因式分解知识点分类练习

合集下载

多项式的因式分解_提公因式法练习题

多项式的因式分解_提公因式法练习题

学一学:看谁算得快:请每题答得最快的同学谈思路,得出最佳解题方法。

(1)(1)若若a=101,b=99,a=101,b=99,则则a 多项式的因式分解一、预习导学说一说:(1)21等于3乘哪个乘哪个整数整数? (2)1-2x 等于1+x 乘哪个多项式?乘哪个多项式?因式:一般地,对于两个多项式f 与g,如果有多项式h 使得f=gh,那么我,那么我, 把g 叫做f 的一个因式。

此时,h 也是f 的一个因式。

的一个因式。

22-b 22=___________=___________;; (2)(2)若若a=99,b=-1,a=99,b=-1,则则a 2-2ab+b 2=____________=____________;;(3)(3)若若x=-3,x=-3,则则20x 2+60x=__________议一议:观察:观察: a a 2-b 2=(a+b)(a-b) =(a+b)(a-b) ,, a 2-2ab+b 2 = (a-b)2 , 20x 2+60x=20x(x+3)+60x=20x(x+3),找出它们的特点。

,找出它们的特点。

,找出它们的特点。

(等式的左边是一个什么式子,右边又是什么形式?)【归纳总结】把一个多项式表示成若干个多项式的乘积的形式称为吧这个多项式因式分解,也叫把一个多项式表示成若干个多项式的乘积的形式称为吧这个多项式因式分解,也叫分解因式分解因式。

选一选:下列下列代数式代数式变形中,哪些是因式分解?哪些不是?为什么?(1)x 2-3x+1=x(x-3)+1 -3x+1=x(x-3)+1 ;; (2)2m(m-n)=2m 2-2mn (3)3a 2+6+6ªª = 3a = 3a((a+2a+2))填一填:) )( (4-2=x 继续观察:继续观察:(a+b)(a-b)= a (a+b)(a-b)= a 22-b 22 ,(a-b)22= a 22-2ab+b 22, 20x(x+3)= 20x 22+60x,+60x,它们是什么运算?与因式分解有何关系?它们是什么运算?与因式分解有何关系? 因式分解因式分解因式分解结合:结合:a a 2-b 2 (a+b a+b)()()(a-b a-b a-b)) 整式整式乘法乘法说明:从左到右是因式分解,从右到左是整式乘法,因式分解与整式乘法是相反变形。

因式分解知识点总复习含答案

因式分解知识点总复习含答案
C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意;
D、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,
故选A.
【点睛】
本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.
3.下列等式从左到右的变形属于因式分解的是( )
A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣a
【详解】
A. 只有两项,不符合完全平方公式;
B. 其中 、-1不能写成平方和的形式,不符合完全平方公式;
C. ,其中 与 不能写成平方和的形式,不符合完全平方公式;
D. 符合完全平方公式定义,
故选:D.
【点睛】
此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.
9.下列因式分解结果正确的是( ).
A.1B.-1C.-8D.
【答案】A
【解析】
【分析】
多项式 的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为 ,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.
【详解】
解:多项式 的最高次数是3, 的最高次数是2,
∵多项式 含有因式 和 ,
∴多项式的最后一个因式的最高次数应为1,可设为 ,
故选:B.
【点睛】
本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.
15.已知a、b、c是 的三条边,且满足 ,则 是( )
A.锐角三角形B.钝角三角形
C.等腰三角形D.等边三角形
【答案】C
【解析】
【分析】
已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.

分解因式的常见方法及例题

分解因式的常见方法及例题

知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形,即互逆的运算.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.知识点2 提公因式法多项式m a+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.m a+mb+mc=m(a+b+c)就是把m a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是m a+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4a b+2a=2a(4a b-2b+1).探究交流下列变形是否是因式分解?为什么,(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)x n(x2-x+1)=x n+2-x n+1+x n.点拨 (1)不是因式分解,提公因式错误,可以用整式乘法检验其真伪.(2)不是因式分解,不满足因式分解的含义(3)不是因式分解,因为因式分解是恒等变形而本题不恒等.(4)不是因式分解,是整式乘法.知识点3 公式法(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).(2)完全平方公式:a2±2a b+b2=(a±b)2.其中,a2±2a b+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.探究交流下列变形是否正确?为什么?(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.点拨 (1)不正确,目前在有理数范围内不能再分解.(2)不正确,4x2-6xy+9y2不是完全平方式,不能进行分解.(3)不正确,x2-2x-1不是完全平方式,不能用完全平方公式进行分解,而且在有理数范围内也不能分解.知识点4 分组分解法(1)形如:a m+a n+bm+bn=(a m+a n)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)(2)形如:x2-y2+2x+1=(x2+2x+1)-y2=(x+1)2-y2=(x+y+1)(x-y+1).把多项式进行适当的分组,分组后能够有公因式或运用公式,这样的因式分解方法叫做分组分解法.知识规律小结 (1)分组分解法一般分组方式不惟一.例如:将a m+a n+bm+bn因式分解,方法有两种:方法1:a m+a n+bm+bn=(a m+a n)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).方法2:a m+a n+bm+bn=(a m+bm)+(a n+bn)=m(a+b)+n(a+b)=(m+n)(a+b).(2)分组除具有尝试性外,还要具有目的性,或者分组后能出现公因式,或者分组后能运用公式.例如:a m+a n+bm+bn分组后有公因式;x2-y2+2x+1分组后能运用公式.分组分解法是因式分解的基本方法,体现了化整体为局部,又统揽全局的思想,如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组;(3)按系数分组.例如:把下列各式因式分解.(1) a m+bm+a n+bn;(2)x2-y2+x+y;(3)2a x-5by+2a y-5bx.知识点5 关于x2+(p+q)x+pq型二次三项式的因式分解x2+(p+q)x+pq=(x+p)(x+q).事实上:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+p)(x+q).∴x2+(p+q)x+pq=(x+p)(x+q).利用这个公式,可以把二次三项式因式分解,当p=q时,这个式子化成x2+2px+p2或x2+2qx+q2,是完全平方式,可以运用公式分解因式.例如:把x2+3x+2分解因式.(分析)因为二次三项式x2+3x+2的二次项系数是1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.解:x2+3x+2=(x+1)(x+2)一、例题剖析本节基础知识的应用主要包括:(1)掌握用提公因式法、公式法、分组分解法分解因式;(2)会分解关于x2+(p+q)x+pq型的二次三项式.例1 用提公因式法将下列各式因式分解.(1)a x-a y; (2)6xyz-3xz2; (3)-x3z+x4y;(4)36a by-12a bx+6a b; (5)3x(a-b)+2y(b-a);(6)x(m-x)(m-y)-m(x-m)(y-m).(分析) (1)~(4)题直接提取公因式分解即可,(5)题和(6)题首先要适当的变形,其中(5)题把b-a化成-(a-b)的,(6)题把(x-m)(y-m)化成(m-x)(m-y),然后再提取公因式.解:(1)a x-a y=a(x-y)(2)6xyz-3xz2=3xz(2y-z).(3)-x3z+x4y=x3(-z+xy).(4)36a by-12a bx+6a b=6a b(6y-2x+1).(5)3x(a-b)+2y(b-a)=3x(a-b)-2y(a-b)=(a-b)(3x-2y).(6)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).小结运用提公团式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号不能再分解.如:(7m-8n)(x+y)-(3m-2n)(x+y)=(x+y)[(7m-8n)-(3m-2n)]=(x+y)(4m-6n).=2(x+y)(2m-3n).(2)如果出现像(5)(6)小题需统一时,首先统一,尽可能使统一的个数少,减少统一计算出现误差的机率,这时注意到(a-b)n=(b-a)n(n为偶数).例如:分解因式a(x-y)2+b(y-x)3+c(y-x)2.本题既可以把(x-y)统一成(y-x),也可以把(y-x)统一成(x-y),但比较而言把(x-y)化成(y-x)比较简便,因为(x-y)2=(y-x)2.a(x-y)2+b(y-x)3+c(y-x)2=a(y-x)2+b(y-x)3+c(y-x)2=(y-x)2[a+b(y-x)+c]=(y-x)2(a+by-bx+c).(3)因式分解最后如果有同底数幂,要写成积的形式.例如:(7a-8b)(a-2b)+(a-8b)(a-2b)=(a-2b)[(7a-8b)+(a-8b)]=(a-2b)(8a-16b)=8(a-2b)(a-2b)=8(a-2b)2.例2 把下列各式分解因式.(1)m2+2m+1;(2)9x2-12x+4;(3)1-10x+25x2;(4)(m+n)2-6(m+n)+9.(分析)本题旨在考查用完全平方公式分解因式.解:(1)m2+2m+1=(m+1)2.(2)9x2-12x+4=(3x-2)2.(3)1-10x+25x2=(1-5x)2.(4)(m+n)2-6(m+n)+9=(m+n-3)2.例3 把下列各式分解因式.(1)x2+7x+10;(2)x2-2x-8;(3)y2-7y+10;(4)x2+7x-18.(分析) 二次三项式x2+7x+10的二次项系数为1,常数项10=2×5,一次项系数7=2+5,所以这是一个x2+(p+q)x+pq型的式子,可以用x2+(p+q)x+pq=(x+p)(x+q)进行因式分解.解:(1)x2+7x+10=(x+2)(x+5).(2)x2-2x-8=(x-4)(x+2).(3)y2-7y+10=(y-2)(y-5).(4)x2+7x-18=(x+9)(x-2).小结对于x2+(p+q)x+pq型二次三项式的因式分解,①pq>0,则p,q同号,若p+q>0,则p>0,q>0;若q+p<0,则p<0,q<0;②若pq<0,则p,q异号,若p+q>0,则绝对值大的为正数,若p+q<0,则绝对值大的为负数.例4 分解因式.(1)x3-2x2+x;(2)(a+b)2-4a2;(3)x4-81x2y2;(4)x2(x-y)+y2(y-x); (5)(a+b+c)2-(a-b-c)2.(分析)本题旨在考查综合运用提公因式法和公式法分解因式.解:(1)x3-2x2+x=x(x2-2x+1)=x(x-1)2.(2)(a+b)2-4a2=(a+b+2a)(a+b-2a)=(3a+b)(b-a).(3)x4-81x2y2=x2(x2-81y2)=x2(x+9y)(x-9y).(4)x2(x-y)+y2(y-x)=x2(x-y)-y2(x-y)=(x-y)(x2-y2)=(x-y)(x+y)(x-y)=(x+y)(x-y)2.(5)( a+b+c)2-(a-b-c)2=[(a+b+c)(a-b-c)][(a+b+c)-(a-b-c)]=2a·(2b+2c)=4a(b+c).例5 利用分组分解法把下列各式分解因式.(1)a2-b2+a-b;(2)a2+b2-2ab-1;(3)(a x+by)2+(a y-bx)2;(4)a2-2a b+b2-c2-2c-1.(分析) 分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式,其中(1)题分组后存在公因式,(3)题需去括号后重新分组,(2)和(4)题分组后能运用公式.解:(1)a2-b2+a-b=(a2-b2)+(a-b)=(a+b)(a-b)+(a-b)=(a-b)(a+b+1).(2)a2+b2-2ab-1=(a2-2ab+b2)-1=(a-b)2-1=(a-b+1)(a-b-1).(3)(a x+by)2+(a y-bx)2=a2x2+2a bxy+b2y2+a2y2-2a bxy+b2x2=a2x2+b2y2+a2y2+b2x2=(a2x2+a2y2)+(b2y2+b2x2)=a2(x2+y2)+b2(x2+y2)=(a2+b2)(x2+y2).(4)a2-2a b+b2-c2-2c-1=(a2-2a b+b2)-(c2+2c+1)=(a-b)2-(c+1)2=[(a-b)+(c+1)][(a-b)-(c+1)]=(a-b+c+1)(a-b-c-1).小结解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式或提取公因式后,通常分下列几种情况考虑:(1)如果是四项或四项以上,考虑用分组分解法;(2)如果是二次三项式或完全平方式,则考虑用x 2+(p+q)x+pq 型式子或完全平方公式分解因式;(3)如果是两项,则考虑能否用平方差公式分解因式.最后,直到每一个因式都不能再分解为止.例6 解方程组⎩⎨⎧=-=-②①.12,5422y x y x(分析)本题是一个二元二次方程组,就目前的知识水平来说,用代入消元法或加减消元法来解是困难的.但是我们发现这个方程组有一个特点是方程x 2-4y 2=5可以通过因式分解为(x+2y)(x-2y)=5,再把x-2y=1代入方程(x+2y)(x-2y)=5中,即可得到x+2y=5由此原方程组就可以化成一个二元一次方程组而解出.解:由①得(x+2y)(x-2y)=5,③把②代入③中得x+2y=5,④∴原方程组化为⎩⎨⎧=-=+②④,12,52y x y x②+④得2x=6,∴x=3.②-④得4y=4,∴y=1.∴原方程组的解为⎩⎨⎧==.1,3y x例7 若a ,b ,c 是三角形的三边,且满足关系式a 2+b 2+c-a b-a c-bc=0,试判断这个三角形的形状.解:∵a2+b2+c2-a b-a c-bc=0,∴2a2+2b2+2c2-2a b-2a c-2bc=0.即(a2-2a b+b2)+(b2-2bc+c2)+(c2-2a c+a2)=0,(a-b)2+(b-c)2+(c-a)2=0.由平方的非负性可知,∴a=b=c.∴这个三角形是等边三角形.例8 利用因式分解计算下列各题.(1)234×265-234×65; (2)992+198+1.(分析)主要应用提公因式法和公式法分解因式来计算.解:(1)234×265-234×65=234×(265-65)=234×200=46800.(2)992+198+1=992+2×99×1+1=(99+1)2=1002=10000.例9 若9x2+kxy+36y2是完全平方式,则k= .(分析) 完全平方式是形如:a2±2a b+b2即两数的平方和与这两个数乘积的2倍的和(或差).∵9x2+kxy+36y2=(3x)2+kxy+(6y)2,∴±kxy=2·3x·6y=36xy.∴k=±36.例10 计算200420032004200365654343212122222222+-+++-++-++- .(分析) 本题旨在考查因式分解的灵活运用,即b a b a b a b a ba +-+=+-))((22=a -b(a +b ≠0).解:原式=65)65)(65(43)43)(43(21)21)(21(+-+++-+++-++ (20042003)20042003)(20042003(+-+=(1-2)+(3-4)+(5-6)+…+(2003-2004)=(-1)×(2004÷2)=-1002.例11 若x 2+kx+20能在整数范围内因式分解,则k 可取的整数值有( )A.2个B.3个C.4个D.6个(分析) 若把x 2+kx+20在整数范围内因式分解,由式子x 2+(p+q)x+qq 考虑把20分解因数,20可分解为:20×1,(-20)×(-1),10×2,(-10)×(-2),5×4,(-5)×(-4),所以k 可能取的值有:20+1,(-20)+(-1),10+2,(-10)+(-2),5+4,(-5)+(-4),故k 可能取的值有6个,所以正确答案为D 项.例12 分解因式(x 4+x 2-4)(x 4+x 2+3)+10.(分析)把x 4+x 2作为一个整体,用一个新字母代替,从而简化式子的结构. 解:令x 4+x 2=m ,则原式可化为(m-4)(m+3)+10=m 2-m-12+10=m 2-m-2=(m-2)(m+1)=(x 4+x 2-2)(x 4+x 2+1)=(x2+2)(x2-1)(x4+x2+1)=(x2+2)(x+1)(x-1)(x4+x2+1).二、课堂练习分解因式.(1)(x+y)2-9y2; (2)a2-b2+a+b;(3)10b(x-y)2-5a(y-x)2; (4)(a b+b)2-(a+1)2;(5)(a2-x2)2-4a x(x-a)2; (6)(x+y+z)2-(x-y+z)2.(7)已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.(8)已知x-y=2,x2-y2=6,求x与y的值.三、课后练习1.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )A.3B.-5C.7.D.7或-12.若(2x)n -81=(4x 2+9)(2x+3)(2x-3),则n 的值是( )A.2B.4C.6D.83.把(a +b)-4(a 2-b 2)+4(a -b)2分解因式的结果是( )A.(3a -b)2B.(3b+a )2C.(3b-a )2D.(3a +b)24.把(5x-2y)2+(2x+5y)2分解因式为( )A.2(5x-2y)2B.-2(5x-2y)2C.29(x 2+y 2)D.以上都不对5.若多项式x 2+pxy+qy 2=(x-3y)(x+3y),则p,q 的值依次为( )A.-12,-9B.-6,9C.-9,-9D.0,-96.分解因式:4x 2-9y 2= .7.利用因式分解计算:2224825210000= .8.若x=3.2,y=6.8,则x 2+2xy+y 2= .9.把多项式4-4(a -b)+(a -b)2分解因式的结果是 .10.计算:12-22+32-42+52-62+72-82+92-102= .11.利用因式分解计算19992+1999-20002.12.解方程(65x+63)2-(65x-63)2=260.13.已知a ,b,c 是△ABC 的三边,且满足关系式a 2+c 2=2a b+2bc-2b 2,试说明△ABC 是等边三角形.14.当a,b为何值时,多项式a2+b2-4a+6b+18有最小值?并求出这个最小值.。

人教版八年级数学上册因式分解专项练习(含知识点)

人教版八年级数学上册因式分解专项练习(含知识点)

八年级数学因式分解专项练习一、填空题:1、=-222y y x ; 2、=+-3632a a3、2x ²-4xy -2x = (x -2y -1)4、4a ³b ²-10a ²b ³ = 2a ²b ² ( )5、(1-a)mn +a -1=( )(mn -1)6、m(m -n)²-(n -m)²=( )( )7、x ²-( )+16y ² =( ) ²8、a ²-4(a -b)²=( )·( )9、16(x -y)²-9(x +y)² =( )·( ) 10、(a +b)³-(a +b)=(a +b)·( )·( ) 11、x ²+3x +2=( )( )12、已知x ²+px +12=(x -2)(x -6),则p= 13、若。

=,,则b a b b a ==+-+-0122214、若()22416-=+-x mx x ,那么m=15、如果。

,则=+=+-==+2222,7,0y x xy y x xy y x16、已知31=+a a ,则221a a +的值是 17、如果2a+3b=1,那么3-4a-6b=18、若n mx x ++2是一个完全平方式,则n m 、的关系是 19、分解因式:2212a b ab -+-=20、如果()()22122163a b a b +++-=,那么a b +的值为二、选择题:21、下列各式从左到右的变形中,是因式分解的为............( )A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+- C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(22、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是.................................................( )A 、46-bB 、64b -C 、46+bD 、46--b23、下列各式是完全平方式的是...........................( ) A 、412+-x xB 、21x +C 、1++xy xD 、122-+x x24、把多项式)2()2(2a m a m -+-分解因式等于...............( ) A 、))(2(2m m a +- B 、))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1)25、2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是.........( ) A 、2)5(b a - B 、2)5(b a + C 、)23)(23(b a b a +- D 、2)25(b a -26、下列多项式中,含有因式)1(+y 的多项式是.............( )A 、2232x xy y --B 、22)1()1(--+y yC 、)1()1(22--+y yD 、1)1(2)1(2++++y y 27、分解因式14-x 得....................................( ) A 、)1)(1(22-+x x B 、22)1()1(-+x x C 、)1)(1)(1(2++-x x x D 、3)1)(1(+-x x28、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为.................................................( ) A 、1,3-==c b B 、2,6=-=c b C 、4,6-=-=c b D 、6,4-=-=c b29、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是.............................................( ) A 、直角三角形 B 、等腰三角形 C 、等腰直角三角形 D 、等边三角形30、()()22x a x ax a -++的计算结果是....................( )(A)、3232x ax a +-(B)、33x a -(C)、3232x a x a +-(D)、222322x ax a a ++-31、用提提公因式法分解因式5a(x -y)-10b ·(x -y),提出的公因式应当为...........................................( ) A 、5a -10b B 、5a +10b C 、5(x -y) D 、y -x32、把-8m ³+12m ²+4m 分解因式,结果是..................( ) A 、-4m(2m ²-3m) B 、-4m(2m ²+3m -1) C 、-4m(2m ²-3m -1) D 、-2m(4m ²-6m +2) 33、把16-x4分解因式,其结果是..........................( ) A 、(2-x)4 B 、(4+x ²)( 4-x ²) C 、(4+x ²)(2+x)(2-x) D 、(2+x)³(2-x)34、把a4-2a ²b ²+b4分解因式,结果是......................( ) A 、a ² (a ²-2b ²)+b4 B 、(a ²-b ²)² C 、(a -b)4 D 、(a +b)²(a -b)²35、把多项式2x ²-2x +21分解因式,其结果是..............( )A 、(2x -21)²B 、2(x -21)²C 、(x -21)²D 、21(x -1) ²36、若9a ²+6(k -3)a +1是完全平方式,则 k 的值是.........( ) A 、±4 B 、±2 C 、3 D 、4或237、-(2x -y )(2x +y)是下列哪个多项式分解因式的结果...( ) A 、4x ²-y ² B 、4x ²+y ² C 、-4x ²-y ² D 、-4x ²+y ²38、多项式x2+3x -54分解因式为........................( ) A 、(x +6)(x -9) B 、(x -6)(x +9)C 、(x +6)(x +9)D 、 (x -6)(x -9)39、若a 、b 、c 为一个三角形的三边,则代数式(a -c )²-b ²的值为.................................................( ) A 、一定为正数 B 、一定为负数 C 、可能为正数,也可能为负数 D 、可能为零40、下列分解因式正确的是..............................( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-. 41、如图:矩形花园ABCD 中,a AB =,b AD =, 花园中建有一条矩形道路LMPQ 及一条平行 四边形道路RSTK 。

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

C. ﹣2(3x﹣1)=﹣6x﹣2
D. ﹣2(3x﹣1)=﹣6x+2
2.( 2015•济宁)化简 ﹣16( x﹣0.5)的结果是( )
A. ﹣16x﹣0.5
B. ﹣16x+0.5
C. 16x﹣8
3.(2016·佛山)化简 m n (m n) 的结果是( ).
D. ﹣16x+8
A. 0
B. 2m
C.0.2a2b 与﹣ a2b D.a2b3 与﹣a3b2
4.(2015•柳州)在下列单项式中,与 2xy 是同类项的是( )
A.2x2y2
B.3y
C.xy
D.4x
5.(2014•毕节)若 2 am b4 与 5 an2 b2mn 可以合并成一项,则 mm 的值是( )
A.2
B. 0
C.﹣1
D.1
C. x·x2= x4 C.(-x2)3=-x6 C.(a2)3=a6
D.(2x2)2=6x6 D.(x3)2=x5
D.a6÷a3=a2
8.下列运算正确的是 ( )
A. 3 = 3
9.下列计算正确的是 (
B. ( 1 ) 1 22
)
A.a3·a2=a6
B.a2+a4=2a2
10.下列计算正确的是( )
A. 6a-5a=1
B. a+2a2=3a3
) C.-(a-b)=-a+b
D.2(a+b)=2a+b
7.(2012•浙江)化简: 2(a 1) a _______ .
考点 3、根据题意列代数式
1.(2014•盐城)“x 的 2 倍与 5 的和”用代数式表示为

2.(2010·嘉兴)用代数式表示“a、b 两数的平方和”,结果为_______。

因式分解-提取公因式练习题

因式分解-提取公因式练习题

因式分解练习题(提取公因式)知识点一 因式分解的定义理解把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式。

因式分解的实质是( )与( )是“积化和差”的过程正好( )。

【例题 】 1.下列变形是分解因式的是( )A .6x 2y 2=3xy ·2xyB .a 2-4ab+4b 2=(a -2b)2C .(x+2)(x+1)=x 2+3x+2D .x 2-9-6x=(x+3)(x -3)-6x2.下列各式从左到右的变形中,是因式分解的为( )A 、2222)1(xy y x x xy -=-B 、)3)(3(92-+=-x x xC 、222)1)(1(1y x x y x ++-=+-D 、c b a x c bx ax ++=++)(3、下列分解因式结果正确的是( )A. a 2b +7ab -b =b (a 2+7a )B. 3x 2y -3xy +6y =3y (x 2-x +2)C. 8xyz -6x 2y 2=2xyz (4-3xy )D. -2a 2+4ab -6ac =-2a (a -2b -3c )知识点二:确定多项式的公因式的方法1、我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

2、找公因式的方法【例题】1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+- 8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---知识点三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+2、__()b a a b -=-3、__()z y y z -+=-4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数【专项训练】一、把下列各式分解因式。

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。

专题07因式分解(4个知识点13种题型)(解析版)

专题07因式分解(4个知识点13种题型)(解析版)

专题07因式分解(4个知识点13种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.提公因式法因式分解知识点2.公式法因式分解知识点3.十字相乘法法因式分解知识点4.分组分解法法因式分解【方法二】实例探索法题型1.因式分解的概念题型2.用提公因式法分解因式(公因式为单项式)题型3.用提公因式法分解因式(公因式为多项式)题型4.用提公因式法分解因式的简单应用题型5.利用平方差公式分解因式题型6.综合利用提公因式法与平方差公式分解因式题型7.完全平方式题型8.利用完全平方公式分解因式题型9.综合利用提公因式法与完全平方公式分解因式题型10.十字相乘法题型11.十字相乘法的灵活应用题型12.利用分组分解法分解因式题型13.分组分解法的灵活应用【方法三】成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1.提公因式法因式分解一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.知识点2.公式法因式分解1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a 2﹣b 2=(a +b )(a ﹣b );完全平方公式:a 2±2ab +b 2=(a ±b )2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.知识点4.十字相乘法法因式分解十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p ,满足这两个条件便可以进行如下分解因式,即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.知识点5.分组分解法法因式分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=++.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【方法二】实例探索法题型1.因式分解的概念1.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,故选项错误,不合题意;B.等式右边不是乘积形式,故选项错误,不合题意;C.等式右边不是乘积形式,故选项错误,不合题意;D.符合定义,故选项正确,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.2.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式由左边到右边的变形属于因式分解,并且正确,故本选符合题意;B.等式由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.题型2.用提公因式法分解因式(公因式为单项式)3.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【解答】解:多项式6x3y2﹣3x2y2+12x2y3的公因式是3x2y2.故答案为:3x2y2.【点评】此题主要考查了公因式,正确把握确定公因式的方法是解题的关键.4.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.【分析】提取公因式后即可因式分解.【解答】解:3x3﹣9x2﹣3x=3x(x2﹣3x﹣1),故答案为:3x(x2﹣3x﹣1).【点评】本题考查因式分解,熟练掌握提取公因式法因式分解的方法是解题的关键.5.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.6.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.【分析】直接提取公因式﹣5a,进而分解因式即可.【解答】解:原式=﹣5a(3+2b﹣bc).故答案为:﹣5a(3+2b﹣bc).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.题型3.用提公因式法分解因式(公因式为多项式)7.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.【分析】将原式的公因式(x﹣5)提出即可得出答案.【解答】解:(x﹣5)(3x﹣2)﹣3(x﹣5)=(x﹣5)(3x﹣2﹣3)=(x﹣5)(3x﹣5).故答案为:(x﹣5)(3x﹣5).【点评】本题考查因式分解﹣提公因式法,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.8.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.【分析】首先把式子变形为:a(a﹣b)﹣b(a﹣b),再找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:a(a﹣b)+b(b﹣a)=a(a﹣b)﹣b(a﹣b)=(a﹣b)(a﹣b)=(a﹣b)2.故答案为:(a﹣b)2.【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.9.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【分析】直接提取公因式a﹣c即可.【解答】解:原式=(a﹣c)(2m﹣5).【点评】此题主要考查了提公因式法分解因式,关键是正确找到公因式.10.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)【分析】直接提取公因式进而分解因式得出答案.【解答】解:6(x+y)2﹣2(x+y)(x﹣y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点评】此题主要考查了提取公因式法分解因式,正确掌握公因式是解题关键.11.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).【分析】原式变形可得a2(a+2b)+2ab(a+2b),再提公因式a(a+2b)因式分解即可.【解答】解:a2(a+2b)﹣ab(﹣4b﹣2a)=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+2b)2.【点评】本题考查了提公因式法因式分解,正确找出公因式是解答本题的关键.题型4.用提公因式法分解因式的简单应用12.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×)=﹣3×2=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值和因式分解,熟练掌握运算法则是解本题的关键.题型5.利用平方差公式分解因式13.(2022秋•徐汇区期末)分解因式:x2﹣=.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣=(x+)(x﹣).故答案为:(x+)(x﹣).【点评】本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.14.(2022秋•嘉定区校级期中)因式分解:x4﹣16=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b),进行两次分解.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).【点评】此题主要考查了用公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(2022秋•黄浦区期中)分解因式:﹣(a+b)2+1=.【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:原式=[1﹣(a+b)][1+(a+b)]=(1﹣a﹣b)(1+a+b).故答案为:(1﹣a﹣b)(1+a+b).【点评】此题主要考查了公式法分解因式,正确运用平方差公式分解因式是解题关键.16.(2022•黄浦区校级二模)分解因式:x2﹣4y2=.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).故答案为:(x+2y)(x﹣2y).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.17.(2022秋•上海期末)分解因式:9a2﹣25(a+b)2.【分析】根据平方差公式因式分解即可.【解答】解:9a2﹣25(a+b)2=[3a﹣5(a+b)][3a+5(a+b)]=(﹣2a﹣5b)(8a+5b)=﹣(2a+5b)(8a+5b).【点评】本题考查了公式法进行因式分解,熟练掌握因式分解的方法是解题的关键.18.(2022秋•黄浦区期中)分解因式:25(m+n)2﹣9(m﹣n)2.【分析】直接利用平方差公式分解因式.【解答】解:25(m+n)2﹣9(m﹣n)2=[5(m+n)﹣3(m﹣n)][5(m+n)+3(m﹣n)]=(2m+8n)(8m+2n)=4(m+4n)(4m+n).【点评】本题考查了因式分解﹣公式法:掌握a2﹣b2=(a+b)(a﹣b)是解题的关键.题型6.综合利用提公因式法与平方差公式分解因式19.(2022秋•浦东新区校级期末)分解因式:4x2﹣16=.【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).故答案为:4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.20.(2022秋•青浦区校级期中)因式分解:3a(a+b)2﹣27ab2.【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3a[(a+b)2﹣9b2]=3a(a+b+3b)(a+b﹣3b)=3a(a+4b)(a﹣2b).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型7.完全平方式21.(2022秋•青浦区校级期中)下列多项式中可以用完全平方公式进行因式分解的()A.x2+x+1B.x2﹣2x﹣1C.x2+2x+4D.x2﹣x+【分析】根据完全平方公式的结构特征逐项进行判断即可.【解答】解:A.x2+x+1,不能利用完全平方公式进行因式分解,因此选项A不符合题意;B.x2﹣2x﹣1,不能利用完全平方公式进行因式分解,因此选项B不符合题意;C.x2+2x+4,不能利用完全平方公式进行因式分解,因此选项C不符合题意;D.x2﹣x+=(x﹣)2,能利用完全平方公式进行因式分解,因此选项D符合题意;故选:D.【点评】本题考查了因式分解﹣运用公式法,掌握完全平方公式的结构特征是正确判断的前提.题型8.利用完全平方公式分解因式22.(2022秋•黄浦区期中)因式分解:(x2﹣4x)2+8(x2﹣4x)+16.【分析】直接利用完全平方公式分解因式,进而得出答案.【解答】解:原式=(x2﹣4x+4)2=(x﹣2)4.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题的关键.23.(2022秋•长宁区校级期中)(m+n)2+6(m2﹣n2)+9(m﹣n)2.【分析】首先利用平方差公式分解m2﹣n2,观察发现此题代数式符合完全平方公式,再利用完全平方公式进行分解即可.【解答】解:原式=(m+n)2+6(m﹣n)(m+n)+9(m﹣n)2,=[(m+n)+3(m﹣n)]2,=(4m﹣2n)2,=4(2m﹣n)2.【点评】此题主要考查了公式法分解因式,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.24.(2022秋•长宁区校级期中)分解因式:m(m﹣4)+4.【分析】先运用单项式乘以多项式法则将括号展开,再利用完全平方公式进行因式分解即可.【解答】解:m(m﹣4)+4=m2﹣4m+4=(m﹣2)2.【点评】本题主要考查了因式分解,熟练掌握完全平方公式(a2±2ab+b2=(a±b)2)是解答本题的关键.题型9.综合利用提公因式法与完全平方公式分解因式25.(2022秋•长宁区校级期中)因式分解:=.【分析】先提取公因式,再利用完全平方公式分解因式即可.【解答】解:原式=(m2﹣4m+4)=(m﹣2)2.故答案为:(m﹣2)2.【点评】本题考查的是多项式的因式分解,掌握“利用完全平方公式分解因式”是解本题的关键.26.(2022秋•长宁区校级期中)分解因式:﹣6x2y﹣3x3﹣3xy2.【分析】先提取公因式,再利用完全平方公式.【解答】解:﹣6x2y﹣3x3﹣3xy2=﹣3x(x2+2xy+y2)=﹣3x(x+y)2.【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.27.(2022秋•青浦区校级期中)因式分解:3a2+12ab+12b2.【分析】先提取公因式,再套用完全平方公式.【解答】解:3a2+12ab+12b2=3(a2+4ab+4b2)=3(a+2b)2.【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型10.十字相乘法28.(2022秋•青浦区校级期末)因式分解:2x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.29.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.30.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.31.(2022秋•奉贤区期中)分解因式:ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.32.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.33.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.34.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.35.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.36.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.题型11.十字相乘法的灵活应用37.(2022秋•静安区校级期中)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0B.10C.12D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).38.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.39.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.40.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.41.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.题型12.利用分组分解法分解因式42.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.43.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.44.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.45.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.46.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.47.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.48.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.49.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.50.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.51.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.题型13.分组分解法的灵活应用52.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.53.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.【方法三】成功评定法一、单选题1.(2022秋·上海·七年级上海市民办新复兴初级中学校考期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】根据平方差公式逐项分析即可.【详解】解:A.()()x y x y +-22x y =-,故能用平方差公式计算;B.()()x y x y +-+22y x =-,故能用平方差公式计算;C.()()x y x y -+-222()2x y x xy y =--=-+-,故不能用平方差公式计算;D.()()x y x y -+--22x y =-,故能用平方差公式计算;故选:C .【点睛】此题主要考查了乘法公式,熟练掌握公式是解答本题的关键.完全平方公式是()2222a b a ab b ±=±+;平方差公式是()()22a b a b a b +-=-.二、填空题三、解答题【分析】利用平方差公式进行因式分解即可得出答案.【详解】解:224691x y y +--()224961x y y =--+()22431x y --=()()231231x y x y =+--+.【点睛】此题主要考查因式分解,解题的关键是掌握利用平方差公式进行因式分解.22.(2022秋·上海·七年级阶段练习)因式分解:221218a b ab b -+【答案】22(3)b a -.【分析】先提公因式2b ,再利用完全平方公式即可【详解】解:原式()2269=-+b a a 22(3)=-b a .【点睛】本题考查了综合提公因式法和公式法分解因式,熟练掌握方法是解题的关键23.(2022秋·上海·七年级校考阶段练习)因式分解:()()2222225225m n m n ---【答案】()()()2221m n m n m n +-+【分析】直接利用平方差公式分解因式即可.【详解】原式()()2222222252255225m n m n m n m n =-+---+()()22227733m n m n =-+()()222221m n m n =-+()()()2221m n m n m n =+-+【点睛】本题考查了公式法分解因式,熟练应用平方差公式是解题关键.24.(2022秋·上海·七年级校考阶段练习)因式分解:()()2280x y y x ----【答案】()()810x y x y ---+【分析】利用十字相乘法分解因式即可.【详解】()()2280x y y x ----。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解练习题(提取公因式)专项训练一:确定下列各多项式的公因式。

1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+- 8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---专项训练二:利用乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+4、2215255(_______)a ab a += 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+2、__()b a a b -=-3、__()z y y z -+=-4、()22___()y x x y -=-5、33()__()y x x y -=-6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=--11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=-专项训练四、把下列各式分解因式。

1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。

1、()()x a b y a b +-+2、5()2()x x y y x y -+-3、6()4()q p q p p q +-+4、()()()()m n P q m n p q ++-+-5、2()()a a b a b -+-6、2()()x x y y x y ---7、(2)(23)3(2)a b a b a a b +--+8、2()()()x x y x y x x y +--+9、()()p x y q y x ---10、(3)2(3)m a a -+-11、()()()a b a b b a +--+12、()()()a x a b a x c x a -+---13、333(1)(1)x y x z ---14、22()()ab a b a b a --+-15、()()mx a b nx b a ---16、(2)(23)5(2)(32)a b a b a b a b a -----17、(3)(3)()(3)a b a b a b b a +-+--18、2()()a x y b y x -+-19、232()2()()x x y y x y x ----- 20、32()()()()x a x b a x b x --+--21、234()()()y x x x y y x -+--- 22、2123(23)(32)()()n n a b b a a b n +----为自然数专项训练六、利用因式分解计算。

1、7.6199.8 4.3199.8 1.9199.8⨯+⨯-⨯2、2.186 1.237 1.237 1.186⨯-⨯3、212019(3)(3)63-+-+⨯4、198420032003200319841984⨯-⨯专项训练七:利用因式分解证明下列各题。

1、求证:当n 为整数时,2n n +必能被2整除。

2、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除。

3、证明:2002200120003431037-⨯+⨯能被整除。

专项训练八:利用因式分解解答列各题。

1、22已知a+b=13,ab=40, 求2a b+2ab 的值。

2、32232132a b ab +==已知,,求a b+2a b +ab 的值。

因式分解习题(二)专题训练一:利用平方差公式分解因式题型(一):把下列各式分解因式1、24x -2、29y -3、21a -4、224x y -5、2125b -6、222x y z -7、2240.019m b - 8、2219a x - 9、2236m n -10、2249x y - 11、220.8116a b - 12、222549p q -13、2422a x b y - 14、41x -15、4416a b - 16、44411681a b m -题型(二):把下列各式分解因式1、22()()x p x q +-+2、 22(32)()m n m n +--3、2216()9()a b a b --+4、229()4()x y x y --+5、22()()a b c a b c ++-+-6、224()a b c -+题型(三):把下列各式分解因式1、53x x -2、224ax ay -3、322ab ab -4、316x x -5、2433ax ay -6、2(25)4(52)x x x -+-7、324x xy - 8、343322x y x - 9、4416ma mb -10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+题型(四):利用因式分解解答下列各题1、证明:两个连续奇数的平方差是8的倍数。

2、计算⑴22758258- ⑵22429171- ⑶223.59 2.54⨯-⨯⑷2222211111(1)(1)(1)(1)(1)234910---⋅⋅⋅--专题训练二:利用完全平方公式分解因式题型(一):把下列各式分解因式1、221x x ++2、2441a a ++3、 2169y y -+4、214m m ++ 5、 221x x -+ 6、2816a a -+7、2144t t -+ 8、21449m m -+ 9、222121b b -+10、214y y ++ 11、2258064m m -+ 12、243681a a ++13、2242025p pq q -+ 14、224x xy y ++ 15、2244x y xy +-题型(二):把下列各式分解因式1、2()6()9x y x y ++++2、222()()a a b c b c -+++3、2412()9()x y x y --+-4、22()4()4m n m m n m ++++5、()4(1)x y x y +-+-6、22(1)4(1)4a a a a ++++题型(三):把下列各式分解因式1、222xy x y --2、22344xy x y y --3、232a a a -+-题型(四):把下列各式分解因式1、221222x xy y ++ 2、42232510x x y x y ++3、2232ax a x a ++4、22222()4x y x y +-5、2222()(34)a ab ab b +-+6、42()18()81x y x y +-++7、2222(1)4(1)4a a a a +-++ 8、42242()()a a b c b c -+++9、4224816x x y y -+ 10、2222()8()16()a b a b a b +--+-题型(五):利用因式分解解答下列各题1、已知: 2211128,22x y x xy y ==++,求代数式的值。

2、3322322a b ab +==已知,,求代数式a b+ab -2a b 的值。

3、已知:2220a b c ABC a b c ab bc ac ++---=、、为△的三边,且,判断三角形的形状,并说明理由。

因式分解习题(三)十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,绝对值较大的因数与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的和要等于一次项的系数。

例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析:(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

相关文档
最新文档