七年级下册数学平移知识点

合集下载

七年级-人教版-数学-下册-第1课时-平移及其基本性质

七年级-人教版-数学-下册-第1课时-平移及其基本性质

平移
定义
性质
图形移动前后形状、大 小完全相同
对应点的连线平行(或 在同一条直线上)且相等
B A
B′ A′
C
C′
思考 如图,在所画出的相邻两个雪人中,找出三组对应点(例如,
它们的鼻尖 A 与 A′,帽顶 B 与 B′,纽扣 C 与 C′),连接这些对应 点,观察得出的线段,它们的位置、长短有什么关系?
可以发现,AA′∥BB′∥CC′, 并且 AA′=BB′=CC′.
B A
C
B′ A′
C′
它们的鼻尖 A 与 A′,帽顶 B 与 B′,纽扣 C 与 C′),连接这些对应 点,观察得出的线段,它们的位置、长短有什么关系?
B A
B′ A′
C
C′
思考 如图,在所画出的相邻两个雪人中,找出三组对应点(例如,
它们的鼻尖 A 与 A′,帽顶 B 与 B′,纽扣 C 与 C′),连接这些对应 点,观察得出的线段,它们的位置、长短有什么关系?
∵它们对应点的连线平行且相等, ∴它们是通过平移变换得到的.
图形平移的方向,不限于是水平的.
问题 平移在我们日常生活中是很常见的,利用平移也可以制作很多美
丽的图案,你能举出生活中一些利用平移的例子吗?
滑雪
火箭
汽车
例1 下列各组图形中,经过平移变换可以由一个图形得到 另一个图形的是( A ).
A
B
C
D
解析:平移是把一个图形整体沿某一直线方向移动一定的距离,
因此,平移前后图形的大小、形状都没变.只有选项 A 中一个三角
形是由另一个三角形经过平移得到的.
归纳
两法定平移 判断是不是平移,可根据平移的定义,看图形的形状、 大小是否发生了变化,是不是沿某一直线方向移动的. 除此之外,还有一个方法,根据平移的性质,即看连接 各组对应点的线段是否平行(或在同一条直线上)且相等.

苏教版七年级数学下册 7.3 图形的平移 知识点

苏教版七年级数学下册 7.3 图形的平移 知识点

7.3 图形的平移知识点一、平移的概念1、平移的定义:在平面内,把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动简称为平移。

2、平移的两个要素:(1)平移方向;(2)平移距离。

3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。

4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A.若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。

B.若给出由小正方形组成的方格纸:在方格中的平移,从方向上看往往是要求用横纵两次平移来完成(有特殊要求例外),而移动距离是由最终要达到的位置确定的。

C.具体给出从某点P到另一点P’的方向为平移方向,线段PP’的长度为平移距离。

D.给出具体方位(如向东或者西北等)和移动长度(如10cm)(2)图形平移后,平移方向与平移距离的确定。

图形平移后,原图形与新图形中的任意一对前后对应点的射线方向就是原平移方向,这对对应点间的线段长度就是原平移距离。

例:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的()A.B.C.D.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化,进而得出即可.【解答】解:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.知识点二、平移的性质图形平移的实质是图形上的每一点都沿着同一个方向移动了相同的距离。

平移后的图形与原图形①对应线段平行(或在同条一直线上)且相等;②对应点连线平行(或在同一条直线上)且相等;③图形的形状与大小都不变(全等);④图形的顶点字母的排列顺序的方向不变。

七年级下册数学平移

七年级下册数学平移

七年级下册数学平移七年级下册数学平移一、引言数学是一门重要的科学学科,不仅能培养学生的逻辑思维和分析能力,还能帮助他们解决现实生活中的问题。

在七年级下册的数学课程中,数学平移是一个重要的概念。

平移不仅在几何中有广泛的应用,还能帮助学生提升对坐标系和图形变换的理解。

本文将介绍七年级下册数学平移的基本概念、性质和一些实际应用。

二、数学平移的基本概念数学平移指的是在平面上将一个点或一个图形按照一定的方向和距离移动的操作。

平移可以用向量来表示,其中向量的大小和方向分别表示平移的距离和方向。

三、数学平移的性质1. 平移不改变图形的形状、大小和面积。

2. 平移保持图形内的所有线段的平行关系不变。

3. 平移保持图形内的所有角的大小关系不变。

四、平面上的数学平移平面上的数学平移可以通过向量的相加来实现。

假设有一个向量v=(a, b),那么平移向量为这个向量的简单复制。

任给平面上的一个点P(x, y),将P沿着向量v平移后得到点P',其坐标为P'(x+a, y+b)。

五、平移的应用举例1. 城市规划:在城市规划中,平移可以用来设计道路和建筑物的布局,确保交通合理和空间的充分利用。

2. 导航系统:导航系统中的地图平移功能可以帮助人们找到目的地,并提供导航指引。

3. 数字图像处理:在计算机图像处理中,平移可以用来调整图像的位置和大小,以达到理想效果。

六、总结数学平移作为数学的一个重要概念,不仅有着广泛的实际应用,还能培养学生的空间想象能力和逻辑思维能力。

通过七年级下册的数学平移学习,学生能够更加深入地理解几何的相关知识,并在实际问题中灵活应用。

希望本文能够帮助学生们更好地掌握数学平移,并在日常学习和生活中发挥更大的作用。

七年级平移的知识点

七年级平移的知识点

七年级平移的知识点平移是初中数学中重要的内容之一,也是数学中的基本概念。

在七年级的数学学习过程中,平移也是必须要学习的。

本文将详细介绍七年级平移的知识点,包括平移的定义、平移的原理、平移的性质等。

一、平移的定义平移是指物体在平面上沿着某个方向移动一定距离后所得到的新位置,移动前后的图形形状大小不变。

平移的基本要素包括平移向量和被平移图形。

二、平移的原理平移是将向量作为操作工具的一种数学运算方式。

向量是指既有大小又有方向的量,平移向量是指平移的方向和距离。

三、平移的性质1. 平移性质一:平移是一种等距变换,即形状和大小不变。

2. 平移性质二:平移叠加原理,即两个或多个平移操作可以看作是一次平移操作。

3. 平移性质三:平移可以用向量表示,平移向量的方向、模长、起点等信息均可以确定一次平移操作。

4. 平移性质四:平移和旋转、翻转、缩放等变换操作可以相互转换。

四、平移的应用在日常生活和工作中,平移有着广泛的应用。

1. 平面图形的排版、设计、图案制作等;2. 工程绘图中的构建、计算、布置等;3. 地图绘制、流程图、架构图、电路图等的制作。

五、平移的练习1. 给定图形和平移向量,画出平移后的图形。

2. 已知图形的某一点的坐标和平移向量,求点的平移后的坐标。

3. 证明两个平移可以相互转化成一次平移和一个等比例变换。

六、学习平移需要注意的注意事项1. 熟练掌握平移的定义和原理;2. 了解平移的性质,理解平移的应用;3. 平移的练习需要逐步加深难度,注意形象思维能力的训练。

综上所述,平移是数学中的基本概念之一,也是七年级数学学习中必须要掌握和理解的内容。

理解平移的定义、原理和性质,掌握平移的应用和练习技巧,对于数学的学习和日常生活有很大的帮助。

人教版数学七年级下册5.4平移 课件

人教版数学七年级下册5.4平移 课件

感悟新知
解题秘方:找准对应元素,根据平移的性质求出各 个未知量. 解:根据平移后的新图形与原图形的形状、大小完 全相同,得到BC=EF=2,三角形DEF 的面积= 三角 形ABC 的面积=3,∠ DEF= ∠ B=48°,平移的距离 为BE=BC+CE =2+5=7.
感悟新知
2-1. 如图, 将三角形ABC 沿射线AB 的方向移动到三角形 DEF 的位置,移动距离为2 cm.
感悟新知
解:如图5.4-6,找到小船的7 个关键点,并依次标上字母 A,B,C,D,E,F,G. 把点A 向右平移6 个单位长度, 到达点A1,然后把点A1 向上平移3 个单位长度,到达点A′, 用同样的方法分别将小船的其 他关键点B,C,D,E,F,G 平移,得到各自的对应点,顺 次连接对应点即可得到平移后 的图形.
感悟新知
特别提醒 平移图形中,原图形上的点到它对应点的方向
就是平移的方向;任意一对对应点所连线段的长度 就是平移的距离.
感悟新知
例 1 在以下现象中:①用打气筒打气时,打气筒里活塞的 运动;②传送带上瓶装饮料的移动;③旗帜的随风摆 动;④钟摆的摆动. 属于平移的是( B ) A. ① B. ①② C. ①②③ D. ①②③④
课堂小结
平移
定义 平移
性质 依据
作图
感悟新知
(1)AB ∥ A′B′,AC ∥ A′C ′,BC ∥ B′C ′,AA′ ∥ BB′ ∥CC ′;
(2)AB=A′B′,AC=A′C′,BC=B′C′,AA′ =BB′ =CC′; (3)∠ BAC= ∠ B ′A ′C ′, ∠ ABC= ∠ A ′B ′C ′,∠ ACB=
∠ A′C ′B ′.
感悟新知

七年级数学下《平移》知识点总结归纳

七年级数学下《平移》知识点总结归纳

七年级数学下《平移》知识点总结归纳
一、平移的定义
平移是指在平面内,将一个图形沿某个方向移动一定的距离。

平移不改变图形的形状、大小和方向。

二、平移的性质
1.平移不改变图形中线段的长度和角度。

2.通过平移,可以组成一个新的图形。

3.在平移过程中,图形上的每一点都沿同一方向移动相同的距离。

三、平移的基本操作
1.确定平移的方向和距离。

2.对于图形中的每一个点,都按照平移的方向和距离进行移动。

3.连接移动后的点,得到平移后的图形。

四、平移的实际应用
1.在日常生活和工程设计中,平移是一种常见的几何变换,如推拉门、传送带等。

2.通过平移,可以重新排列和组合图形,为设计提供更多可能性。

五、常见问题与注意事项
1.在判断一个图形是否经过平移时,要仔细观察图形上的每一个点是否都沿同一
方向移动了相同的距离。

2.在进行平移操作时,要注意保持图形的大小和形状不变,避免出现变形或错位。

3.对于一些复杂的图形,可以先分解为简单的部分,分别进行平移操作,然后再
组合起来。

通过以上知识点的总结归纳,可以帮助学生们更好地理解和掌握《平移》这一部分内容,为后续的学习打下坚实的基础。

七下平移知识点

七下平移知识点七年级下学期,学生将继续深入学习数学中平移的相关知识。

平移是一种非常重要的变换方式,它可以将图像在平面内移动而不改变其形状和大小。

本文将会对七下平移的知识点做出详细的介绍,并解释其相关应用。

一、平移的定义和性质平移是指在平面上将图形沿着一个方向平行地移动,距离及方向相同,移动过程中图形的大小和形状均不变。

平移有以下几个基本特点:1. 保形性:在平移的过程中,被平移的图形的形状不会改变,只是位置发生变化;2. 保大小性:在平移的过程中,被平移的图形的大小不会发生变化;3. 距离与方向相同:平移的方向和距离应该是一致的。

二、平移的符号表示平移的符号表述采用(x, y) -> (x+a, y+b) 的形式,如图1所示。

三、实用中的平移平移的应用非常广泛,以下几个例子可以说明:1. 几何图形的移动:在平面的坐标系上,当我们需要将特定的几何图形移动到别的地方时,我们就可以使用平移的技术来实现。

2. 游戏开发:在游戏开发中,平移是一种非常重要的技术。

例如在现代第一人称射击游戏中,敌人的位置可能会一直在不停的变化,玩家的视角也需要进行相应的平移。

3. 数据可视化:在数据可视化方面,我们可以通过平移动态地表现数值之间的关系。

例如在研究全球物价变化的时候,可以通过平移地图的方式,实现数据的实时更新和可视化。

四、平移的逆变换在平移中,有一个逆变换的概念,即反方向平移。

具体来说,若平移符号表示为(x,y) -> (x+a, y+b),则其逆变换表示为(x,y) -> (x-a, y-b)。

五、平移与向量的关系在平面几何中,平移也可以被看作是一种向量运算。

具体来说,平移可以用向量叠加来实现。

例如,平移符号(x,y) -> (x+a, y+b)可以通过向量运算来表示:(x,y) + (a,b) = (x+a, y+b)这里的(a,b)被称为平移向量,代表了平移的距离和方向。

六、平面向量的加减在平移的过程中,我们必须学会平面向量的加减。

七年级数学平移知识点

七年级数学平移知识点平移是数学中的一种基本变换,是指在平面内将一个图形沿着一个方向移动一定的距离,而保持图形的大小、形状和方向不变。

在七年级的数学学习中,平移是一个非常重要的知识点,下文将详细介绍平移的相关知识点。

一、平移的定义平移是指在平面内将一个图形沿着一个方向移动一定的距离,而保持图形的大小、形状和方向不变。

平移是一个等距变换,它不改变原图形的大小、形状和内角。

二、平移的性质1.保持大小、形状和方向不变。

2.保持图形之间的相对位置不变。

3.变换前、后两点之间的距离不变。

三、平移的表示方法平移的表示方法有两种,一种是用向量法,另一种是用坐标法。

1.向量法用一个向量表示平移的方向和距离,一般情况下用“→”表示,向量的长度表示平移的距离,方向表示平移的方向。

2.坐标法平移的坐标变换法是将平面上的每一个点都平移一定的距离,若平移的向量为向量AB,平面上的点P(X,Y),则新的点P'坐标为(X+a,Y+b)。

四、平移的操作方法平移的操作方法分为以下几步:1.确定平移的方向和大小;2.用一条向量表示平移的方向和大小;3.将每一个点沿着这个向量平移。

五、平移的应用平移在很多领域都得到了广泛的应用。

在几何学中,平移是一种常见的构造方法,可以用来构造各种各样的图形。

在数学建模中,平移也得到了广泛的应用,可以用来对各种现实生活中的问题进行描述和分析。

在日常生活中,我们经常会用到平移,例如我们开车、步行、搬移家具等等,都会用到平移的概念和方法。

六、总结平移是数学中的一种基本变换,具有保持大小、形状和方向不变的性质。

平移的表示方法有向量法和坐标法两种,平移的操作方法是确定平移的方向和大小,用一条向量表示平移的方向和大小,将每一个点沿着这个向量平移。

平移在几何学、数学建模和日常生活中都得到了广泛的应用。

掌握平移的相关知识点,对于七年级的数学学习将具有非常重要的意义。

七年级下册平移知识点归纳总结

七年级下册平移知识点归纳总结平移是数学中一个十分重要的概念,特别是对于几何学而言,
平移更是无处不在。

在七年级下册的学习中,我们也学习了不少
关于平移的知识。

为了更好地巩固这些知识,我们需要进行归纳
总结,以便更好地学习和应用。

一、平移的概念
平移是指将一个图形沿着一个方向移动一定的距离,并保持其
原有的大小、形状和方向不变。

平移可以用向量表示,其向量表
示法可以极大地简化平移问题的解答。

二、平移的性质
1. 平移不改变图形的大小、形状和方向。

2. 平移是一种可逆的运算,即一个图形平移后再反向平移回去,可以回到原来的位置。

3. 平移是保持向量平行关系的运算。

三、平移的实现方式
平移可以通过手工绘图或利用计算机软件来实现。

手工绘图时,我们需要使用平移作图工具来完成图形的平移。

而在计算机软件中,我们可以使用平移命令来实现图形的平移操作。

四、平移的应用
1. 平移可以在平面几何中用来解决诸如构造等问题。

2. 平移可以用来解决物理学中的向量问题,如力的平衡问题。

3. 平移可以用来构造歪曲的图形,如旋转和扭曲等。

五、平移的练习
为了更好地掌握平移知识,我们需要进行大量的练习。

练习中,我们可以通过多种方式来实现图形的平移。

同时,我们也需要注
重练习中的实践应用,以更好地理解平移知识的实际应用。

总之,在七年级下册的学习中,我们学习了关于平移的很多知识,包括平移的概念、性质、实现方式、应用等等。

通过对这些知识的归纳总结,我们可以更好地掌握和运用平移知识,进一步提高自己的数学水平。

人教版七年级数学下册课:平 移

C. 红旗在风中飘扬
D. 树叶在风中飘落
B )
知识重点
知识点二:平移的性质
(1)平移前后对应的线段
上)且 相等 ;
(2)平移前后对应的角
平行
(或在同一条直线


相等


()平移前后对应点的连线 平行
(或在同一条直线上)且 相等 .

如图5-11-2.

图5-11-2
对点范例
2. 如图5-11-3,四边形EFGH是由四边形ABCD平移
行(或在同一条直线上)且相等.
举一反三
5. 如图5-11-9,把直角三角形ABC(∠ABC=90°)
沿着射线BC方向平移得到直角三角形DEF. 若AB=8,
BE=5,则四边形ACFD的面积是
图5-11-9
40 .

典例精析
【例3】(创新题) 如图5-11-10,将长为6 cm,宽为4
cm的长方形ABCD先向右平移2 cm,再向下平移1 cm,得
A. ①
B. ②
A )
图5-11-7
C. ③
D. ④
典例精析
【例2】如图5-11-8,三角形ABC沿直线m向右平移a
cm,得到三角形DEF.下列说法错误的是( D )
A. AC∥DF
B. CF∥AB
C. CF=a cm
图5-11-8
D. DE=a cm
思路点拨:图形经过平移后,连接各组对应点的线段平

(2)三角形BCE的面积为 ×2×2=2.


谢!

图5-11-11
典例精析
【例4】(人教七下P29改编)如图5-11-12,平移四
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学平移知识点数学中的平移是一种固定向量的特殊变换,它是一种二维几何变换,可以将一个对象平移至另一个位置,而保持其大小、形状和方向不变。

在七年级下册数学中,学生们将学到平移的基本概念和相关知识点。

本文将围绕这些知识点进行详细说明。

一、平移的定义及基本概念
平移是一种二维几何变换,它通过将一个对象沿着一个方向移动一段距离来创建一个新的对象。

这个方向和距离都是固定的,因此平移是一个刚体变换,能够保持对象的大小、形状和方向不变。

在平面直角坐标系中,一个点的平移可以表示为(x + a, y + b),其中(x, y)是原点,(a, b)是移动的向量。

对于每个点都会应用这个向量,从而创建一个新的对象。

二、平移的性质
1.平移是一个可逆变换,也就是说,如果一个对象使用向量(a,
b)平移了x单位,那么使用向量(-a, -b)就可以将它平移回原来的位置。

2.平移是一个保形变换,即保持对象的大小和形状不变。

3.平移是一个等距变换,即保持对象的方向不变,也就是说,距离不发生变化。

4.平移可以与旋转,缩放和其他变换组合使用,以创建更复杂的变换。

三、平移的相关知识点
1. 平移的向量
平移的向量是确定平移方向和距离的向量,它与原点有关。

当以固定向量(a,b)平移时,这个向量就是(a,b),称作平移向量。

2. 平移的方式
一般而言,平移可以通过以下两种方式实现:
(1)基于向量的平移:平移向量是当前点与目标点的向量,计算公式为(x2 - x1, y2 - y1)。

(2)基于矩阵的平移:平移矩阵是下面的式子:
[1 0 a]
[0 1 b]
[0 0 1]
其中,a和b分别代表平移的水平和垂直距离。

3. 平移和向量运算
向量的加法是平移向量的一种运算,它将向量原始位置移动到一个新的位置。

在实际应用中,平移向量经常被用来表示位移和方向。

四、平移在实际问题中的应用
平移在很多实际问题中都有着广泛的应用。

以下是一些例子:
1.图形变换
平移可以改变图形的位置而不改变其形状,可以用于计算机图
形学中,设计新建筑等领域。

2.地图平移
在地理信息系统中,平移是一种常见的操作。

通过平移地图,
可以改变地图上的位置而保持比例尺和视觉效果不变。

3.物体位移
在物理中,平移用于描述物体的移动、位移和位移速度等问题。

总而言之,平移是数学中的一种重要概念,它涉及到向量和矩阵,以及图形变换、地理信息系统和物理等多个领域。

对于七年级下册学生而言,了解平移的定义、性质和相关知识点,可以让他们更好地理解数学,并为他们未来的学习打下坚实的基础。

相关文档
最新文档