高等数学(2)--期末考试试题

合集下载

高等数学2期末复习题与答案(可编辑修改word版)

高等数学2期末复习题与答案(可编辑修改word版)

x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

高数2试题及答案.(DOC)

高数2试题及答案.(DOC)

模拟试卷一―――――――――――――――――――――――――――――――――― 注意:答案请写在考试专用答题纸上,写在试卷上无效。

(本卷考试时间100分)一、单项选择题(每题3分,共24分)1、已知平面π:042=-+-z y x 与直线111231:-+=+=-z y x L 的位置关系是( ) (A )垂直 (B )平行但直线不在平面上(C )不平行也不垂直 (D )直线在平面上 2、=-+→→1123lim0xy xy y x ( )(A )不存在 (B )3 (C )6 (D )∞3、函数),(y x f z =的两个二阶混合偏导数y x z ∂∂∂2及xy z∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的( )条件.(A )必要条件 (B )充分条件(C )充分必要条件 (D )非充分且非必要条件 4、设⎰⎰≤+=ay x d 224πσ,这里0 a ,则a =( )(A )4 (B )2 (C )1 (D )0 5、已知()()2y x ydydx ay x +++为某函数的全微分,则=a ( )(A )-1 (B )0 (C )2 (D )16、曲线积分=++⎰L z y x ds222( ),其中.110:222⎩⎨⎧==++z z y x L(A )5π(B )52π (C )53π (D )54π7、数项级数∑∞=1n na发散,则级数∑∞=1n nka(k 为常数)( )(A )发散 (B )可能收敛也可能发散(C )收敛 (D )无界 8、微分方程y y x '=''的通解是( )(A )21C x C y += (B )C x y +=2(C )221C x C y += (D )C x y +=221 二、填空题(每空4分,共20分)1、设xyez sin =,则=dz 。

2、交换积分次序:⎰⎰-222xy dy e dx = 。

高数二期末考试题及答案

高数二期末考试题及答案

高数二期末考试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' + y = 0 \) 的通解是?A. \( y = C_1 e^{-x} + C_2 e^x \)B. \( y = C_1 \cos(x) + C_2 \sin(x) \)C. \( y = C_1 x + C_2 \)D. \( y = C_1 \ln(x) + C_2 \)答案:B4. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A5. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是?A. 3B. 1C. 0D. \( \frac{1}{3} \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^2 - 6x + 8 \) 的最小值是 ________。

答案:22. 函数 \( f(x) = e^x \) 的导数是 ________。

答案:\( e^x \)3. 函数 \( y = \ln(x) \) 的定义域是 ________。

答案:\( (0, +\infty) \)4. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。

答案:原点三、计算题(每题10分,共30分)1. 求函数 \( y = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数。

高数期末考试题大题及答案

高数期末考试题大题及答案

高数期末考试题大题及答案一、极限题目1:求函数 \( f(x) = \frac{3x^2 - x}{x^2 + 2} \) 在 \( x \to \infty \) 时的极限。

解答:首先,我们可以通过分子分母同时除以 \( x^2 \) 来简化函数:\[ f(x) = \frac{3 - \frac{1}{x}}{1 + \frac{2}{x^2}} \]当 \( x \to \infty \) 时,\( \frac{1}{x} \) 和\( \frac{2}{x^2} \) 都趋向于 0,所以:\[ \lim_{x \to \infty} f(x) = \frac{3 - 0}{1 + 0} = 3 \]二、导数与微分题目2:求函数 \( g(x) = x^3 - 2x^2 + x \) 的导数。

解答:使用幂函数的导数规则,我们有:\[ g'(x) = 3x^2 - 4x + 1 \]三、积分题目3:计算定积分 \( \int_{0}^{1} x^2 dx \)。

解答:首先,我们需要找到 \( x^2 \) 的原函数,即:\[ F(x) = \int x^2 dx = \frac{x^3}{3} + C \]然后,我们可以计算定积分:\[ \int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1^3}{3} -\frac{0^3}{3} = \frac{1}{3} \]四、无穷级数题目4:判断级数 \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 的收敛性。

解答:该级数可以重写为:\[ \sum_{n=1}^{\infty} \left(\frac{1}{n} -\frac{1}{n+1}\right) \]这是一个交错级数,我们可以通过比较测试来判断其收敛性。

由于每一项都是正的且递减,我们可以得出结论,该级数是收敛的。

第二学期高等数学期末考试试卷及答案1

第二学期高等数学期末考试试卷及答案1

第二学期高等数学期末考试试卷答案一.填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中.1.过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,,垂直的平面方程为_____________________________. 2.设()22ln y x z +=,则=∂∂==11y x xz , ________________________.3.交换累次积分的顺序()=⎰⎰12xxdyy x f dx, ______________________.4.设222lnz y x u ++=,则()=u grad div ___________________.5.设幂级数∑∞=0n nn x a 的收敛半径为1R ,幂级数∑∞=0n n n x b 的收敛半径为2R ,且+∞<<<210R R ,则幂级数()∑∞=+0n nn n x b a 的收敛半径为_____________.答案:⒈ 043=+--z y x ; ⒉ 1;⒊ ()⎰⎰1yydx y x f dy ,;⒋2221zy x ++;⒌ 1R .二.选择填空题(本题满分15分,共有5道小题,每道小题3分)。

以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效. 1.函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的【 】. (A ).充分条件; (B ).必要条件; (C ).充分必要条件; (D ).既不是必要,也不是充分条件.2.设D 是xOy 平面上以()11,、()11,-、()11--,为顶点的三角形区域,1D 是D 在第一象限的部分,则积分()⎰⎰+Ddxdyy x xy sin cos等于【 】.(A ).⎰⎰1sin cos 2D ydxdy x ; (B ).⎰⎰12D xydxdy ;(C ).()⎰⎰+1sin cos 4D dxdy y x xy ; (D ).0.3.下列级数中,属于条件收敛的是【 】.(A ).()()∑∞=+-111n nnn ; (B ).()∑∞=-1si n 1n nn nn π ;(C ).()∑∞=-121n nn; (D ).()∑∞=+-1131n nn .4.设函数()x f 是以π2为周期的周期函数,它在[)ππ,-上的表达式为()⎩⎨⎧<≤<≤-=ππx x xx f 000 ,再设()x f 的Fourier (傅立叶)级数的和函数为()x s ,则()=πs 【 】. (A ).2π-; (B ).π- ; (C ).0 ; (D ).π .5.设向量a 、b 、c 满足:0c b a =++,则=⨯+⨯+⨯a c c b b a【 】.(A ).0 ; (B ).c b a⨯⨯;(C ).c b ⨯; (D ).()b a⨯3. 答案: ⒈ (A ); ⒉ (C ); ⒊ (B ); ⒋ (A ); ⒌ (D ). 三.(本题满分7分)设()xy y x f z ,22-=,其中函数f 具有二阶连续的偏导数,试求xz ∂∂,yx z ∂∂∂2.解:212f y f x xz '+'=∂∂ ,()2221222112224f xyffyx xyf yx z ++-+-=∂∂∂ .四.(本题满分7分) 计算三重积分()⎰⎰⎰Ω+=dxdydzz x I ,其中Ω是由曲面22y x z +=及221y x z --=所围成的空间区域.解:作球坐标变换θϕρcos sin =x ,θϕρsin sin =y ,ϕρcos =z , 则空间区域Ω变为,104020≤≤≤≤≤≤Ω'ρπθπθ,,:,因此,()⎰⎰⎰Ω+=dxdydzz x I()⎰⎰⎰Ω+=ρϕθϕρϕρθϕρd d d s i n c o s c o s s i n 2()⎰⎰⎰+=12420s i n c o s c o s s i n ρϕρϕρθϕρϕθππd d d8π=五.(本题满分8分) 计算曲面积分()()⎰⎰∑-+++=dxdy z dzdx z y dydz xz I 322912其中∑为曲面122++=y x z ()21≤≤z ,取下侧.解:取平面21=∑z :,取上侧.则∑与1∑构成封闭曲面,取外侧.令∑与1∑所围空间区域为Ω,由Gauss 公式,得 ⎰⎰⎰⎰∑∑+∑-=11I()⎰⎰⎰⎰⎰≤+Ω--=132229y x dxdydxdydz⎰⎰⎰⎰⎰≤+--=121120222y x rdxdydz rdr d πθ2π-=六.(本题满分8分) 判别级数()()()()()∑∞=++++12222!2!!3!2!1n n n的敛散性.解: ()()()()()!2!!3!2!102222n n u n ++++=≤()()()()()!2!!!!2222n n n n n ++++≤, ()()n v n n n =⋅=!2!2而()()()()()()()!2!!12!11limlim221n n n n n n v v n nn n ⋅++⋅+=→∞+→∞()()()14122121lim3<=+++=→∞n n n n n所以,由比值判别法,知级数()()∑∑∞=∞=⋅=121!2!n n n n n n v 收敛.再由比较判别法知级数()()()()()∑∑∞=∞=++++=122221!2!!3!2!1n n nn n u 收敛.七.(本题满分8分) 选取a 与b ,使得dy yx b y x dx yx y ax 2222++--++成为某一函数()y x u ,的全微分,并求()y x u ,. 解:()22y x y ax y x P ++=,,()22y x by x y x Q ++-=, 由()()()dy y x Q dx y x P y x du ,,,+=,得xQ yP ∂∂=∂∂即有()()()()222222222222yxxb y x y x yxyy ax y x +⋅+--+=+⋅+-+解得,1=a ,0=b .所以,()()()()()⎰+--+=y x yx dyy x dx y x y x u ,,,0122⎰⎰+--=yxdy yxyx xdx 0221()⎰⎰+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=yyyx y x d x y x y d x 0222202211ln()x yx xy x ln ln 21arctan ln 22-++-=()xyyx a r c t a n ln 2122-+=八.(本题满分8分) 过直线⎩⎨⎧=-+=-+0272210z y x z y x 作曲面273222=-+z y x 的切平面,求此切平面的方程. 解:过已知直线作平面束方程()0272210=-++--+z y x z y x λ,即()()()0272210=-+-+++z y x λλλ,其法向量为{}λλλ--++=2210,,n.设所求切平面的切点坐标为()000z y x ,,,则有()()()⎪⎪⎩⎪⎪⎨⎧=-+-+++=-+---=+=+02722102732222610000202020000z y x z y x z y x λλλλλλ , 解得1113000-====λ,,,z y x .或1917173000-=-=-=-=λ,,,z y x .因此,所求切平面方程为027339=--+z y x ,或02717179=-+--z y x .九.(本题满分8分)求极限:()422221lim xx tu t x x eduedt ---→-⎰⎰+.解:交换积分()⎰⎰--222x tu t x du edt 中的顺序,有()()⎰⎰⎰⎰----=uu t x x tu t x dt edu du edt 022222,u t v -=,则有()⎰⎰-----=uvuu t dv edt e22所以()()4242222221lim 1lim xuu t xx xx tu t x x edt edueduedt---→---→-=-⎰⎰⎰⎰++4242002222221l i m 1l i mxx vx xxuvx ex d veed ud v e---→---→⎰⎰⎰-=-⎪⎪⎭⎫ ⎝⎛-=++212lim lim 1lim424222==-⋅=-→--→-→+++⎰xx x vx xx ex dvee十.(本题满分8分)利用⎪⎭⎫ ⎝⎛-x x dx d 1cos 的幂级数展开式,求级数()()∑∞=⎪⎭⎫⎝⎛--122!2121n nn n n π的和.解: 设()⎪⎭⎫⎝⎛-=x x dx d x s 1cos ,由于()()()()∑∑∞=-∞=-=--=-11202!211!211c o s n n nn nnn xxn xxx ()-∞<<∞-x因此,()()()⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=∑∞=-112!211c o s n n n n xdx d x x dx d x s()()∑∞=---=122!2121n n nxn n另一方面, ()21c o s s i n 1c o s x x x x x x dxd x s +--=⎪⎭⎫ ⎝⎛-=所以,()()∑∞=---=+--1222!21211c o s s i n n n nxn n xx x x ()-∞<<∞-x当2π=x 时,()()∑∞=-⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛1222!21212n n nn n s ππ,所以,()()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--∑∞=222!2121212πππs n n n nn2221c o s s i n 2ππ=+--⋅⎪⎭⎫ ⎝⎛=x x x x x22212c o s 2s i n24⎪⎭⎫ ⎝⎛+--⋅=πππππ21π-=十一.(本题满分8分)已知x 、y 、z 为实数,而且32=++z y e x证明:32≤z y e x.(提示:考虑函数()()223ye y e y xf xx--=,.) 解: 设()()223ye y e y xf xx--=,,由题设32=++z y e x , 得 32≤+y e x, 即 32=+y e x为其边界.下面只需证明:()()223ye y e y xf xx--=,在区域32≤+y ex上的最大值为1.令:()()()()⎪⎩⎪⎨⎧=--='=--='0232023222y e y e y x f y e y e y x f x x y x x x ,,, 解方程组得驻点()10,,()10-,和()0,x .对于驻点()10,和()10-,,有 ()110=,f ,()110=-,f对于驻点()0,x ,()00=,x f ;在边界32=+y e x 上,()002=⋅=y e y x f x,,所以,函数()()223y e y e y x f x x --=,的最大值为1,即()()1322≤--=ye y e y xf xx,即32≤z ye x.。

高等数学二试题及答案

高等数学二试题及答案

高等数学二试题及答案一、选择题1. 函数y=2x^3-3x^2+4x-1的导数为:A. 6x^2 - 6x + 4B. 6x^2 - 4x + 4C. 6x^3 - 6x^2 + 4D. 6x^3 - 6x + 4答案:A2. 极限lim(x→0) (sin(x) - x) / x^3的值为:A. 1B. 0C. 不存在D. 无穷大答案:A3. 曲线y=x^2在点x=1处的切线方程为:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A4. 定积分∫(0,1) x^2 dx的值为:A. 1/3B. 1/2C. 1D. 0答案:A5. 级数Σ(n=1 to ∞) (n^2 / 2^n)收敛于:A. 1B. 2C. 3D. 4答案:B二、填空题1. 函数z=e^(x+y)在点(0,0)的偏导数∂z/∂x为_________。

答案:12. 极限lim(x→∞) (1+1/x)^x的值为_________。

答案:e3. 曲线y=2x^3在点x=-1处的法线方程为_________。

答案:y=-6x+24. 定积分∫(1,2) (2t^2 + 3t + 1) dt的值为_________。

答案:10/35. 幂级数Σ(n=0 to ∞) (x^n / 2^n)在|x|≤2时收敛于_________。

答案:1 + x三、计算题1. 求函数f(x)=ln(x^2-4)的反函数,并证明其在定义域内是单调的。

解:首先找到反函数的定义域,由于ln(x^2-4)的定义域为x^2-4>0,解得x^2>4,因此x<-2或x>2。

设y=ln(x^2-4),则x^2-4=e^y,解得x=±√(e^y+4)。

由于x<-2或x>2,我们选择x=√(e^y+4)作为反函数,定义域为y>ln(4)。

显然,当y>ln(4)时,函数√(e^y+4)是单调递增的,因此反函数也是单调的。

高数2-期末试题及答案

高数2-期末试题及答案

北京理 工 大学珠海学院2012 ~ 2013学年第二学期《高等数学(A)2》期末试卷A (答案) 适用年级专业:2010级信息、计算机、机械与车、化工与材料学院各专业一.选择填空题(每小题3分,共18分) 1.设向量 a =(2,0,-2),b = (3,-4,0),则a ⨯b =分析:a ⨯b = 202340ij k-- = -6j – 8k – 8i = (-8,-6,-8)2.设 u = 223x xy y ++.则 2ux y∂∂∂ =分析:u x ∂∂ = 22x y +, 则2u x y∂∂∂ = 2'(2)x y += 2y3.椭球面 2222315x y z ++= 在点(1,-1,,2)处的切平面方程为分析:由方程可得,222(,,)2315F x y z x y z =++- ,则可知法向量n =( Fx, Fy, Fz ); 则有 Fx = 2x , Fy = 4y , Fz = 6z ,则过点(1,-1,,2)处的法向量为 n =(2,-4,,12) 因此,其切平面方程为:2(1)4(1)12(2)0x y z --++-= ,即 26150x y z -+-= 4.设D :y = x, y = - x, x = 2直线所围平面区域.则(2)Dy d σ+=⎰⎰___________分析:画出平面区域D (图自画),观图可得,2(2)(2)8xxDy d dx y dy σ-+=+=⎰⎰⎰⎰5.设L :点(0 , 0 )到点(1 , 1)的直线段.则2Lx ds =⎰_________分析:依题意可知:L 是直线y = x 上点(0 , 0 )与点(1 , 1)的一段弧,则有112Lx ds xx ===⎰⎰⎰ 6.D 提示:级数1nn u∞=∑发散,则称级数1nn u∞=∑条件收敛二.解答下列各题(每小题6分,共36分)1.设2ln()tan 2z x y x y =+++,求dz 分析:由z zdz dx dy x y∂∂=+∂∂可知,需求z x ∂∂及z y ∂∂12z xy x x y ∂=+∂+ , 21z x y x y∂=+∂+ , 则有 211(2)()z z dz dx dy xy dx x dy x y x y x y∂∂=+=+++∂∂++ 2.设(4,23),u f xy x y =-其中f 一阶偏导连续,求uy∂∂ 分析:设v = 4xy , t = 2x – 3y ,则'''4(3)(43)u f v f t f x f x f y v y t y∂∂∂∂∂=+=+-=-∂∂∂∂∂ 3.设(,)z z x y =由222100x y z xyz ++-=确定.求z y∂∂ 分析:由222100x y z xyz ++-=得,222(,,)100F x y z x y z xyz =++-- 则有由2()x Fx x yz xyz =-+,2()y Fy y xz xyz =-+,2Fz z xy =- 则2()()222y y y xz xyz xz xyz y z Fyy Fz z xy z xy-++-∂=-=-=∂-- 4.求函数3322(,)339f x y x y x y x =-++-的极值 提示:详细答案参考高数2课本第111页例4 5.求二重积分22,x y Ded σ+⎰⎰其中D :2219x y ≤+≤分析:依题意,得 21902ρθπ≤≤≤≤⎧⎨⎩,即1302ρθπ≤≤≤≤⎧⎨⎩则有,22223901()x y Ded de d e e πρσσρρπ+==-⎰⎰⎰⎰6.求三重积分2xyz dV Ω⎰⎰⎰,Ω:平面x = 0, x = 3, y = 0, y = 2, z = 0, z = 1所围区域分析:依题意,得0201y z ≤≤≤≤⎪⎨⎪⎩ 则有 3212203xyz dV dx dy xyz dz Ω==⎰⎰⎰⎰⎰⎰三.解答下列各题(每题6分,共24分) 1.求Lydx xdy -⎰,L :圆周229x y +=,逆时针分析:令P=y , Q= - x , 则1Q x ∂=-∂,1Py∂=∂ 由格林公式得()(2)LDDQ Pydx xdy dxdy dxdy x y ∂∂-=-=-∂∂⎰⎰⎰⎰⎰ 作逆时针方向的曲线L :{cos sin x r y r θθ== ,02θπ≤≤则20()(2)24LDDQ Pydx xdy dxdy dxdy d x y πθπ∂∂-=-=-=-=-∂∂⎰⎰⎰⎰⎰⎰2.设:∑平面31x y z ++=位于第一卦限部分.试求曲面积分xdS ∑⎰⎰分析:由:∑平面31x y z ++=可得13z x y =--则 13yx y z zz x ∂∂==-=-∂∂,z = 则有DxyDxyxdS xdxdy ∑==⎰⎰⎰⎰由于xy D 是∑在xOy 面的第一卦限的投影区域,即由0,031x y x y ==+=及所围成的闭区域.因此113018xDxyxdS xdxdy dx xdy -∑===⎰⎰⎰3. 设∑是22z x y =+位于平面4,9z z ==之间部分且取下侧,求zdxdy ∑⎰⎰分析:依题意,可得0249z θπ≤≤≤≤⎪⎨⎪⎩,由于∑是取下侧,则有92463054zdxdy zdz d d ππθρρ∑=-=-⎰⎰⎰⎰4.设∑是锥面z =与平面z = 1 所围立体区域整个边界曲面的外侧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(2)--期末考试试题重庆三峡学院 2008 至 2009 学年度第 2 期高等数学(二)试题(A )试题使用对象 : 全院 2008 级工科各 专业(本科)命题人: 陈晓春 考试用时 120 分钟 答题方式采用: 闭卷说明:1、答题请使用黑色或蓝色的钢笔、圆珠笔在答题纸上书写工整。

2、考生应在答题纸上答题,在此卷上答题作废。

一、 填空题(每小题3分,本题共15分) 1.设22z x y =+z zy x x y∂∂-=∂∂ 2.设222:D x y R +≤,则22Dx y dxdy +=3.设2222:xy z R Ω++≤,则dxdydz Ω=⎰⎰⎰4.级数 ∑∞=11n pn 收敛,则p5.微分方程1+=''xey 的通解二.单项选择题(每小题3分,本题共15分) 1.存在),(0y x f x,)(00y x fy。

则有( )。

A ,),(y x f z =在),(0y x 点连续。

B ,),(y x f z =在),(0y x 点有定C ,),(y x f z =在),(0y x 点可微。

D ,),(y x f z =在),(0y x 点存在极2.数∑∞=1n n u 收敛,则下列级数( )也收敛。

A,1+∑∞=1n n u B ,∑∞=+1)1(n nuC ,∑∞=1n nu D, ∑∞=--11)1(n n u3. 2012333+--+=y x y xz 的极大值点为( )。

A(1,2) B(-1,2) C (-1,-2)(1,-2)4. 设曲线L :⎩⎨⎧==ta y ta x sin cos ]2,0[π∈t ,则曲线积分()⎰=+Lds y x22。

A 、2a π B 、22a π C 、 3a πD 、32a π5.表达式dy y x Q dx y x P ),(),(+为某一函数的全微分的充要条件是( )A 、x P ∂∂=y Q ∂∂;B 、y P ∂∂=x Q ∂∂;C 、x P ∂∂=y Q ∂∂-;D 、y P ∂∂=xQ∂∂-。

二、 计算题(每小题8分,共7小题,共56分) 1、设函数),(xy y x f +=μ,具有二阶连续偏导数,求xu ∂∂,yx u ∂∂∂2。

2、求曲线x t t y t z t t=+=-=+27425422,,在点(,,)--561处的切线及法平面方程。

3、画出积分区域的草图,并计算二重积分⎰⎰=Ddxdy x I 2,其中D 是由曲线2=xy ,21x y +=及直线2=x 所围成的区域。

4、求幂级数∑∞=-1)2(n nnx 的收敛半径与收敛域。

5、设()(02),f x x x =≤≤将f x ()展成以4为周期的正弦级数。

6. 计算dxdy z dzdx y dydz x 333⎰⎰∑++,其中∑是球面2222R z y x=++的外侧。

7.求微分方程1='+''y y x 的通解。

三、应用题 (7分 )求棱长之和为()120l l >,且具有最大体积的长方体体积。

四、综合题(7分)已知上半平面内一曲线)0)((≥=x x y y 过点(,)01,且曲线上任一点),(y x M 处切线斜率数值上等于此曲线在0到x 之间所形成的曲边梯形面积的两倍与该点纵坐标之和,求此曲线方程.重庆三峡学院 2008 至 2009 学年度第 2 期高等数学(二)试题(A )答案试题使用对象 : 全院 2008 级工科各 专业(本科)命题人: 陈晓春 考试用时 120 分钟答题方式采用: 闭卷一、 填空题(每小题3分,本题共15分) 1. 0 2. 332R π 3.334R π4. 1> 5.21221C x C x e y x +++=二.单项选择题(每小题3分,本题共15分) 1. B 2. A 3. C 4. D 5. A二、 计算题(每小题8分,共7小题,共56分) 1、设函数),(xy y x f +=μ,具有二阶连续偏导数,求xu ∂∂,yx u ∂∂∂2。

解.y f f xu21'+'=∂∂… …4分2222112112f f xy f y f x f yx u''+''+''+''+''=∂∂∂……8分 2、求曲线x t t y t z t t=+=-=+27425422,,在点(,,)--561处的切线及法平面方程。

解: 1-=t 对应点(,,)--561 1分 对应的切线方向向量)6,4,3(|)410,4,74(|))(),(),((11-=++='''=-=-=t t t t t z t y t x τ4分切线方程614635--=+=+z y x 6分法平面方程为0)1(6)6(4)5(3=--+++z y x或 045643=+-+z y x 8分3、画出积分区域的草图,并计算二重积分⎰⎰=Ddxdy x I 2,其中D 是由曲线2=xy ,21x y +=及直线2=x 所围成的区域。

解: 图 2分⎰⎰+=212212x xdy dxx I 4分⎰-+=2122)21(dx x x x ⎰-+=2142)2(dxx x x 6分1583]5131[21253=-+=x x x 8分4、求幂级数∑∞=-1)2(n nnx 的收敛半径与收敛域。

解:令2-=x t ,上述级数变为∑∞=1n n nt1分 因为1limlim 1+==∞→+∞→n n aa n nn n ρ=1,所以收敛半径R = 1。

3分 当t = 1时,级数∑∞=11n n发散;当t = -1时,级数∑∞=-1)1(n nn收敛; 6分故 11<≤-t ,即121<-≤-x ,故原级数的收敛域为31<≤x 。

8分5、设()(02),f x x x =≤≤将f x ()展成以4为周期的正弦级数。

解:将f x ()延拓为周期为4的奇函数,其Fourier 系数022sin4cos 42cos 2022cos 22sin2sin)(22,,2,1,0,02220202x n n n n dxx n n x n x n dxxn x dx xn x f b n a n n ππππππππππ+-=+-=====⎰⎰⎰,3,2,1,)1(4=--=n n n π6分 故 .202sin)1(14)(11∑∞=+<≤-=n n x x n nx f ππ8分6. 计算dxdy z dzdx y dydz x 333⎰⎰∑++,其中∑是球面2222R z y x=++的外侧。

解。

由高斯公式可得dxdy z dzdx y dydz x ⎰⎰∑++3335204222512sin 3)(3R dr r d d dv z y x Rπϕϕθππ==++=⎰⎰⎰⎰⎰⎰Ω……8分7.求微分方程1='+''y y x 的通解。

解:令p y x p y '=''='),(,得'+=p x p x112分)(1)1(111C x xC dx e x e y p dxx dx x +=+='=⎰⎰⎰- 6分21ln Cx C x y ++=8分三、应用题 (7分 )求棱长之和为()120l l >,且具有最大体积的长方体体积。

解: 设长方体的棱长分别为z y x ,,。

则l z y x 3=++, 1分目标函数 xyz V = 2分 令 ()l z y x xyz L 3-+++=λ 3分 由()⎪⎪⎩⎪⎪⎨⎧=-++==+==+==+=03000l z y x L xy L xz L yz L z y x λλλλ解得 lz y x ===(唯一驻点)6分由实际问题知长方体体积的最大体积一定存在,因此()3,,l l l l V =即为所求. 7分 四、综合题(7分)已知上半平面内一曲线)0)((≥=x x y y 过点(,)01,且曲线上任一点),(y x M 处切线斜率数值上等于此曲线在0到x 之间所形成的曲边梯形面积的两倍与该点纵坐标之和,求此曲线方程. 解:依题意,得yydx y x+='⎰22分 两边求导得 y y y '+=''2,即2=-'-''y y y , 3分该方程的特征方程为 022=--r r ,即1,221-==rr , 4分 故方程的通解为+=x e C y 21xe C -2,5分 又1)0()0(,1)0(=='=y y y ,所以31,3221==C C。

6分故此曲线方程为x x e e y -+=31322。

7分。

相关文档
最新文档