七年级数学认识二元一次方程组导学案

合集下载

人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)

人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)

实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。

人教版七年级下册数学《二元一次方程组》导学案及课后练习

人教版七年级下册数学《二元一次方程组》导学案及课后练习


k
的值等于(
)
A.- 1
B. 1
C. 2
D.- 2
6
6
334.方程5x+2y=-9
与下列方程构成方程组的解为
x y
2, 1 2
的是(
)
A.x+2y=1 二、填空题
B.3x+2y= -8
C.5x+4y= -3
D.3x-4y= -8
|m-2|
5. 已知 方程(2m-6)x +(n-2)
yn2 3
1 x
1 y
9
B.
x y
y z
5 7
C.
x 1 3x 2
y
6
2.下列哪组数是二元一次方程组
x
y
2y 2x
10,
的解(
)
D.
x 2a 3x y
1 0
A.
x
y
4 3
B.
x
y
3 6
C.
x
y
2 4
D.
x
y
4 2
3.若方程
6kx-2y=8
有一组解
x y
3, 2,
6.【答案】
x
-2
-1
0
1
2
3
4
y① -6
-3
0
3
6
9
12
y②
-8 -9/2 -1 5/2
6
19/2 13
人教版七年级下册数学——二元一次方程组导学案及课后练习 导学案
1. 课题名称: 人教版七年级下册数学——二元一次方程组
2. 教学目标: (1)了解二元一次方程,二元一次方程组及其解的概念; (2)会判断一组数是不是某个方程组的解 3. 学习准备:

人教版七年级数学下册《8.1二元一次方程组》导学案

人教版七年级数学下册《8.1二元一次方程组》导学案

《8.1 二元一次方程组 》导学案一、学习目标1、能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解。

2、能设两个未知数并列方程组表示实际问题中的两种相关的等量关系。

3、学会运用数学知识去分析问题、解决问题。

重点难点:二元一次方程(组)及其解的概念及根据实际问题列出二元一次方程组。

导学过程二、预习内容(一)、阅读教材第215 页至218页(关键处、疑难处做好标记)(二)、完成下列各题:1、二元一次方程:是指含有 ,并且含有未知数的项的次数都是 的整式方程叫做二元一次方程。

试写出一个二元一次方程 。

2、二元一次方程组:是指把具有相同未知数的两个 合在一起就组成了二元一次方程组。

试写出一个二元一次方程组 。

3、(1)二元一次方程的解:使二元一次方程两边的值 的 未知数的值,叫做二元一次方程的解。

试写出方程2x+y=5的一个解 。

二元一次方程一般有 个解。

4、二元一次方程组的解:二元一次方程组的两个方程的 (两未知数的值是方程组中两个方程的解),叫做二元一次方程组的解。

(三)、自学疑问记录: 。

三、学习过程活动1:二元一次方程的概念(1) ;(2) ;(3) ;像这样的方程叫做二元一次方程。

练习一:下列方程哪些是二元一次方程?为什么?①2x +5y =10; ② x 2+y =20; ③ 2x +y +z =1; ④a1+b =5 ; ⑤2a +3b=1 ; ⑥ 3xy +1=9; ⑦y x 53.0+; ⑧92=+y x 活动2:二元一次方程组的概念方程组中有 未知数,含有每个未知数的项的次数都是 ,并且一共有 方程,像这样的方程组叫做二元一次方程组。

练习二:哪些是二元一次方程组?为什么?①⎩⎨⎧=+=-05923x y y x ②⎩⎨⎧=+=+-53893z y z y x ③⎩⎨⎧=+=12y x x ④⎩⎨⎧=-=+45y x y xy 活动3:探索方程的解满足方程①,且符合问题的实际意义的y x 、的值有哪些?把它们填入下列表中。

人教版七年级数学下册8.1二元一次方程组导学案

人教版七年级数学下册8.1二元一次方程组导学案

8.1二元一次方程组导学案一、学习目标1、掌握二元一次方程和二元一次方程组的概念.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.学习重点:理解二元一次方程组的解的意义.学习难点:求二元一次方程的正整数解.。

二、自主探究、合作交流(一)自学指导1:认真看课本P 86——P 87的内容,并完成以下探究练习。

(1)什么是二元一次方程?(2)什么是二元一次方程组?(4分钟后,比谁能正确说出答案,完成思考练习。

)探究一:二元一次方程的概念问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果某队为了争取较好名次,想在全部10场比赛中得16分,那么这个队胜负场数应分别是多少?请根据题目中的等量关系填空: 场数+ 场数=总场数积分+ 积分=总积分设该队胜了X场,负了y场,请根据以上等量关系列出两个方程:观察上面两个方程,是否为一元一次方程?这两个方程有什么共同特点?方程中含有个未知,并且所含未知数的项的次数都是次。

归纳:二元一次方程的概念:含有个未知数,并且所含未知数的项的次数都是次,像这样的方程叫做二元一次方程。

探究二:二元一次方程组的概念方程组中有个未知数,含有每个未知数的项的次数都是1,并且一共有个方程,像这样的方程组叫做。

如:尝试运用:(1)下列方程哪些是二元一次方程?为什么?(2)下列方程组哪些是二元一次方程组?为什么?(二)自学指导2:认真看课本P 89的内容,并完成以下探究练习。

(1)什么是二元一次方程的解?(2)什么是二元一次方程组的解?(3分钟后,比谁能正确说出答案)探究三:二元一次方程的解我们再来看引言中的方程,符合问题的实际意义的x、y的值有哪些?归纳:二元一次方程的解概念:一般的,使的值,叫做二元一次方程的解。

(2)2510x+=2(1)20x y+=2(4)210x x++=(3)231a b+=(5)21x y z++=2(3)1xx y=⎧⎨+=⎩398(2)35x y zy z-+=⎧⎨+=⎩329(1)50x yy x-=⎧⎨+=⎩5(4)4xy yx y+=⎧⎨-=⎩10x y+=尝试运用:下面4组数值中,哪些是二元一次方程2x+y=10的解?探究四:二元一次方程组的解1、上面我们填表满足方程且符合问题的实际意义的 x 、y 有:2、满足方程且符合问题的实际意义的x、 y 的值有哪些?把它们填入下表中:观察以上两个方程有没有相同的解:x=y=归纳:二元一次方程组的解的概念:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解.三、当堂训练1、方程2x+3y=8的解()A、只有一个B、只有两个C、只有三个D、有无数个2、下列4组数值中,哪些是二元一次方程的解?()3、下列属于二元一次方程组的是()4、方程组的解是()5、方程2x+y=9 在正整数范围内的解有组。

二元一次方程组(导学案)

二元一次方程组(导学案)

第八章二元一次方程组导学案 8.1二元一次方程组导学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.导学导学重点:理解二元一次方程组的解的意义.导学导学难点:求二元一次方程的正整数解.导学过程:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程x+y=222x+y=40 表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究:满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.x y上表中哪对x 、y 的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 例1 (1)方程(a +2)x +(b -1)y =3是二元一次方程,试求a 、b 的取值范围.(2)方程x ∣a ∣–1+(a -2)y =2是二元一次方程,试求a 的值. 例2 若方程x 2m –1+5y 3n –2=7是二元一次方程.求m 、n 的值 例3 已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1 (1) 哪几对数值使方程21x -y =6的左、右两边的值相等? (2) 哪几对数值是方程组 的解? 例4 求二元一次方程3x +2y =19的正整数解. 课堂练习:教科书第94页练习 作业布置:教科书第95页3、4、5题导学案 8.2 消元(第一课时)导学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.导学重点:用代入消元法解二元一次方程组.导学难点:探索如何用代入法将“二元”转化为“一元”的消元过程. 导学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?21x -y =6 2x +31y =-112、什么是二元一次方程组及二元一次方程组的解?二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组.这个问题能用一元一次方程解决吗?三、讲授新课1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。

《二元一次方程组》导学案(4)

《二元一次方程组》导学案(4)

8.2二元一次方程组的解法(2)——加减消元法(2)(第20课时)班级: 小组: 姓名: 评价:【学习目标】1、会用加减法解较复杂的二元一次方程组.(先化简方程组)2、会根据二元一次方程组的特点,选择解法——代入法或加减法.【知识储备】1.细心阅读P101页例4.2.化简下列方程组:(1) ⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x 得__________; (2) ⎪⎪⎩⎪⎪⎨⎧=---=++-121334304233y x y x 得__________.3. 阅读P102页练习框,下部分内容,说明(1)解二元一次方程组有哪几种方法?它们的实质是什么?答:_____________________________。

(2)两个方程组分别用什么方法解?与同学交流说明为什么?【学习过程】例4 2台大收割机和5台小收割机均工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5小时共收割小麦8公顷,1台大收割机和1台小收割机每小时各收割小麦多少公顷?分析:(1) 列二元一次方程组解应用题的关键是什么?答: _________________(2).请你找出本题的等量关系:2台大收割机____小时的工作量+____台小收割机____小时的工作量=3.6___台大收割机_______的工作量+______小收割机__________的工作量=___由上述等量关系可得方程组:________________________________(3)所列方程组进行求解过程中,为什么不先进行消元?先做了什么?这说明什么? ______________________________________________________________________(4)小“纸鉴”的提醒我们做什么?为什么提醒?_______________________________________________________________________ 例:解下列方程组:(1)⎪⎩⎪⎨⎧=+--=+5)43(4)52(32124y x y x (2)⎪⎩⎪⎨⎧=-++=+15)3(2)(3153y x y x y x【课堂练习】必做题:1、课本P103页 习题8.2 第5题 课本P102页 练习第2、3题, 选做题:2、解方程组:(1) ⎪⎩⎪⎨⎧+=+-=-21376565y x y x (2)()()⎪⎩⎪⎨⎧=--+=-++2823623y x y x y x y x挑战题:3、若200920102008201020092011x y x y +=⎧⎨+=⎩,求23()()x y x y ++-的值.【当堂小结】谈收获:1、学到什么知识: 2、学到什么学习方法:。

(完整word)导学案.1二元一次方程组(导学案)

(完整word)导学案.1二元一次方程组(导学案)

课题:8.1二元一次方程组(导学案)学习目标:1.知道二元一次方程、二元一次方程组和它的解的概念。

2、会检验一组数是不是某个二元一次方程组的解,并能找出一些简单二元一次方程组的解.一、课前回顾:1.含有_____个未知数,且未知数的次数都是______,等号两边都是的方程叫一元一次方程。

方程中“元”是指_______________,“次"是_______________________。

2.使一元一次方程___ __的未知数的值叫一元一次方程的解。

3.写出一个-元一次方程____________________,并指出它的解是_____________.二、课堂引入例题:在NBA篮球联赛中,比赛规则:每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。

姚明所在的火箭队在10场比赛中得到16分,那么这个队胜负场数应分别是多少?你能用我们学过的一元一次方程方法解决吗?(如果能请列出方程)思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:的场数+的场数=总场数,场积分+场积分=总积分。

这两个条件可以用方程,表示。

三、自主探究1:阅读课本P88页内容,完成:(温馨提示:时间5分钟—6分钟)。

1、观察上面两个方程可看出,每个方程都含有未知数(x和y),并且含有未知数的项的都是,像这样的方程叫做二元一次方程.思考:在这个概念中应满足哪些条件?(二元一次方程: 2、问题中的x ,y 必须同时满足x +y =10 ① , 2x +y =16②我们把这两个方程合在一起,写成x +y =10 ①2x +y =16 ② 就组成了一个二元一次方程组.有 ,含有每个未知数的项的次数都是 ,并且一共有 方程组成的方程组叫做二元一次方程组。

思考:在这个概念中应满足哪些条件?(二元一次方程组: )【巩固练习一】1、判断下列方程哪些是二元一次方程,哪些不是?是的打“ ”,不是的打“ ” (1) 11x y +=( ) (2)311x π-=( ) (3)260x xy +=( ) (4)1327=+yx ( ) 2、判别下列各方程组是不是二元一次方程组,是的打“ ”,不是的打“ ” (1)⎩⎨⎧=+=+75243y x y x ( ) (2) ⎩⎨⎧=-=521q p pq ( )(3)⎩⎨⎧=++=23k m n m ( ) (4) ⎩⎨⎧=+=823155y x y ( )四、自主探究2:阅读课本P89页内容,完成:(温馨提示:时间5分钟—6分钟)使二元一次方程两边的值 。

七年级数学下册(导学案)2.2 二元一次方程组

七年级数学下册(导学案)2.2 二元一次方程组

第2章二元一次方程组2.2 二元一次方程组【教学目标】知识与技能:1、理解二元一次方程组的概念和二元一次方程组解的含义。

2、会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解。

3、通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力。

过程与方法:从一个学生熟悉的生活实例引入二元一次方程组的概念,并通过“试一试”、“做一做”,加深学生对“二元一次方程组”和“二元一次方程组的解”的概念的理解;并使学生初步了解用列表尝试的方法求二元一次方程组的解,并使学生在解决问题的过程中经历知识的产生过程。

情感与态度:从学生的生活实际提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,有利于学生养成关注身边的事例、关心他人,培养一种社会的责任感。

【教学重难点】重点:二元一次方程组及其解的概念难点:用列表尝试的方法求出方程组的解。

【导学过程】【知识回顾】【情景导入】一个苹果和一个梨的质量合计200g,这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,问苹果和梨的质量各是多少g?【新知探究】1.二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。

找关键词,加深他们对概念的了解.](2)练习:判断下列是不是二元一次方程组:x+y=3, x+y=200, 2x-3=7, 3x+4y=3y+z=5, x=y+10, 2y+1=5, 4x-y2=2学生作出判断并要说明理由。

探究二、二元一次方程组的解的概念(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:x=1 x= -2 x= - x=y=0 y=2 y=1 y=方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0 的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学
编号: 01(2015-03-07)


新店子镇中学导学案
主备人:
审核人:
审批人:
四.巩固检测 1.有效训练 (1)下列方程中,是二元一次方程的是( ) A.2x-y=z B. 3xy+1=0 C. 0.5+y=3 D. x=0.5y (2)我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同 笼, 上有三十五头, 下有九十四足, 问鸡兔各几只? (只列方程组)
七年级数学 编号: 01(2015-03-07) 第 页
新店子镇中学导学案
主备人:
审核人:
审批人:
二.巩固练习 1.下列方程 3x-5y=1 ,x=3y+1, - ,xy+2x-y=0, x=4, 2x2-y=9, 中 二元一次方程有 ___________个。Leabharlann 教师/学生 笔记栏2.
{2x + y = 7
X+y=3
{C + d
3a — 2b = 1 = 2
上面哪个是二元一次方程组?哪个不是?为什么?
3.如何判断各组数是否是方程组 的解。
三.精讲点拨 例 1.如果(m-1)x +(1+m)y+4=0 是关于 x、y 的二元一次方程,则 m 必须满足的条件是_________
例 2.为保护生态环境,我省某山区某县响应国家“退耕还林”的号 召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面 积共有 180km2,耕地面积是林地面积的 25%,为求改变后林地面积 和耕地面积各多少平方千米,设耕地面积为 x km2,林地面积为 y km2.根据题意,列出方程组,
【学习目标】 1.能说出二元一次方程、 二元一次方程组和它的解的概念, 会检验 所给的一组未知数的值是否是二元一次方程、二元一次方程组的 解。 2.能设两个未知数并列方程组表示实际问题中的两种相关的等量 关系。 【重点难点预测】 重点:认识二元一次方程、二元一次方程组 难点: 能设两个未知数并列方程组表示实际问题中的两种相关的等 量关系。 【知识链接】 1、 什么是一元一次方程? 2、 什么是一元一次方程的解? 3、 如何判断未知数的值是否为方程的解? 【学法指导】 通过预习课本例题初步认识什么是二元一次方程、 二 元一次方程组; 通过合作、 讨论进一步认识二元一次方程以及方程 组。 【学习过程】 一.带着以下问题,自主学习。 1.什么是二元一次方程?你能举出一些二元一次方程的例子吗? 2.什么是二元一次方程组?举例说明。 3.什么是二元一次方程组的解?如何检验?
【课堂评价与反思】
七年级数学
编号: 01(2015-03-07)


2.当堂检测 根据下列条件,列出二元一次方程组: 小亮的储蓄罐里有面值 0.5 元和 1 元的两种硬币共 20 枚,合计 15 元。设面值 0.5 元的有 x 枚,面值 1 元的有 y 枚。
七年级数学
编号: 01(2015-03-07)


新店子镇中学导学案
主备人:
审核人:
审批人:
五.课后提升 教材习题 6.1A 组第 1,2,3 题。 【整理学案】
… … … … … … … … … … … … 装 … … … … … … … … … … … 订 … … … … … … … … … … … … 线 … … … … … … … … … …
新店子镇中学导学案
主备人:
审核人:
审批人:
课题 6.1 二元一次方程组
班级: 姓名:
课型
小组:
新授
课时
1
教师/学生 笔记栏
相关文档
最新文档