方差分析

合集下载

方差分析

方差分析

方差分析方差分析是比较多个总体的均值是否相等,但本质上它所研究的是变量之间的关系。

在研究一个(或多个)分类型自变量与一个数值型因变量之间的关系时,方差分析就是其中的只要方法之一。

一、方差分析引论假设需要检验4个总体的均值分别为4321,,,μμμμ,如果用一般假设检验方法,如t 检验,一次只能研究两个样本,要检验4个总体的均值是否相等,需要做6次检验,如果在0.05的置信水平下检验,每次检验犯第Ⅰ类错误的概率都是0.05,检验完成时,犯第Ⅰ类错误的概率会大于0.05,即连续作6次检验第Ⅰ类错误的概率为6)1(1α--=0.265,而置信水平则会降低到0.735(即695.0)。

随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会增加(并非均值真的存在差别)。

而方差分析方法则是同时考虑所有的样本,因此排除了错误累计的概率,从而避免拒绝一个真实的原假设。

1、方差分析及其有关术语方差分析:就是通过检验各总体均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。

例1:为了对几个行业的服务质量进行评价,消费者协会在零售业、旅游业、航空公司、家电制造业分别抽取了不同的企业作为样本。

其中零售业7家,旅游业抽取6家,航空公司抽取5家,家电制造业抽取5家。

最后统计出最近一年中消费者对总共23家企业投诉的次数。

如下表所示。

消费者对四个行业的投诉次数行业零售业 旅游业 航空业 家电制造业57 68 31 44 66 39 49 51 49 29 21 65 40 45 34 77 34 56 40 58 53 51 44要分析四个行业之间的服务质量是否有显著差异,实际上就是要判断“行业”对“投诉次数”是否有显著影响,做出这种判断最终被归结为检验这四个行业被投诉次数的均值是否相等。

在方差分析中,要检验的对象称为因素或因子。

因素不同的表现称为水平或处理。

每个因子水平下得到的样本数据称为观测值。

在例1中,“行业”是要检验的对象,称为“因素”或“因子”;零售业,旅游业,航空公司,家电制造业是行业这一因素的具体表现,称为“水平”或“处理”;在每个行业下得到的样本数据(被投诉次数)称为观测值。

方差分析

方差分析

Minimum Maximum 125.30 143.10 143.80 162.70 182.80 198.60 212.30 225.80 125.30 225.80
给出了四种饲料分组的样本含量N、平均数Mean、标准差 Std Deviation、
标准误 Std Error、95%的置信区间、最小值和最大值 ;
对照组 10.28 31.35 31.23
去卵巢组 10.01 8.28 6.12
雌激素组 28.88 12.77 27.56



随机误差,例如测量误差造成的差异,称为组 内差异。用变量在各组的均值与该组内变量值 之偏(离均)差平方和的总和表示。记作SS组内。 实验条件, 即不同的处理造成的差异,称为组 间差异。用变量在各组的均值与总均值之偏 (离均)差平方和的总和表示。记作SS组间。 SS组间、SS组内除以各自的自由度得到其均方 值即组间均方和组内均方。
3.1 因素与处理



因素(Factor)是影响因变量变化的客观条件;例如影 响农作物产量的因素有气温、降雨量、日照时间等; 处理(Treatments)是影响因变量变化的人为条件。也 可以称为因素。如研究不同肥料对不同种系农作物产 量的影响时农作物的不同种系可称为因素,所施肥料 可视为不同的处理。 一般情况下Factors与Treatments在方差分析中可作 相同理解。在要求进行方差分析的数据文件中均作为 分类变量出现。即它们的值只有有限个取值。即使是 气温、降雨量等平常看作是连续变量的,在方差分析 中如果作为影响产量的因素进行研究,就应该将其数 值用分组定义水平的方法事先变为具有有限个取值的 离散变量
N A B C D Total 5 5 5 4 19

第九章 方差分析

第九章  方差分析

第九章方差分析前面介绍了两个样本均数比较的t检验,那么多个样本均数的比较应该采用什么方法?方差分析(analysis of variance, ANOV A)是20世纪20年代发展起来的一种统计方法,由英国著名统计学家R.A.Fisher提出,又称F检验,是通过对数据变异的分析来推断两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。

本章首先介绍方差分析的基本思想和应用条件,然后结合研究设计类型分别介绍各类方差分析方法。

第一节方差分析的基本思想和应用条件一、方差分析的基本思想方差分析的基本思想是把全部观察值间的变异按设计类型的不同,分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,以判断各部分的变异是否具有统计学意义。

例9.1 为研究大豆对缺铁性贫血的恢复作用,某研究者进行了如下实验:选取已做成贫血模型的大鼠36只,随机等分为3组,每组12只,分别用三种不同的饲料喂养:不含大豆的普通饲料、含10%大豆饲料和含15%大豆饲料。

喂养一周后,测定大鼠红细胞数(×1012/L),试分析喂养三种不同饲料的大鼠贫血恢复情况是否不同?表9.1 喂养三种不同饲料的大鼠红细胞数(×1012/L)普通饲料10%大豆饲料15%大豆饲料合计X 4.78 4.65 6.80 4.65 6.92 5.913.984.447.284.04 6.167.51 3.445.997.51 3.776.677.743.65 5.298.194.91 4.707.154.795.058.185.316.01 5.534.055.677.795.16 4.688.03in12 12 12 36 (n)i X ∑ 52.53 66.23 87.62 206.38(X ∑)i X4.385.52 7.30 5.73 (X ) 2i X ∑ 234.2783373.2851647.73121255.2946(2X ∑)表9.1按完全随机设计获得的36个数据(X )中包含以下三种变异: 1. 总变异 36只大鼠喂养一周后测定红细胞数X 各不相同,即X 与总均数X 不同,这种变异称为总变异(total variation)。

统计学之方差分析

统计学之方差分析
执行方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。

什么是方差分析

什么是方差分析

什么是方差分析关键信息项:1、方差分析的定义2、方差分析的目的3、方差分析的应用场景4、方差分析的类型5、方差分析的步骤6、方差分析的结果解读7、方差分析的局限性8、方差分析与其他统计方法的比较11 方差分析的定义方差分析(Analysis of Variance,简称 ANOVA)是一种用于比较两个或多个总体均值是否存在显著差异的统计方法。

它通过分析数据的变异来源,来判断不同因素对观测变量的影响程度。

111 基本原理方差分析基于总体方差可以分解为各个因素所引起的方差之和的原理。

通过比较不同因素水平下的组间方差和组内方差,来确定因素对观测变量的影响是否显著。

112 数学模型一般来说,方差分析的数学模型可以表示为:观测值=总体均值+因素效应+随机误差。

12 方差分析的目的其主要目的是检验不同水平的因素对因变量的均值是否有显著影响。

121 探究因素的作用确定哪些因素对观测结果有重要影响,哪些因素的影响可以忽略不计。

122 比较不同处理的效果例如在实验研究中,比较不同实验处理条件下的结果是否存在显著差异。

13 方差分析的应用场景131 农业科学用于比较不同种植方法、施肥量、品种等对农作物产量的影响。

132 医学研究分析不同药物剂量、治疗方案对患者康复效果的差异。

133 工业生产研究不同生产工艺、原材料对产品质量的作用。

134 社会科学例如在心理学、教育学中,比较不同教学方法、教育环境对学生成绩或心理状态的影响。

14 方差分析的类型141 单因素方差分析只考虑一个因素对观测变量的影响。

142 双因素方差分析同时考虑两个因素的交互作用对观测变量的影响。

143 多因素方差分析涉及多个因素及其交互作用对观测变量的综合影响。

15 方差分析的步骤151 提出假设包括零假设(各总体均值相等)和备择假设(至少有两个总体均值不相等)。

152 计算统计量根据数据计算组间平方和、组内平方和等,进而得到 F 统计量。

153 确定显著性水平通常设定为 005 或 001 等。

方差分析

方差分析
当g=2时,方差分析结果与两样本t检验结果完全 等价,且t2=F。
第三节 随机区组设计资料的方差分析
一、随机区组设计
1。随机区组设计
随机区组设计又称配伍组设计,是配对设计的扩展。 首先从总体中随机抽样,然后将样本中的所有受试对 象,按条件相同或相近配成若干组(随机区组或配伍 组),再将每组中的几个受试对象随机分配到不同的 处理组中去,这种设计的方法称随机区组设计。
变异程度。计算公式如下:
SS总
2
Xij X
X
2 ij

C
其中:
C X 2 N
用离均差平方和表示总变异大小受样本容量
的影响,样本容量越大,SS越大,所以必须扣 除n的影响,严格的讲是扣除ν的影响。
总变异的自由度:ν 总=N-1
SS总总 称为总变异的均方,用MS总表示。
2。完全随机设计资料的分析方法
完全随机设计资料在进行统计分析时,需根 据数据的分布特征选择方法,对于正态分布且方 差齐的资料,常采用完全随机设计的单因素方差
分析(one-way ANOVA)或两样本t检验(g=2);
对于非正态或方差不齐的资料,可进行数据变换 或采用秩和检验。
二、完全随机设计方差分析
SS区组 区组
MS区组 MS误差
误差 SS总 SS处理 SS区组 (g 1)(n 1) SS误差 误差
其中:C ( X )2 N
例4-4 某研究者采用随机区组设计进行实验,比较三 种抗癌药物对小白鼠肉瘤抑瘤效果,先将15只染有肉瘤 小白鼠按体重大小配成5个区组,每个区组内3只小白鼠 随机接受三种抗癌药物(具体分配结果见例4-3),以 肉瘤的重量为指标,试验结果见表4-9。问三种不同的 药物的抑瘤效果有无差别?

方差分析

方差分析

k
nkΒιβλιοθήκη 2总平方和:SST
实验中产生的总变异
组内平方和:SSW
实验误差(包括个体差异)由于不同的实验处理而造 造成的变异 成的变异
组间平方和:SSB
三者之间的关系如下:
SS 总 SS 组间 SS 组内
组间自由度: 组内自由度: 总体自由度: 书266:这样
df B = k-1
df W = k(n-1)
df T = nk-1
在方差分析中,比较组间变异与组内变异时,不 能直接比较各自的平方和。因为平方和的大小与 项数有关,应该将项数的影响去掉。因此用平方 和除以各自自由度得到均方,再进行比较。
SS B MS B df B
书266
MSW
SSW df W
方差分析就是通过比较组内均方MS组内 和组间均方 MS组间 的大小关系来判断处 理因素有无效应。
变异分解
SS 总(T) SS 组间(B) SS 区组(R) SS 误差(E)
SS R
1 n
( R ) 2 k

( R ) 2 nk
总自由度也被分为三部分: dfT = nk-1
df B k 1
dfE=(k-1)(n-1)
dfR=n-1
例4:5名被试在四种不同的环境条件下参加某一心理测验, 结果如下。问不同的测验环境是否对这一测验成绩有显著影 响。
SSB n ( X j X t ) 2
j 1 k
SSw ( X ij X j ) n s j
2 j 1
k
2
1、求平方和
Xt
X1 X 2 X 3 X 4 6.4 4
k
SSB n ( X j X t ) 2 30.08

第六章方差分析

第六章方差分析

2se( 2 LSD检验)
x
n0
x1 x2
n0
第三节双因素方差分析
1、试验指标:衡量试验结果的标准 2、因素(factor):也叫因子,是指对试验指标有影响,在研究中加以(控制)考虑的试验
4
条件。 3、可控因子:在试验中可以人为地加以调控的因子浓度、温度等 4、非控因子:不能人为调控的因素(气象、环境等) 5、固定因素:指因素的水平是经过特意选择的 6、随机因素:指因素的水平是从该因素水平总体中随机抽出的样本 7、水平(level):每个因素的不同状态(从质或量方面分成不同的等级) (因素是一个抽象的概念,水平则是一个较为具体的概念) 8、处理:指对试验对象施以不同的措施(对单因素试验而言,水平和处理是一致的,一个 水平就是一个处理;对多因素试验而言,处理就是指水平与水平的组合) 9、固定效应(fixed effect):由固定因素所引起的效应。 10、随机效应(random effect):由随机因素引起的效应。 11、二因素方差分析:是指对试验指标同时受到两个试验因素作用的试验资料的方差分析。 12、固定模型:二因素都是固定因素 13、随机模型:二因素均为随机因素 14、混合模型:一个因素是固定因素,一个因素是随机因素 15、主效应(main effect):各试验因素的相对独立作用 16、互作(interaction):某一因素在另一因素的不同水平上所产生的效应不同。 17、因素间的交互作用显著与否关系到主效应的利用价值 如果交互作用不显著,则各因素的效应可以累加,各因素的最优水平组合起来,即为最优的 处理组合。 如果交互作用显著,则各因素的效应就不能累加,最优处理组合的选定应根据各处理组合的 直接表现选定。有时交互作用相当大,甚至可以忽略主效应。 二因素间是否存在交互作用有专门的统计判断方法,有时也可根据专业知识判断。 (一)无重复观测值的二因素方差分析 依据经验或专业知识,判断二因素无交互作用时,每个处理可只设一个观测值,即假定 A 因素有 a 各水平,B 因素有 b 个水平,每个处理组合只有一个观测值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章方差分析第一节Simple Factorial过程6.1.1 主要功能6.1.2 实例操作第二节General Factorial过程6.2.1 主要功能6.2.2 实例操作第三节Multivarite过程6.3.1 主要功能6.3.2 实例操作方差分析是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析主要用于:1、均数差别的显著性检验,2、分离各有关因素并估计其对总变异的作用,3、分析因素间的交互作用,4、方差齐性检验。

第一节 Simple Factorial过程6.1.1 主要功能调用此过程可对资料进行方差分析或协方差分析。

在方差分析中可按用户需要作单因素方差分析(其结果将与第五章第四节相同)或多因素方差分析(包括医学中常用的配伍组方差分析);当观察因素中存在有很难或无法人为控制的因素时,则可对之加以指定以便进行协方差分析。

6.1.2 实例操作[例6-1]下表为运动员与大学生的身高(cm)与肺活量(cm3)的数据,考虑到身高与肺活量有关,而一般运动员的身高高于大学生,为进一步分析肺活量的差异是否由于体育锻炼所致,试作控制身高变量的协方差分析。

6.1.2.1 数据准备激活数据管理窗口,定义变量名:组变量为group (运动员=1,大学生=2),身高为x ,肺活量为y ,按顺序输入相应数值,建立数据库,结果见图6.1。

图6.1 原始数据的输入6.1.2.2 统计分析激活 Statistics 菜单选ANOV A Models 中的Simple Factorial...项,弹出Simple Factorial ANOV A 对话框(图6.2)。

在变量列表中选变量y ,点击 钮使之进入Dependent 框;选分组变量group ,点击 钮使之进入Factor(s)框中, 并点击Define Range...钮在弹出的Simple Factorial ANOV A:Define Range 框中确定分组变量group 的起止值(1,2);选协变量x ,点击 钮使之进入Covariate(s)框中。

图6.2 协方差分析对话框点击Options...框,弹出Simple Factorial ANOV A:Options 对话框。

系统在协方差分析的方法(Method )上有三种选项: 1、Unique :同时评价所有的效应; 2、Hierarchical :除主效应外,逐一评价各因素的效应; 3、Experimental :评价因素干预之前的主效应。

本例选Unique 方法,之后点击Continue 钮返回Simple Factorial ANOV A 对话框,再点击OK 钮即可。

6.1.2.3 结果解释 在结果输出窗口中可见如下统计数据: 先输出肺活量总均数和两组的肺活量均数,总均数为4033.25,运用员组均数为4399.00,大学生组为3667.50。

接着协方差分析表明,混杂因素X (身高)两组间是有差异的(F=10.679,P=0.002),控制其影响后,两组间肺活量的差别依然存在(F=9.220,P=0.004),故可以认为两组间肺活量的均数在消除了身高因素的影响之后仍有差别,运动员的肺活量大于大学生,即体育锻炼会提高肺活量。

最后系统输出公共回归系数,b c = 36.002,该值可用于求修正均数:Y i '= Y i - b c ( X i - X)本例为Y运动员'= 4399.00 - 36.002×(178.175 - 174.3325)= 4260.6623 Y 大学生'= 3667.50 - 36.002×(170.49 - 174.3325)= 3805.8377返回目录返回全书目录第二节 General Factorial过程6.2.1 主要功能调用此过程可对完全随机设计资料、配伍设计资料、析因设计资料、正交设计资料等等进行多因素方差分析或协方差分析。

返回目录返回全书目录6.2.2 实例操作[例6-2]下表为三因素析因实验的资料,请用方差分析说明不同基础液与不同血清种类对钩端螺旋体的培养计数的影响。

6.2.2.1 数据准备激活数据管理窗口,定义变量名:基础液为base ,血清种类为sero ,血清浓度为pct ,钩端螺旋体的培养计数为X ,按顺序输入相应数值,建立数据库。

6.2.2.2 统计分析激活Statistics 菜单选ANOVA Models 中的General Factorial...项,弹出General Factorial ANOV A 对话框(图6.3)。

在对话框左侧的变量列表中选变量x ,点击 钮使之进入Dependent Variable 框;选要控制的分组变量base 、sero 和pct ,点 钮使之进入Factor(s)框中,并分别点击Define Range 钮,在弹出的General Factorial ANOV A:Define Range 对话框中确定各变量的起止值,本例变量base 的起止值为1、3,变量sero 的起止值为1、2,变量pct 的起止值为1、2。

之后点击OK 钮即可。

图6.3 析因方差分析对话框6.2.2.3 结果解释在结果输出窗口中,系统显示48个观察值进入统计,三个因素按其各自水平共产生12种组合。

分析表明,模型总效应的F值为10.55,P值< 0.001,说明三因素间存在有交互作用。

单因素效应和交互效应导致的组间差别比较结果是:单因素组间比较:A:基础液(BASE)F = 4.98,P = 0.012,说明三种培养基培养钩体的计数有差别;B:血清种类(SERO)F = 61.265,P < 0.001,说明两种血清培养钩体的计数有差别;C:血清浓度(PCT)F = 3.49,P = 0.070,说明两种血清浓度培养钩体的计数无差别。

两因素构成的一级交互作用:A×B:基础液(BASE)×血清种类(SERO)F = 5.16,P = 0.011,交互作用明显;B×C:血清种类(SERO)×血清浓度(PCT)F = 15.96,P < 0.001,交互作用明显;A×C:基础液(BASE)×血清浓度(PCT)F = 0.78,P = 0.465,交互作用不明显。

三因素构成的二级交互作用:A×B×C:基础液(BASE)×血清种类(SERO)×血清浓度(PCT)F = 6.75,P = 0.003,交互作用明显。

返回目录返回全书目录第三节 Multivarite过程6.3.1 主要功能调用此过程可进行多元方差分析。

此外,对于一元设计,如涉及混合模型的设计、分割设计(又称列区设计)、重复测量设计、嵌套设计、因子与协变量交互效应设计等,此过程均能适用。

返回目录返回全书目录6.3.2 实例操作[例6-3]甲地区为大城市,乙地区为县城,丙地区为农村。

某地分别调查了上述三类地区8岁男生三项身体生长发育指标:身高、体重和胸围,数据见下表,问:三类地区之间男生三项身体生长发育指标的差异有无显著性?6.3.2.1 数据准备激活数据管理窗口,定义变量名:地区为G ,身高为X1,体重为X2,胸围为X3,按顺序输入相应数值,变量G 的数值是:甲地区为1,乙地区为2,丙地区为3。

6.3.2.2 统计分析激活Statistics 菜单选ANOVA Models 中的Multivarite...项,弹出Multivarite ANOV A 对话框(图6.8)。

首先指定供分析用的变量x1、x2、x3,故在对话框左侧的变量列表中选变量x1、x2、x3,点击 钮使之进入Dependent Variable 框;然后选变量g (分组变量)点击 钮使之进入Factor(s)框中,并点击Define Range 钮,确定g 的起始值和终止值。

图6.4 多元方差分析对话框点击Options...钮,弹出Multivarite ANOV A:Options对话框,选择需要计算的指标。

在Factor(s)栏内选变量g,点击 钮使之进入Display Means for框,要求计算平均值指标;在Matriced Within Cell栏内选Correlation、Covariance、SSCP项,要求计算单元内的相关矩阵、方差协方差矩阵和离均差平方和交叉乘积矩阵;在Error Matrices栏内也选上述三项,要求计算误差的相关矩阵、方差协方差矩阵和离均差平方和交叉乘积矩阵;在Diagnostics栏内选Homogeneity test项,要求作变量的方差齐性检验。

之后点击Continue钮返回Multivarite ANOV A对话框,最后点击OK钮即可。

6.3.2.3 结果解释在结果输出窗口中将看到如下分析结果:系统首先显示共90个观察值进入统计分析,因分组变量g为三个地区,故分析的单元数为3。

然后输出3个应变量(x1、x2、x3)的方差齐性检验结果,分别输出了Cochran C 检验值及其显著性水平P值、Bartlett-Box F检验值及其显著性水平P值。

其中身高:C = 0.39825,P = 0.540;F = 1.01272,P = 0.363;体重:C = 0.43787,P = 0.227;F = 4.48624, P = 0.011;胸围:C = 0.47239, P = 0.089;F = 2.06585, P = 0.127;可见3项指标的方差基本整齐(P值均大于0.05)。

Cochran C检验和Bartlett-Box F检验对考查协方差矩阵的相等性比较方便,但还不够。

于是系统接着分别输出了三类地区(即各个单元)各生长发育指标的离均差平方和交叉乘积矩阵和方差协方差矩阵。

之后作Box M检验,Box M检验提供矩阵一致性的多元测试,本例Boxs M = 36.93910,在基于方差分析的显著性检验中F = 2.92393;在基于χ2的显著性检验中χ2 = 35.09922, 两者P < 0.001,故认为矩阵一致性不佳。

X3 .482 .734 2.259Determinant of Covariance matrix of dependent variables = 63.90640LOG(Determinant) = 4.15742Cell Number .. 3Sum of Squares and Cross-Products matrixX1 X2 X3X1 944.128X2 307.722 217.030X3 261.130 186.252 203.702Variance-Covariance matrixX1 X2 X3X1 32.556X2 10.611 7.484X3 9.004 6.422 7.024Correlation matrix with Standard Deviations on DiagonalX1 X2 X3X1 5.706X2 .680 2.736X3 .595 .886 2.650Determinant of Covariance matrix of dependent variables = 198.13507LOG(Determinant) = 5.28895Pooled within-cells Variance-Covariance matrixX1 X2 X3X1 27.249X2 9.599 6.051X3 7.086 4.852 7.661Determinant of pooled Covariance matrix of dependent vars. = 272.06906LOG(Determinant) = 5.60606 Multivariate test for Homogeneity of Dispersion matricesBoxs M = 36.93910F WITH (12,36680) DF = 2.92393, P = .000 (Approx.)Chi-Square with 12 DF = 35.09922, P = .000 (Approx.)下面系统输出将三类地区看成一个大样本时的离均差平方和交叉乘积矩阵。

相关文档
最新文档