时间120分钟。

总分题号—‘二三四五阅卷人题分1012125610核分人得分注:1.答题前,请准确、清楚地填各项,涂改及模糊不清者、试卷作废。

2.试卷若有雷同以零分计。

一.是非题(每小题2分,共10分.正确打人错误打X.) 1、limw n=0是级数$人收敛的充要条件.zt=l7. ¥级数含一^x"的收敛半径n=\ (- 3)'1A. ¥8. 3 C. 2 D. 1A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件9、若曲而27:x2 + y2 +^2= a2,则孙? +/ +ZZ 2)dS =(级数a (-i) Zl-\fn是绝对收敛.3、若V为W的体积一半,则dxdydz = 2V .4、常微分方程;v it 4),= 0的特征根是土2 .5、若向量场,则旋度^+―^+―& 拽V二、选择填空(每小题3分,共12分.)6、f(x,y)dy =C. ^dy^f(x,y)dx B. ' f(x,y)dxD. ' f(x,y)dxA. pa4B. 2pa4C. 4pa4D. 6pa4三、填空(每小题4分,共12分)0办= __________________ 10、若户^,”,^(人:^在^巧平而内积分与路径无关,则$/^+11、c os«是有向曲面S在处的法向量的方向余弦,由两类曲面积分关系,有虫科P cos adS = ____________12、对于微分方程y it f (y, y),若令尸= ________ ,y & _____________ ,则化为降阶可解.四、解答题(每小题7分,共56分)A xds ,其中,L是上半岡周x2+y2=2x, 0.13、i in6 [e、cosx_ y]dx-^- [e y sinx+ y- x]dy ,其中,L 力4x2 + 9),2 = 36 在14、计算 / =第一象限中的部分,从点(3,0)到(0,2).2 215、I = x2dydz + y2dzdx+ z2dxdy ,其中,S :—7+ -p- 1,外侧.c16、计算/= cos yjx2 + y2 dxdy,其中,D:x2 y2P2.1)17、计算/=龄斗(x2+ >,2 + z2- z)dxdydz,其屮,W: x2 + + z2a2.~ x n+118、求¥级数x? ( 1,1)的和阑数S(x). H=I n20、求微分方程x2/ + xy = y2,刈)=-1的特解.五、综合题(本题10分)21、已知/(0)=0, /<x)= /(0^+2,(1)求/(x),(2)把/(x)展开成又的¥级数.07级《高等数学》(下)试题A参考答案和评分标准(2007-2008学年第2期)一、是非题(毎小题2分,共10分.正确打V,错误打X.) XXV XX二、选择填空(每小题3分,共12分.)DBAC三、填空(毎小题4分,共12分)2 2 215、计算/ — 觀 x 2dydz + y 2dzdx + z,2clxdy , s:*+fr+fr=i ,外侧‘解根据高斯公式及三重积分的对称性质,得 /=齦 x 2dydz + y 2dzdx+ z 2dxcly =虫科(2x+ 2y+ 2z )dv= 016、计算/=虫科 cos^/x 2+),2 dxdy ,其中 £>:x 2+y解极坐标计算< dJ () cosr ?rJr 2p ?[r sin r cosrj = -4p (7 分)四、解答题(毎小题7分,共56分)13、计算义也,£是上半圆周X2+),2=2X ,0.z , ,x = 1 + cosf,z 解令. (0 < z < ^), y = sin t(3分)则虫,(1 + cos t)yj(- sinz)2 + (cos ,)2t/z = p(7分)14、计算/= 6IX C0SA '- y]dx+ [e y sinx+ y- x]dy , K 中 L 为 4x 2+9y 236在第一象限中的部分,从点(3,0)到(0,2).解由于#=fcosx- 1=所以曲线积分与路径无关.选择折线路径(3,0)(0,0) (0,2)(3分)d K cosx- y]dx+ [e ysinx+ y- x}dyos xdx + ydy= 2 - sin 3(7分)(7分)a'2P 217、计算/=虫科(x2+ )’2+ z2- ^)dxdydz ,其•中,V : %2 + V2 + z2a2解山球平.标和对称性I =虫柳科^2+/+ z2)dxdydz-嫩zd 又dydz (3分)dJ siny dj(7分)°° w+i18、求幂级数, jv? ( 1,1)的和函数只x)./?=!x n解令久⑴二刃二,X?( 1,1),逐项求导得, trr noo'1=1n=l 1-X(3分)因此,5,(x)= Q ------- d t= - ln(l- x),x? ( 1,1)z o1所以,S(x) = xS} (%) = -x ln(l -x), xe (-1J) (7分)19、/(x)周期是2p,—个周期闪/(%)= •x2,(-/? < x /?),把/(x)展开成企弦级数.解:6Z0 = —x2dx= -^―2 P 7a、、=— A cos nxdx =4l)n—,(H= 1,2,3,L)显然,b n= 0,(n= 1,2,L )(5分)*7 2f(x) = —+ cosnx= —+ (- l)n— cosnx , x? ( ?,) (7 分)2 n=i3 M=i n20、求微分方程x2/ + ;vy = y2, }<1)= - 1的特解.解(1)变形得 Bernoulli 方程y0+ x J y= Z 2y2两端同除以y2,令还-/2z,i ; - ] - 2 o - I - 2-Z x z= X ! z X z= - Xx [(ix11+ 2Cx 2clx+ c =——+ Cx= ------------2x 2x由 y (l )=- 1,得 C=3, (6分)所求特解为v= (7分)1- 3x 2五、综合题(本题10分)21、已知/(0)=0, /<x )= Q 綾八 f (f )dt+ 2, (1)求/0),(2)把/0)展开成x 的¥级数.解⑴ /如)=2,- /(x ),记尸/(x ),得yiib ),= 2e\y (0)= 0,y (0)= 2 ①(2 分)特征方程r 2+ 1= 0,特征根r, 2 = i对应齐次方程通解y= C, cos%+ C 2sin%(4分)2x3 y=I7^’ 由)’(卜1 得(6分)所求特解>,=2x1- 3x 2(7分)解(2)将原方程变形,得// \22、义/XUdxu+ x —^代入上式,得clu X ——=U dxdx2- 2u(3分)分离变W:积分得u — 2 2 "" y ~2 C?,即Cx(3分)因为/ = 1不是特征根,可设特解代入方程①得A = 1),(0) = 0, ><0) = 2 得 = - 1,C 2 = 1 所以 /(x)= sinx • cosx+ e x (7分)(2) /(%)= sinx- cosx+ e x s_丄人丄人丄•V + —X' 3! 5!7! X 7 + LT丄义2 + 2! 4! 6! x 6 + L+ %+ — 4- —x 3 + —x 4 + —x 5 + —x 6 + —%7L $2! 3! 4! 5! 6! 7!A '9+io!x ,° +L 4zi+l (4n+ 2)! 4n+2Z(10 分)。

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)求值sin210°=()A.B.﹣C.D.﹣2.(5分)函数y=|sinx|的一个单调增区间是()A.B.C.D.3.(5分)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i4.(5分)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln25.(5分)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣6.(5分)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)7.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.8.(5分)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.9.(5分)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣310.(5分)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种11.(5分)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.12.(5分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1+2x2)(x﹣)8的展开式中常数项为.14.(5分)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.15.(5分)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.16.(5分)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y (1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.18.(12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).19.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.20.(12分)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.21.(12分)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;,其中n为正整数.(2)设,求证b n<b n+122.(12分)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅱ)求值sin210°=()A.B.﹣C.D.﹣【分析】通过诱导公式得sin 210°=﹣sin(210°﹣180°)=﹣sin30°得出答案.【解答】解:∵sin 210°=﹣sin(210°﹣180°)=﹣sin30°=﹣故答案为D2.(5分)(2007•全国卷Ⅱ)函数y=|sinx|的一个单调增区间是()A.B.C.D.【分析】画出y=|sinx|的图象即可得到答案.【解答】解:根据y=|sinx|的图象,如图,函数y=|sinx|的一个单调增区间是,故选C.3.(5分)(2007•全国卷Ⅱ)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i【分析】将复数z设a+bi,(a,b∈R),代入复数方程,利用复数相等的条件解出复数z.【解答】解:设复数z=a+bi,(a,b∈R)满足=i,∴1+2i=ai﹣b,,∴z=2﹣i,故选C.4.(5分)(2007•全国卷Ⅱ)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln2【分析】根据lnx是以e>1为底的单调递增的对数函数,且e>2,可知0<ln2<1,ln(ln2)<0,故可得答案.【解答】解:∵0<ln2<1,∴ln(ln2)<0,(ln2)2<ln2,而ln=ln2<ln2,∴最大的数是ln2,故选D.5.(5分)(2007•全国卷Ⅱ)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣【分析】本题要求字母系数,办法是把表示出来,表示时所用的基底要和题目中所给的一致,即用和表示,画图观察,从要求向量的起点出发,沿着三角形的边走到终点,把求出的结果和给的条件比较,写出λ.【解答】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.6.(5分)(2007•全国卷Ⅱ)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【分析】首先不等式的分母可化为(x+2)(x﹣2),不等式的分子和分母共由3个一次因式构成.要使得原不等式大于0,可等同于3个因式的乘积大于0,再可根据串线法直接求解.【解答】解:依题意,原不等式可化为等同于(x+2)(x﹣1)(x﹣2)>0,可根据串线法直接解得﹣2<x<1或x>2,故答案应选B.7.(5分)(2007•全国卷Ⅱ)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【分析】根据正三棱柱及线面角的定义知,取A1C1的中点D1,∠B1AD1是所求的角,再由已知求出正弦值.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.8.(5分)(2007•全国卷Ⅱ)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.【分析】根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.【解答】解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.9.(5分)(2007•全国卷Ⅱ)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣3【分析】平移向量=(h,k)就是将函数的图象向右平移h个单位,再向上平移k个单位.【解答】解:把函数y=e x的图象按向量=(2,3)平移,即向右平移2个单位,再向上平移3个单位,平移后得到y=f(x)的图象,∴f(x)=e x﹣2+3,故选C.10.(5分)(2009•湖北)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【分析】分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,首先从5人中抽出两人在星期五参加活动,有C52种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有A32种情况,则由分步计数原理,可得不同的选派方法共有C52A32=60种,故选B.11.(5分)(2007•全国卷Ⅱ)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.【分析】由题设条件设|AF2|=1,|AF1|=3,双曲线中2a=|AF1|﹣|AF2|=2,,由此可以求出双曲线的离心率.【解答】解:设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,设|AF2|=t,|AF1|=3t,(t>0)双曲线中2a=|AF1|﹣|AF2|=2t,t,∴离心率,故选B.12.(5分)(2007•全国卷Ⅱ)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9【分析】先设A(x1,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,再依据=0,判断点F是△ABC重心,进而可求x1+x2+x3的值.最后根据抛物线的定义求得答案.【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1∵=,∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅱ)(1+2x2)(x﹣)8的展开式中常数项为﹣42.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4214.(5分)(2007•全国卷Ⅱ)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.【分析】根据ξ服从正态分布N(1,),得到正态分布图象的对称轴为x=1,根据在(0,1)内取值的概率为0.4,根据根据随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,得到随机变量ξ在(0,2)内取值的概率.【解答】解:∵测量结果ξ服从正态分布N(1,),∴正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,∴随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,∴随机变量ξ在(0,2)内取值的概率为0.8.故答案为:0.815.(5分)(2007•全国卷Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为2+4cm2.【分析】本题考查的知识点是棱柱的体积与表面积计算,由一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,我们根据球的直径等于棱柱的对角线长,我们可以求出棱柱的各棱的长度,进而得到其表面积.【解答】解:由一个正四棱柱的各个顶点在一个直径为2cm的球面上.正四棱柱的对角线的长为球的直径,现正四棱柱底面边长为1cm,设正四棱柱的高为h,∴2R=2=,解得h=,那么该棱柱的表面积为2+4cm2.故答案为:2+416.(5分)(2007•全国卷Ⅱ)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.【分析】由通项公式知该数列是等差数列,先求出首项和公差,然后求出其前n 项和,由此能得到的值.【解答】解:∵数列的通项a n=﹣5n+2,∴a1=﹣3,a2=﹣8,d=﹣5.∴其前n项和为S n,则=﹣.故答案为:﹣.三、解答题(共6小题,满分70分)17.(10分)(2007•全国卷Ⅱ)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y(1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.【分析】(1)由内角A=,边BC=2,设内角B=x,周长为y,我们结合三角形的性质,△ABC的内角和A+B+C=π,△ABC的周长y=AB+BC+AC,我们可以结合正弦定理求出函数的解析式,及自变量的取值范围.(2)要求三角函数的最值,我们要利用辅助角公式,将函数的解析式,化为正弦型函数的形式,再根据正弦型函数的最值的求法进行求解.【解答】解:(1)△ABC的内角和A+B+C=π,由得.应用正弦定理,知,.因为y=AB+BC+AC,所以,(2)∵=,所以,当,即时,y取得最大值.18.(12分)(2007•全国卷Ⅱ)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).【分析】(1)有放回地抽取产品二次,每次随机抽取1件,取出的2件产品中至多有1件是二等品包括无二等品和恰有一件是二等品两种情况,设出概率,列出等式,解出结果.(2)由上面可以知道其中二等品有100×0.2=20件取出的2件产品中至少有一件二等品的对立事件是没有二等品,用组合数列出结果.【解答】解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”.则A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)=P(A0)+P(A1)=(1﹣p)2+C21p(1﹣p)=1﹣p2于是0.96=1﹣p2.解得p1=0.2,p2=﹣0.2(舍去).(2)记B0表示事件“取出的2件产品中无二等品”,则.若该批产品共100件,由(1)知其中二等品有100×0.2=20件,故.19.(12分)(2007•全国卷Ⅱ)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.【分析】法一:(1)作FG∥DC交SD于点G,则G为SD的中点.要证EF∥平面SAD,只需证明EF平行平面SAD内的直线AG即可.(2)取AG中点H,连接DH,说明∠DMH为二面角A﹣EF﹣D的平面角,解三角形求二面角A﹣EF﹣D的大小.法二:建立空间直角坐标系,平面SAD即可证明(1);(2)求出向量和,利用,即可解答本题.【解答】解:法一:(1)作FG∥DC交SD于点G,则G为SD的中点.连接,又,故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD.所以EF∥平面SAD.(2)不妨设DC=2,则SD=4,DG=2,△ADG为等腰直角三角形.取AG中点H,连接DH,则DH⊥AG.又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A,所以DH⊥面AEF.取EF中点M,连接MH,则HM⊥EF.连接DM,则DM⊥EF.故∠DMH为二面角A﹣EF﹣D的平面角.所以二面角A﹣EF﹣D的大小为.法二:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.20.(12分)(2007•全国卷Ⅱ)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.【分析】首先分析到题目(1)中圆是圆心在原点的标准方程,由切线可直接求得半径,即得到圆的方程.对于(2)根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围.【解答】解:(1)依题设,圆O的半径r等于原点O到直线的距离,即.得圆O的方程为x2+y2=4.(2)不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(﹣2,0),B(2,0).设P(x,y),由|PA|,|PO|,|PB|成等比数列,得,两边平方,可得(x2+y2+4)2﹣16x2=(x2+y2)2,化简整理可得,x2﹣y2=2.=x2﹣4+y2=2(y2﹣1).由于点P在圆O内,故由此得y2<1.所以的取值范围为[﹣2,0).21.(12分)(2007•全国卷Ⅱ)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;(2)设,求证b n<b n+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故b n>0.那么,b n+12﹣bn2=an+12(3﹣2a n+1)﹣a n2(3﹣2a n)=由此可知b n<b n+1,n为正整数.方法二:由题设条件知,所以.由此可知b n<b n+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故b n>0.那么,b n+12﹣bn2=a n+12(3﹣2a n+1)﹣a n2(3﹣2a n)==又由(1)知a n>0且a n≠1,故b n+12﹣bn2>0,因此b n<b n+1,n为正整数.方法二:由(1)可知,因为,所以.由a n≠1可得,即两边开平方得.即b n<b n+1,n为正整数.22.(12分)(2007•全国卷Ⅱ)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)【分析】(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可;(2)设切线过点(a,b),则存在t使b=(3t2﹣1)a﹣2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证.【解答】解:(1)求函数f(x)的导函数;f'(x)=3x2﹣1.曲线y=f(x)在点M(t,f(t))处的切线方程为:y﹣f(t)=f'(t)(x﹣t),即y=(3t2﹣1)x﹣2t3;(2)如果有一条切线过点(a,b),则存在t,使b=(3t2﹣1)a﹣2t3.于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,则g'(t)=6t2﹣6at=6t(t﹣a).当t变化时,g(t),g'(t)变化情况如下表:)由g(t)的单调性,当极大值a+b<0或极小值b﹣f(a)>0时,方程g(t)=0最多有一个实数根;当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根;当b﹣f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根.综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则即﹣a<b<f(a).。

浙江理工大学07~08高数A2期末试卷(含答案)

浙江理工大学07~08高数A2期末试卷(含答案)

浙江理工大学2007~2008学年第二学期高等数学A 期终试题(A )卷班级 学号 姓名 一、 选择题(每小题4分,满分28分)1、函数2222),(y x y x y x f +-= 在点)1,1(处的全微分)1,1(df 为 ( )(A) 0 (B) dy dx + (C) dx 4 (D) dy dx -2 2、设L 是从A (1,0)到B (-1,2)的直线段,则()Lx y ds +⎰= ( )(B)(C) 2 (D) 03、方程234sin 2y y x '''+=+的特解为 ( )(A)1(cos 2sin 2);2y x x =-+ (B) 31cos 222y x x =- (C)31sin 222y x x =- (D)311cos 2sin 2.222y x x x =--4、设)(x f 在),0(+∞上有连续的导数,点A )2,1(,B )8,2(在曲线22x y =上。

L为由A 到B 的任一曲线,则=++-⎰dy x xy f x dx x y f x y xy L])(1[)](22[22223( )。

(A) 20, (B) 30, (C) 35, (D) 40。

5、 设b 为大于1的自然数,对幂级数∑∞=1n bnnx a,有a a a nn n =+∞→1l i m,(1,0≠>a a ),则其收敛半径=R ( )。

(A) a , (B) a1, (C)ba , (D)ba1。

6、下列级数收敛的是 ( )(A) ∑∞=1sin n n π; (B )∑∞=1100!n n n ; (C )∑∞=+12)11ln(n n ; (D )∑∞=+-12)11(21)1(n n n nn . 7、已知曲线)(x f y =过原点,且在原点处的法线垂直于直线)(,13x y y x y ==-是微分方程02=-'-''y y y 的解,则=)(x y ( )(A )x xe e--2 (B )x x e e 2-- (C )x x e e 2-- (D )x x e e --2二、填空题(每小题4分,满分20分)1、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值, 则常数a = 。

2007年普通高等学校招生全国统一考试(全国卷II)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷II)数学(理科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷II )数学(理科)试卷参考答案一、选择题1.D 2.C 3.C 4.C 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B二、填空题13.-4214.0.815.16.52−三、解答题:17.解:(1)△ABC 的内角和A+B+C=π,由A=3π,B>0,C>0,得0<B<23π,应用正弦定理,知AC=sin sin 4sin sin sin 3BC B x xA π==AB=2sin 4sin()sin 3BC C x A π=−因为y =AB+BC+AC所以y =4sin x+224sin()33x x ππ−+<<(II )因为y=14(sin cos sin )22x x x +++=5)3(6666x x ππππ++<+<所以,当62x ππ+=,即3x π=时,y取得最大值。

18.解:(I )记A 0表示事件“取出的2件产品中无二等品”;A 1表示事件“取出的2件产品中只有1件二等品”;则A 0、A 1互斥,则A=A 0+A 1,故P (A )=P (A 0+A 1)=P (A 0)+P (A 1)=(1-p )2+12(1)C p p −=1-p 2于是,0.96=1-p 2解得p 1=0.2,p 2=-0.2(舍去)(II )ξ的可能取值为0,1,2若该批产品共100件,由(I )知其二等品有100×0.2=20件,故P (ξ=0)=2802100316495C C =P (ξ=1)=1180802100160495C C C =P (ξ=2)=220210019495C C =所以ξ的分布列为ξ012P3164951604951949519.解法一:(I )作FG ∥DC 交SD 于点G ,则G 为SD 的中点,连结AG ,FG 12CD ,又CD AB ,故FGAE ,AEFG 为平行四边形。

2007年(全国卷II)(含答案)高考文科数学

2007年(全国卷II)(含答案)高考文科数学

2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.cos330= ( )A .12B .12-C .32D .32-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2)C .ln 2D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .328.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x +B .e 2x -C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .3212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF += ( )A .10B .210C .5D .25二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.20.(本小题满分12分)如图,在四棱锥S ABCD-中,底面ABCD为正方形,侧棱SD⊥底面ABCD E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:43=-y x 相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙的取值范围。

07-08 高等数学2试题(A)及解答

07-08 高等数学2试题(A)及解答

广州大学2007-2008学年第二学期考试卷课 程:高等数学(A 卷)(90学时) 考 试 形 式: 闭卷 考试一.填空题(每空2分,本大题满分30分)1.设y z x =,则zx∂=∂____________,z y ∂=∂____________.2.已知(,)z f u v =具有二阶连续偏导数,且,23u xy v x y ==+,则zx∂=∂__________________,(,)u f u v y ∂'=∂__________________.3.曲线23,,x t y t z t ===在点(1,1,1)处的切向量T =______________,切线方程为__________________________________.4.点M 的直角坐标(,,)x y z 与球面坐标(,,)r ϕθ的关系为 x =_____________,sin sin y r ϕθ=,cos z r ϕ=. 在球面坐标下,体积元素dv =________________________.5.设L 为曲线弧2(01)y x x =≤≤,则ds dx =,=⎰________.学 院专 业班级姓名学号6.在区间(1,1)-内,写出下列幂级数的和函数: (1) 221(1)n n x x -++-+=__________;(2) 321(1)321n n x x x n +--+++=+__________.7.已知级数1n n a ∞=∑条件收敛,则幂级数1n n n a x ∞=∑的收敛区间为_________.8.微分方程560y y y '''-+=的通解为y =________________________, 微分方程562x y y y e '''-+=的通解为y =_________________________.二.解答下列各题(每小题8分,本大题满分16分)1.写出函数2ln()z x y =-的定义域,并求函数的全微分.2.已知),(y x f z =是由方程2sin z z x y +=确定的隐函数,求xz ∂∂和22x z ∂∂.三.解答下列各题(每小题8分,本大题满分16分)1.计算(32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线2x y +=所围成的闭区域.2.设L 为正向圆周x y x 222=+,计算⎰+-Ldy xy dx yx x 22)(.装 订线 内不要答题四.解答下列各题(每小题6分,本大题满分12分)1.判别级数∑∞=1223 cosnnnnπ的收敛性.2.求幂级数1(2)nn x n∞=-∑的收敛域.五.解答下列各题(每小题8分,本大题满分16分)1.求微分方程ln dy yx y dx x=的通解.2.设可导函数()f x 满足0()cos 2()sin 1xf x x f t tdt x +=+⎰,求()f x .装 订线 内不要答题六.(本大题满分10分) 设(,)z f x y =满足条件:22zy x x∂=--∂,z y x y ∂=-∂,且(0,0)1f =.求(,)f x y 的极值.广州大学2007-2008学年第二学期考试卷高等数学(A 卷)(90学时)参考解答与评分标准一.填空题(每空2分,本大题满分30分)1.设y z x =,则zx∂=∂1y yx -,z y ∂=∂ln y x x.2.已知(,)z f u v =具有二阶连续偏导数,且,23u xy v x y ==+,则zx∂=∂(,)2(,)u v yf u v f u v ''+,(,)u f u v y ∂'=∂(,)3(,)uu uv xf u v f u v ''''+.3.曲线23,,x t y t z t ===在点(1,1,1)处的切向量T =(1,2,3),切线方程为111123x y z ---==.4.点M 的直角坐标(,,)x y z 与球面坐标(,,)r ϕθ的关系为 x =sin cos r ϕθ,sin sin y r ϕθ=,cos z r ϕ=.在球面坐标下,体积元素dv =2sin r drd d ϕϕθ.5.设L 为曲线弧2(01)y x x =≤≤,则ds dx =,=⎰73.学 院专 业班级姓名学号6.在区间(1,1)-内,写出下列幂级数的和函数: (1) 221(1)n n x x -++-+=211x +;(2) 321(1)321n n x x x n +--+++=+arctan x.7.已知级数1n n a ∞=∑条件收敛,则幂级数1n n n a x ∞=∑的收敛区间为(1,1)-.8.微分方程560y y y '''-+=的通解为y =2312x xC e C e +,微分方程562x y y y e '''-+=的通解为y =2312x x xC e C e e ++.二.解答下列各题(每小题8分,本大题满分16分) 1.写出函数2ln()z x y =-的定义域,并求函数的全微分. 解: 定义域为:20x y ->。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
西 京 学 院
2007-2008学年第一学期200x 级期末考试
理工科《高等数学》试卷二
一、单项选择题:(每题3分,共21分) 1、函数2
1()cos f x x
=的间断点类型是( )
A 可去间断点
B 跳跃间断点
C 无穷间断点
D 振荡间断点
2、极限0
lim ()x x f x →存在是()f x 在点0x 处连续的( )
A 必要条件
B 充分条件
C 充分必要条件
D 无关的条件 3、函数()sin f x x x =+在[0,2]π上( )
A 无极值
B 有一个极大值,但无极小值
C 有一个极小值
D 有一个极大值与一个极小值 4、函数1()2f x x
=
满足拉格朗日中值定理条件的区间是( )
A [1,2]
B [2,2]-
C [2,0]-
D [0,1] 5、方程20ydy dx -=的通解是( )
A 2y x c -=
B y c -=
C y x c =+
D y x c =-+
6、下列各式正确的有( ) A
12
112x dx <
<⎰
B 001-<
<⎰
C
21
112
x dx <
<⎰
D 0102
x -<
<

7、函数12cos sin y c t c t ωω=+是微分方程
2
2
2
0d y y dt
ω+=的( )
A 解
B 特解
C 通解
D 不是解
二、填空题(每题3分,共18分)
1
、函数1
arctan y x =的定义域为
2、lim (1)bx x a
x
→∞
+=
3、2[(arcsin )]x '=
4、22tan (1)d x += dx
5、曲线x y e =在点(0,1)处的切线方程为 ,法线方程为
6、两条抛物线2y x =和2x y =所围成的图形的面积是
三、求下列数列或函数的极限(每题6分,共12分) 1、 10
10
10
(10)(217)
lim
(313)
x x x x →∞
++-
2、2
lim (sec tan )x x x π

-
四、求下列函数的积分(每题6分,共12分) 1、12
1(115)
dx x --+⎰
2、arctan x xdx ⎰
五、求隐函数的导数
s i n c o s ()y x x y -
+=。

六、求微分方程sec(1)0
x ydx x dy
++=的通解。

(7分)
七、利用函数的单调性证明不等式:当
1 x>
时,1
3
x
>-
八、把一根直径为d 的圆木锯成矩形梁,问矩形的截面积的高h 和b 应如何选择才使梁的抗弯截面模量最大? (提示:梁的抗弯截面模量公式2
16w bh
=

高等数学A 试卷二答案
一、单项选择题:(每题3分,共21分)
1、D
2、A
3、A
4、A
5、A
6、B
7、C 二、填空题(每题3分,共18分)
1、(,0)(0,3]-∞⋃
2、ab
e
3
4、2
2
2
4tan(1)sec (1)x x x ++ 5、20x y -+=(1.5分)10x y +-=(1.5分)
6、1
3
三、求下列数列或函数的极限(每题6分,共12分) 1、 10
10
10
(10)(217)
lim
(313)
x x x x →∞
++-
解:1010
2
10
(10)(217)
lim
(313)
x x x x →∞
++-=10
10
10
21017(1)(2)
lim
13(3)
x x x
x
→∞
+
+-
=102
()3
2、2
lim (sec tan )x x x π

-
解:2
lim (sec tan )x x x π

-=21sin lim
cos x x x
π

-=2
cos lim
sin x x x
π

--=0
四、求下列函数的积分(每题6分,共12分) 1、12
1(115)
dx x --+⎰
解:12
1(115)
dx x --+⎰
=12
1
1
(115)(115)5
d x x --++⎰
=1
21
1|10(115)
x ---+ =772
2、arctan x xdx ⎰ 解:arctan x xdx ⎰()2
1
arctan 12
xd x =+⎰
(2分)
2
2
2111
(1)a r c t a n 2
21
x x
x d x x +=
+-+⎰ (2分)
2
11(1)arctan 2
2x x x c
=+-
+ (3分)
或arctan x xdx ⎰2
1
arctan 2
xdx =⎰ (2分) 2
2
2
11arctan 2
2
1
x
x x dx x
=-
+⎰ (2分)
2
11(1)arctan 2
2
x x x c
=+-
+ (3分)
五、求隐函数的导数 sin cos()0y x x y -+=。

解:两边对x 求导数,得sin cos sin()(1)0y x y x x y y ''++++=
s i n ()c o s s i n ()
s i n
x y y x y x y x ++'=-
++
六、求微分方程sec (1)0x ydx x dy ++=的通解。

(7分) 解:cos 1x ydy dx x
=-
+ (2分)
1
c o s (1)1y
d y d x x
=--
+ (2分)
积分得 sin (1)y x In x c =-+++ (3分)
七、利用函数的单调性证明不等式:当1x >时,13x
>-
证明:令1()3f x x
=+
,则3
22
1()0x f x x
-'=
> (1)x >
所以()f x 在[1,)+∞单调增加。

故当1x >时,()(1)0f x f >=,
即当1x >时,13x
>-。

八、把一根直径为d 的圆木锯成矩形梁,问矩形的截面积的高h 和b 应如
何选择才使梁的抗弯截面模量最大? (提示:梁的抗弯截面模量公式2
16w bh
=

解:由力学分析知梁的抗弯截面模量公式2
16w bh
=
所以 2
16w b h =
=22
1()6
b d b -
(0,)
b d ∈
令0w '=,则221
()06
b d b -=,得b =
从而有,h =
即 ::d h b =
由实际意义知,所求最值存在,而驻点只有一个,故所求结果就是最好的
选择。

相关文档
最新文档