组成原理课程设计层次化设计方法二进制计数器八位加法器

合集下载

计算机组成原理课程设计

计算机组成原理课程设计

一、设计任务与要求
设某计算机运算器,其中 ALU 为 8 位的加法器,具有加法和加 1 功能,两操作 数由八位寄存器 R0、R1 提供,其结果放入 R2 中,具体何种操作可由微命令任意设 定。 1、运算器的结构 运算器的结构,如图 1 所示。
图 1.运算器的结构图
2、微程序控制器 微程序控制器的结构图,如图 2 所示。
山东英才学院教务处制 二 O 一三年十二月
微程序控制的运算器的设计
摘 要
本设计详细介绍了在可编程 ispLSI1032E 系统下,采用层次化设计方法,通过把 八位全加器、八位计数器、八位寄存器作为底层电路,以设计八位计算机运算器的设 计原理和设计过程,其中 ALU 为 8 位的加法器,具有加法和加 1 功能,两操作数由 八位寄存器 R0、R1 提供,其结果放入 R2 中,具体何种操作可由微命令任意设定。
山东英才学院
课程设计(论文)
设 计 题 目 :微程序控制运算器的设计
课 程 名 称 : 院 (系) 部 : 学 生 姓 名 : 班 专 成 级 : 业 : 绩 :
计算机组成原理 信息工程教 师 : 设 计 时 间 :
王若成 2013 年 12 月
Abstract
The detailed design of the programmable ispLSI1032E system, the use of hierarchical design method, the eight bit full adder, eight bit counter, eight bit registers as the underlying circuit, the design of eight bit computing the design principle and the design process, where ALU is a 8 bit adder, additive and plus 1function, the two operand is provided by the eight bit registers R0, R1, and the results in R2, which can be set arbitrarily by micro operation command.

8位全加器课程设计报告

8位全加器课程设计报告

8位全加器课程设计报告一、课程目标知识目标:1. 学生理解8位全加器的基本概念,掌握全加器的逻辑结构和工作原理;2. 学生掌握8位全加器的电路图绘制方法,能分析并解释全加器中各个部分的作用;3. 学生了解8位全加器在计算机运算中的应用,理解其重要性。

技能目标:1. 学生能够运用所学知识,独立完成8位全加器的电路图设计;2. 学生能够运用逻辑门电路,搭建8位全加器电路,并进行功能验证;3. 学生能够通过实际操作,提高解决问题的能力和团队协作能力。

情感态度价值观目标:1. 学生培养对电子技术课程的兴趣,激发学习热情;2. 学生在学习过程中,树立正确的科学态度,注重实践,勇于创新;3. 学生通过团队合作,培养沟通与协作能力,增强集体荣誉感。

课程性质分析:本课程为电子技术课程的一部分,重点在于让学生掌握8位全加器的原理和应用,培养实际操作能力。

学生特点分析:八年级学生具有一定的电子技术基础,对电路有一定的了解,但可能对全加器的理解尚浅,需要通过具体实例和操作来加深理解。

教学要求分析:本课程要求教师以理论与实践相结合的方式进行教学,注重培养学生的实际操作能力和团队协作能力。

在教学过程中,关注学生的个体差异,给予个性化指导,确保课程目标的实现。

通过本课程的学习,学生能够达到上述具体的学习成果。

二、教学内容1. 引言:介绍全加器在数字电路中的重要性,回顾一位全加器的基本原理,引出8位全加器的研究意义。

2. 理论知识:a. 8位全加器的定义和功能;b. 8位全加器的逻辑结构,包括加法器、进位发生器和进位传递部分;c. 8位全加器的真值表和逻辑表达式。

3. 实践操作:a. 8位全加器电路图的绘制;b. 利用集成电路芯片搭建8位全加器电路;c. 电路功能测试及故障排查。

4. 应用拓展:a. 8位全加器在计算机运算中的应用案例;b. 探讨8位全加器与其他数字电路模块的组合应用。

教学大纲安排:第一课时:引言及理论知识(1、2a)第二课时:理论知识(2b、2c)第三课时:实践操作(3a、3b)第四课时:实践操作(3c)第五课时:应用拓展(4a、4b)教材章节关联:本教学内容与教材中“第十章 数字电路及其应用”相关,涉及全加器部分的内容,与教材中的理论知识和实践操作相结合,确保学生能够系统地学习和掌握8位全加器的相关知识。

8位二进制加法计算器

8位二进制加法计算器

一:本实验设计的是一个8为二进制加法计算器,其功能就是对两个八位的二进制数执行加法运算,并可以异步清零。

二:电路可划分为三部分:半加器、全加器和复位电路。

1、半加器:真值表a b so co0 0 0 00 1 1 01 0 1 01 1 0 1电路图2全加器:由半加器和或门组成电路图3复位电路:复位电路通过en控制,当en为‘1’时,执行加法运算,输出正确的值,当en为‘0’时,输输出及结果为全0.三:实验波形仿真和VHDL1、仿真图:2、VHDL代码1)半加器h_adder:library ieee;use ieee.std_logic_1164.all;entity h_adder isport (a,b :in std_logic;co,so :out std_logic);end entity h_adder;architecture fh1 of h_adder isbeginso <= not(a xor (not b));co <= a and b ; end architecture fh1;2)或门or2a:library ieee;use ieee.std_logic_1164.all;entity or2a isport (a,b :in std_logic;c: out std_logic);end entity or2a;architecture one of or2a isbeginc <= a or b ;end architecture one;3)全加器f_adder:library ieee;use ieee.std_logic_1164.all;entity f_adder isport (ain,bin,cin:in std_logic;cout,sum:out std_logic);end entity f_adder;architecture fd1 of f_adder iscomponent h_adderport (a,b :in std_logic;co,so :out std_logic);end component;component or2aport (a,b :in std_logic;c: out std_logic);end component;signal d,e,f: std_logic;beginu1:h_adder port map(a=>ain,b=>bin,co=>d,so=>e);u2:h_adder port map(a=>e,b=>cin,co=>f,so=>sum);u3: or2a port map(a=>d,b=>f,c=>cout);end architecture fd1;4)与门and2a:library ieee;use ieee.std_logic_1164.all;entity and2a isport (a,b :in std_logic;c: out std_logic);end entity and2a;architecture one of and2a isbeginc <= a and b ;end architecture one;5)顶层设计文件library ieee;use ieee.std_logic_1164.all;entity zong isport (a1,a2,a3,a4,a5,a6,a7,a8,b1,b2,b3,b4,b5,b6,b7,b8,en :in std_logic;solution1,solution2,solution3,solution4,solution5,solution6,solution7,solution8,solution9 :out std_logic );end entity zong;architecture fh1 of zong iscomponent h_adderport (a,b :in std_logic;co,so :out std_logic);end component;component f_adderport (ain,bin,cin:in std_logic;cout,sum:out std_logic);end component;component and2aport (a,b :in std_logic;c: out std_logic);end component;signale2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,e23,e24 :std_logi c;beginu1:and2a port map(a=>en,b=>a1,c=>e2);u2:and2a port map(a=>en,b=>a2,c=>e3);u3:and2a port map(a=>en,b=>a3,c=>e4);u4:and2a port map(a=>en,b=>a4,c=>e5);u5:and2a port map(a=>en,b=>a5,c=>e6);u6:and2a port map(a=>en,b=>a6,c=>e7);u7:and2a port map(a=>en,b=>a7,c=>e8);u8:and2a port map(a=>en,b=>a8,c=>e9);u9:and2a port map(a=>en,b=>b1,c=>e10);u10:and2a port map(a=>en,b=>b2,c=>e11);u11:and2a port map(a=>en,b=>b3,c=>e12);u12:and2a port map(a=>en,b=>b4,c=>e13);u13:and2a port map(a=>en,b=>b5,c=>e14);u14:and2a port map(a=>en,b=>b6,c=>e15);u15:and2a port map(a=>en,b=>b7,c=>e16);u16:and2a port map(a=>en,b=>b8,c=>e17);u17:h_adder port map(a=>e2,b=>e10,co=>e18,so=>solution1);u18:f_adder port map(ain=>e3,bin=>e11,cin=>e18,cout=>e19,sum=>solution2);u19:f_adder port map(ain=>e4,bin=>e12,cin=>e19,cout=>e20,sum=>solution3);u20:f_adder port map(ain=>e5,bin=>e13,cin=>e20,cout=>e21,sum=>solution4);u21:f_adder port map(ain=>e6,bin=>e14,cin=>e21,cout=>e22,sum=>solution5);u22:f_adder port map(ain=>e7,bin=>e15,cin=>e22,cout=>e23,sum=>solution6);u23:f_adder port map(ain=>e8,bin=>e16,cin=>e23,cout=>e24,sum=>solution7);u24:f_adder port map(ain=>e9,bin=>e17,cin=>e24,cout=>solution9,sum=>solution8);end architecture fh1;。

8位运算器课程设计

8位运算器课程设计

8位运算器课程设计一、课程目标知识目标:1. 学生能理解8位运算器的原理与功能,掌握二进制与十进制的转换方法。

2. 学生能运用8位运算器进行基本的算术运算,如加、减、乘、除,并理解运算过程中的溢出与进位现象。

3. 学生了解8位运算器在计算机硬件中的作用,及其在信息技术中的应用。

技能目标:1. 学生能够独立完成8位运算器的模拟操作,解决实际问题。

2. 学生通过8位运算器的操作,提高逻辑思维和问题解决能力。

3. 学生能够运用所学知识,对简单的计算机程序进行初步的分析与设计。

情感态度价值观目标:1. 学生培养对计算机硬件及编程的兴趣,激发学习信息技术的热情。

2. 学生通过学习8位运算器,认识到科技发展对生活的影响,增强创新意识。

3. 学生在团队协作中培养沟通与合作的意识,提高团队荣誉感。

课程性质:本课程为信息技术学科的教学内容,旨在帮助学生掌握计算机硬件基础知识,提高编程技能。

学生特点:考虑到学生所在年级,已具备一定的逻辑思维和问题解决能力,对信息技术有较高的兴趣。

教学要求:结合学生特点,通过实例教学,使学生在实践中掌握8位运算器的相关知识,提高学生的动手操作能力和团队协作能力。

将课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. 引言:介绍8位运算器的基本概念,引出二进制与十进制的转换,让学生初步了解8位运算器的原理。

- 教材章节:第一章 计算机硬件基础,第1节 计算机硬件概述2. 二进制与十进制的转换方法:- 教材章节:第一章 计算机硬件基础,第2节 数字逻辑基础3. 8位运算器的算术运算:- 加法、减法、乘法、除法的运算规则及运算过程- 溢出与进位现象的分析- 教材章节:第一章 计算机硬件基础,第3节 算术逻辑单元4. 8位运算器在实际应用中的案例分析:- 简单计算机程序的初步分析与设计- 教材章节:第二章 计算机指令与编程,第1节 计算机指令概述5. 8位运算器在计算机硬件中的作用:- 介绍CPU中的算术逻辑单元(ALU)- 教材章节:第一章 计算机硬件基础,第4节 中央处理器6. 实践操作:- 使用模拟软件进行8位运算器的操作- 解决实际问题,提高逻辑思维和问题解决能力- 教材章节:第三章 计算机操作实践,第1节 计算机操作基础教学进度安排:本章节内容共需6个课时,其中理论教学4课时,实践操作2课时。

8bit 符号数加法器

8bit 符号数加法器

8bit符号数加法器一、概述8bit符号数加法器是一种用于实现两个8位二进制数相加的硬件或软件设备。

在数字电路和计算机编程中,这种加法器对于各种应用和计算任务非常有用。

二、设计原理符号数加法器基于二进制数的加法原理进行设计。

当两个二进制数相加时,我们需要考虑的是每一位上的数值相加的结果,以及最高位的进位问题。

对于负数,我们还需要考虑到符号位的问题。

为了处理这些情况,符号数加法器设计为可以识别输入数字的符号,并根据不同的符号采取不同的加法策略。

三、硬件实现8bit符号数加法器的硬件实现方法多种多样,具体实现方式取决于所使用的硬件平台和设计要求。

常见的实现方式包括微处理器、FPGA(现场可编程门阵列)以及其他数字逻辑设备。

微处理器通常具有专门的硬件模块或软件算法来实现加法运算,而FPGA则允许根据需要进行自定义设计。

在FPGA实现中,可以使用计数器或寄存器来存储输入数字的数值位,以及查找表来存储输入数字的符号位。

此外,可能需要使用额外的逻辑和寄存器来处理溢出和下溢情况。

四、软件实现8bit符号数加法器的软件实现方法也很多样化,具体实现方式取决于所使用的编程语言和设计要求。

常见的编程语言如Python、C++、Java等都可以方便地实现这个功能。

在软件实现中,可以通过编写程序代码来实现8bit符号数加法器的功能,并进行相应的测试和验证。

五、应用场景8bit符号数加法器可以应用于各种数字系统和计算机编程模型中,例如数字信号处理、嵌入式系统、游戏开发、人工智能等。

它提供了高效、可靠的数字运算功能,对于这些应用中的计算任务至关重要。

除此之外,它还可以用于数据校验、加密解密、科学计算等领域。

六、总结8bit符号数加法器是一种重要的数字电路组件,它能够将两个8位的二进制数相加,并对负数的符号进行特殊处理。

通过不同的硬件和软件实现方法,我们可以方便地设计和使用这个加法器。

它的应用范围广泛,为各种数字系统和计算任务提供了有力的支持。

8位全加器 课程设计

8位全加器 课程设计

硬件技术课程设计课题名称 8位全加器的设计与实现组名组员班级1201专业计算机科学与技术指导教师计算机学院2014年12 月目录一、设计目的 (1)二、设计内容 (1)三、实验原理图 (1)半加器原理图 (1)1位全加器原理图 (1)4位全加器原理图 (2)8位全加器原理图 (2)锁引脚图 (3)四、设计与说明 (3)五、时序仿真 (4)六、实验步骤 (5)七、设计总结 (8)八、参考文献 (8)8位全加器的设计与实现一、设计目的1、掌握运用MAX+plusII原理图编辑器进行层次电路系统设计的方法。

2、进一步熟悉利用MAX+plusII进行电路系统设计的一般流程。

3、掌握8位全加器原理图输入设计的基本方法及过程。

二、设计内容一个8位全加器可以由8个1位全加器构成,加法器间的进位可以以串行方式实现,即将低位加法器的进位输出cout与相邻的高位加法器的最低进位输入信号cin相连接。

而一个1位全加器则可由实验一包装元件入库得到。

三、实验原理图半加器原理图:1位全加器原理图:1 /84位全加器原理图:8位全加器原理图:2 / 8锁引脚原理图:四、设计与说明8位全加器可由2个4位的全加器串联组成,因此,先由一个半加器构成一个全加器,再由4个1位全加器构成一个4位全加器并封装成元器件。

加法器间的进位可以串行方式实现,即将低位加法器的进位输出cout与相临的高位加法器的最低进位输入信号cin相接最高位的输出即为两数之和。

最后一个Cout输出进位,D8显示。

3 / 8五、时序仿真1、建立波形文件。

为此设计建立一个波形测试文件。

选择File项及其New,再选择右侧New窗中的vector Waveform file项,打开波形编辑窗。

2、输入信号节点。

在波形编辑窗的左方双击鼠标,在出现的窗口中选择Node finder,在弹出的窗口中首先点击List键,这时左窗口将列出该项设计所以利用中间的“=>”键将需要观察的信号选到右栏中。

《计算机组成原理》课程设计大纲

《计算机组成原理》课程设计大纲

《计算机组成原理》课程设计大纲课程名称:计算机组成原理课程设计实验学时:1周/人课程编号:学分:1课程总学时:30 实验周学时:2课程总学分:1适用专业及年级:计算机科学与技术二年级课程负责人:大纲主撰人:XXX编写日期:2003年12月一、实验教学目标与基本要求通过该课程设计的学习,利用先进的EDA设计手段,总结计算机组成原理课程的学习内容,学会QuartusII的使用、层次化设计方法、多路开关,逻辑运算部件,移位器设计、微程序控制的运算器设计、微程序控制的存储器设计、简单计算机的设计,从而巩固课堂知识、深化学习内容、完成教学大纲要求,学好计算机科学与技术专业的专业基础课。

每个同学必须将自己做的内容以PPT的方式进行讲解,同时提交一份纸质的实验报告和电子文档。

二、实验课程内容和学时分配业、科研、生产、其他。

三、考核办法1. 同学们在实验前应该认真准备实验,根据实验讲义和课堂上学到的知识写出实验报告,带到实验现场。

2.QuartusII的使用在本次实验中,学会QuartusII软件的使用,然后利用此系统完成:〈1〉一位全加器设计〈2〉并行八位寄存器设计下载到实验箱上,在实验箱上验证。

评分细则:参加实验: 0.2分完成实验报告: 0.2分完成一位全加器设计: 0.3分完成八位并行寄存器设计:0.3分3.层次化设计方法在本次实验中,学会层次化设计方法,利用该方法完成:〈1〉同步二进制计数器〈2〉多位二进制加法器下载到实验箱上,在实验箱上验证评分细则:参加实验: 0.2分完成实验报告: 0.2分完成同步二进制计数器 0.3分完成多位二进制加法器 0.3分4.复杂模型机设计利用TD-CMA平台,设计一套完整的指令系统,并下载到实验平台进行验证。

评分细则:参加实验: 0.3分完成实验报告: 0.3分完成所要求的复杂模型机设计 0.45分正确进行操作并回答问题 0.45分5.微程序控制器设计设计一个微程序控制器,并能在TD-CMA平台上进行验证。

计算机组成原理实验报告-八位补码加减法器的设计与实现

计算机组成原理实验报告-八位补码加减法器的设计与实现

计算机科学与技术学院计算机组成原理实验报告书实验名称八位补码加/减法器的设计与实现班级学号姓名指导教师日期成绩实验1八位补码加/减法器的设计与实现一、实验目的1.掌握算术逻辑运算单元(ALU)的工作原理。

2.熟悉简单运算器的数据传送通路。

3.掌握8位补码加/减法运算器的设计方法。

4.掌握运算器电路的仿真测试方法二、实验任务1.设计一个8位补码加/减法运算器(1)参考图1,在QUARTUS II里输入原理图,设计一个8位补码加/减法运算器。

(2)创建波形文件,对该8位补码加/减法运算器进行功能仿真测试。

(3)测试通过后,封装成一个芯片。

2.设计8位运算器通路电路参考下图,利用实验任务1设计的8位补码加/减法运算器芯片建立运算器通路。

3.利用仿真波形,测试数据通路的正确性。

设定各控制信号的状态,完成下列操作,要求记录各控制信号的值及时序关系。

(1)在输入数据IN7~IN0上输入数据后,开启输入缓冲三态门,检查总线BUS7~BUS0上的值与IN0~IN7端输入的数据是否一致。

(2)给DR1存入55H,检查数据是否存入,请说明检查方法。

(3)给DR2存入AAH,检查数据是否存入,请说明检查方法。

(4)完成加法运算,求55H+AAH,检查运算结果是否正确,请说明检查方法。

(5)完成减法运算,分别求55H-AAH和AAH-55H,检查运算结果是否正确,请说明检查方法。

(6)求12H+34H-56H,将结果存入寄存器R0,检查运算结果是否正确,同时检查数据是否存入,请说明检查方法。

三、实验要求(1)做好实验预习,掌握运算器的数据传送通路和ALU的功能特性。

(2)实验完毕,写出实验报告,容如下:①实验目的。

②实验电路图。

③按实验任务3的要求,填写下表,以记录各控制信号的值及时序关系。

表中的序号表示各控制信号之间的时序关系。

要求一个控制任务填一表,并可用文字对有关容进行说明。

序号nsw-busnR0-BUSLDR0LDR1LDR2mnalu-busIN7~INBUS7~BUS0 ⑤实验体会与小结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)并为l2调试生成一个时序波形图,进行仿真验证。
4)新建一个工程,并为其分配器件及设备。
5)新建一个Block Diagram其名称为l3,并编写verilog hdl代码,设计一个八位的二进制加法器。
6)并为l3调试生成一个时序波形图,进行仿真验证。
四、调试过程及实验结果
一、四位二进制计数器
1)L2工程的代码编写
2)调试生成。V的文件。
3)调试生成时序图,进行仿真验证。
二、八位二进制加法器
1)L3工程的代码编写
2)调试生成l3.v文件。
3)调试生成时序图,进行仿真验证。
计算机组成原理课程设计报告
姓名:学号:
指导教师:
实验地点:
日期:
实验名称:层次化设计方法
一、实验目的及要求
二、实验环境
三、实验内容与步骤
实验内容
实验步骤
1)新建工程,并为其分配器件及设备。
2)新建一个Block Diagram其名称为l2,并编写verilog hdl代码,设计一个4位的同步二进制计数器。
相关文档
最新文档