平行四边形 三角形 梯形 知识点
平行四边形三角形梯形面积推导过程

平行四边形三角形梯形面积推导过程一、平行四边形的面积推导过程:(1)定义:平行四边形是具有两组平行边的四边形。
(2)面积公式:平行四边形的面积等于底边长度乘以高度。
设平行四边形的底边长为b,高度为h。
根据定义可知,平行四边形的对边平行,所以可以将其视为横向的矩形和纵向的矩形组合而成。
其中,横向矩形的底边长度为b,高度为h,面积为bh;纵向矩形的底边长度为h,高度为b,面积为hb。
因此,平行四边形的面积等于这两个矩形的面积之和,即S=bh+hb=2bh。
所以,平行四边形的面积为2bh。
二、三角形的面积推导过程:(1)定义:三角形是由三条边和三个夹角组成的几何形状。
(2)面积公式:三角形的面积等于底边长度乘以高度再除以2设三角形的底边长为b,高度为h。
可以将三角形划分为底边b和高度h所形成的矩形和一个三角形。
其中,矩形的面积为bh,三角形的面积为矩形面积的一半,即bh/2所以,三角形的面积为bh/2三、梯形的面积推导过程:(1)定义:梯形是具有两条平行边的四边形。
(2)面积公式:梯形的面积等于上底和下底的和乘以高度再除以2设梯形的上底长为a,下底长为b,高度为h。
可以将梯形看作一个上底为a,下底为b,高度为h的平行四边形,再去掉一个上底为a,下底为b,高度为h/2的三角形。
根据平行四边形的面积公式可得,平行四边形的面积为(a+b)h。
所以,梯形的面积为(a+b)h/2综上所述,平行四边形的面积为2bh,三角形的面积为bh/2,梯形的面积为(a+b)h/2、这些面积公式的推导过程是基于几何形状的特性和定义进行的。
通过对这些公式的应用,我们可以方便地计算出平行四边形、三角形和梯形的面积。
人教版四年级数学上册 平行四边形和梯形 知识点归纳

平行四边形和梯形知识点归纳知识点一、平行线与相交线的概念1、在同一平面内,两条直线的位置关系只有两种:平行和相交。
2、在同一平面内,如果两条直线a、b没有交点,那么这两条直线就叫做平行线,也可以说这两条直线互相平行,记作:a//b,读作:a平行于b。
3、在同一平面内,如果两条直线不平行,那么它们就是相交线,也可以说这两条直线相交。
4、如果两条直线a、b相交成直角,就说这两条直线互相垂直,记作:a⊥b,读作:a垂直于b。
其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
两条直线互相垂直,有4个直角。
5、用直尺和三角尺可以画平行线,步骤如下:①固定三角尺,沿一条直角边先画一条直线。
②直尺紧贴三角尺的另一条直角边,固定直尺,然后平移三角尺。
③再沿着以前画线的直角边画出另一条直线。
温馨提示:用以上方法,还可以检验两条直线是否平行。
知识点二、平行线与相交线的性质1、过直线外的一点,可以画1条直线与已知直线平行。
2、过一点,可以画1条直线与已知直线垂直。
3、有三条直线a、b、c,如果a//b,b//c,则a//c 。
4、在同一平面内,与同一条直线垂直的两条直线互相平行。
5、两条平行线之间的距离处处相等。
6、从直线外的一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
这个性质也可以简称为“垂线段最短”。
知识点三、平行四边形1、两组对边分别互相平行的四边形,叫做平行四边形。
2、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
3、平行四边形有无数条高。
平行四边形除了两组对边互相平行,这两组对边的长度也对应相等。
4、长方形拉动成平行四边形后,周长不变,面积变小。
知识点四、梯形1、只有一组对边互相平行的四边形叫做梯形。
互相平行的一组对边是梯形的底,较短的叫做上底,较长的叫做下底。
从梯形上底任取一点,向下底作一条垂线,这个点和垂足之间的线段叫做梯形的高。
三角形平行四边形和梯形的知识点

三角形、平行四边形和梯形1. 三角形的定义和性质三角形是一个由三条边和三个内角组成的图形。
根据其边长关系,可以分为以下几种类型:•等边三角形:三条边长度相等的三角形,每个内角都是60度。
•等腰三角形:两条边长度相等的三角形,两个底角也相等。
•直角三角形:其中一个内角是90度的三角形。
•锐角三角形:三个内角都小于90度的三角形。
•钝角三角形:至少有一个内角大于90度的三角形。
三角形的性质如下:•内角和:任意三角形的三个内角之和等于180度。
•外角和:任意三角形的三个外角之和等于360度。
•角平分线:三角形的内角平分线相交于一个点,该点到三个顶点的距离相等。
•重心:三角形的三条中线交于一点,该点称为重心。
•垂心:三角形的三条高线交于一点,该点称为垂心。
•内心:三角形的三条角平分线交于一点,该点称为内心。
•外心:三角形的三条垂直平分线交于一点,该点称为外心。
2. 平行四边形的定义和性质平行四边形是一个具有两组平行边的四边形。
根据其边长和角度关系,可以分为以下几种类型:•矩形:具有四个内角都是直角的平行四边形。
•正方形:具有四个边长相等且四个内角都是直角的平行四边形。
•菱形:具有四个边长相等且对角线相互垂直的平行四边形。
•长方形:具有四个内角都是直角的平行四边形,但边长不相等。
平行四边形的性质如下:•对角线:平行四边形的对角线相等。
•对边平行:平行四边形的对边平行且相等。
•内角和:平行四边形的邻接内角互补,即相加等于180度。
3. 梯形的定义和性质梯形是一个具有一对平行边的四边形。
根据其两对边长的关系,可以分为以下几种类型:•等腰梯形:具有两个对边长度相等的梯形。
•等腰直角梯形:具有两个对边长度相等且一个内角是直角的梯形。
梯形的性质如下:•底角:梯形的两个底角相等。
•顶角:梯形的两个顶角相等。
•对角线:梯形的非平行边对应的两个点相连形成的线段称为对角线,对角线的长度一般不相等。
•中位线:梯形的两条非平行边中点相连形成的线段称为中位线,中位线的长度等于两条平行边长度之和的一半。
苏教版四年级数学下册第7单元《三角形、平行四边形和梯形》单元复习知识点归纳总结

一、三角形1.认识三角形:(1)生活中的三角形:生活中的三角形无处不在,如大桥的桥柱、斜拉索与桥面可以组成三角形。
生活中一些物体的包装盒的面,一些积木的面等都是三角形。
(2)画三角形:(步骤)①先画一条线段。
②再以第一条线段的一个端点为端点画第二条线段。
③最后连接另两个端点,围成封闭图形。
(3)三角形的特点:①三角形有3条边、3个角和3个顶点。
②三角形的3条边都是线段。
③三角形的三条线段要首尾相接地围起来。
(4)三角形的定义:三条线段首尾相接围成的图形叫作三角形。
(5)三角形各部分的名称:①围成三角形的三条线段就是三角形的边,每两条边所组成的角就是三角形的角,每个角的顶点就是三角形的顶点。
②三角形有3个顶点、3条边和3个角。
要点提示:三角形具有稳定性。
三角形是由三条线段首尾相接围成的图形。
易错点:过同一条直线上的3个点不能画出三角形;围成三角形的3个顶点不能在同一条直线上。
要点提示:如果有三条线段,而没有说是首尾相接围成的图形,就不是三角形。
(6)认识三角形的底和高:①从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
(7)三角形高的画法:通常用三角尺画三角形的高。
①把三角尺的一条直角边与指定的底边重合。
②沿底边平移三角尺,直到另一条直角边与该底边相对的顶点重合。
③再从该顶点沿三角尺的另一条直角边向底边画一条虚线段,这条虚线段就是三角形的高。
④最后标上直角符号。
(8)解决问题:①运用类推法解决数三角形的问题:从三角形的一个顶点向对边引若干条线段,将三角形分成了若干个小三角形,所分成的三角形的个数与对边上的线段的条数相等。
如果对边被分成n段,则三角形有【n+(n-1)+(n-2)+…+1】个。
②运用分析法解决求用时最短的路线问题:要想使每次走的路线最短,就应从每个顶点向与对面路垂直的方向走,即点到对边的垂直线段最短。
2.三角形的三边关系:(1)在拼成的三角形中,任意两根小棒的长度一定大于第三根小棒的长度。
新人教版小学四年级上册数学第五单元平行和垂直、平行四边形和梯形知识点归纳重点概括

平行和垂直、平行四边形和梯形知识点归纳重点概括1、平行与垂直:(1)在同一个平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
直线a与直线b互相平行,记作a∥b。
(2)在同一个平面内,两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
直线a与直线b互相垂直,记作a⊥b。
(3)用直尺和三角尺画平行线的步骤:①固定三角尺,沿一条直角边先画一条直线;②直尺紧贴三角尺的另一条直角边,固定直尺,然后平移三角尺。
③再沿以前画线的直角边画出另一条直线。
(4)在同一平面内,一条直线的平行线有无数条。
(5)从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
(6)与两条平行线互相垂直的线段的长度都相等。
(7)在同一个平面内,两条直线之间的关系是:平行或相交。
(其中相交包括了垂直)(8)长方形或正方形相邻的两条边互相垂直,相对的两条边互相平行。
(9)经过直线外一点,只能画一条直线与已知直线平行,可以画一条直线与已知直线垂直。
(10)两条平行线之间的距离处处相等。
(11)在同一平面内,和同一条直线垂直的两条直线互相平行。
(12)把一张长方形纸沿着一组对边折两次,这三条折痕互相平行;把一张正方形纸沿着对角线对折两次,这两条折痕互相垂直。
(13)如果在纸上画两条直线都与第三条直线相交成直角,那么这两条直线就互相平行。
(14)在两条平行线之间画几条垂线,这几条垂线之间的关系是平行且相等。
(15)两条直线间的距离处处相等,两条直线一定互相平行。
(16)课桌的桌面,两条对边互相平行,两条邻边互相垂直。
(17)两条直线都和同一条直线平行,那么这两条直线也互相平行。
(18)9时整和3时整时,钟面上的时针和分针互相垂直。
(19)在平行线间画一个最大的正方形,这个最大的正方形的边长就是平行线间的距离。
2、平行四边形和梯形:平行四边形(1)两组对边分别互相平行的四边形,叫做平行四边形。
新北京课改版五年级数学上册《第三单元平行四边形、梯形和三角形》知识清单、单元知识点总结

三平行四边形、梯形和三角形一、平行四边形1.平行四边形的定义。
两组对边分别平行的四边形叫作平行四边形。
2.平行四边形的基本特征。
平行四边形的两组对边分别平行且相等。
3.长方形、正方形和平行四边形之间的关系。
长方形和正方形同平行四边形一样,都是两组对边分别平行且相等,长方形和正方形具有平行四边形的一切特征,所以长方形和正方形都是特殊的平行四边形。
正方形不仅具备长方形的所有特征,并且四条边都相等,所以正方形是特殊的长方形。
4.平行四边形的特性。
平行四边形具有不稳定性,容易变形。
5.平行四边形的面积。
(1)认识平行四边形的底和高。
从平行四边形一条边上的任意一点向对边引垂线,这点到垂足间的线段叫作平行四边形的高,垂足所在的边叫作平行四边形的底。
平行四边形有无数条高,一般能画出两种长度的高。
(2)平行四边形的面积。
通过剪拼发现:长方形的面积与平行四边形的面积相等,平.重点提示:在拉动长方形的过程中,长方形的形状改变,但两组对边的长度不变。
易错题:平行四边形的对边一定相等,邻边一定不相等。
( )错解分析:此题错在对平行四边形的特征理解不准确,平行四边形一定具备对边相等的特征,但对邻边没有要求,所以平行四边形的邻边也可以相等。
正确答案:✕重点提示:平行四边形的底和高是一组相互依存且对应的概念(底边上的高,高所对应的底)。
易错题:周长相等的两行四边形的底等于长方形的长.............;.平行四边形的高等于长方形的.............宽.。
长方形的面积=长×宽平行四边形的面积=底×高如果用S表示平行四边形的面积,a和h分别表示平行四边形的底和高,那么平行四边形的面积的字母公式为S=ah。
二、梯形1.梯形的定义。
只有一组对边平行的四边形叫作梯形。
2.平行四边形和梯形的异同点。
相同点:都是四边形;都有平行的对边。
不同点:平行四边形的两组对边分别平行且相等;梯形只有一组对边平行,且平行的这组对边不相等。
苏教版四年级数学下学期第7单元《三角形、平行四边形和梯形》单元复习知识点归纳总结

知识点:等边三角形 是特殊的等腰三角形。
举例: 判断:等腰三角形上面的 一个角叫顶角。 ( ) 错解: 正解:✕ 等腰三角形两腰所夹的 角叫顶角。
②等腰三角形各部分的名称:在等腰三角形中,相等的两 边叫作腰,另一条边叫作底,两腰的夹角叫作顶角,底边与两腰 的两个夹角叫作底角。
③特征:等腰三角形的两个底角相等,等腰三角形是轴对 称图形,底边上的高在它的对称轴上。
在梯形中可以画出无数 条高,所有高的长度都相等,且 互相平行。
等腰梯形中,腰的长度可 以和一条底的长度相等,即等 腰梯形可以有 3 条边的长度 相等。
平行四边形的高,这条对边是平行四边形的底。
三、认识梯形
1.定义:只有一组对边平行的四边形叫作梯形。
2.认识梯形的底和高:
互相平行的一组对边分别是梯形的上底和下底,不平行
段 的 条 数 相 等 。 如 果 对 边 被 分 成 n 段 , 则 三 角 形 有 直线段才是高。
【n+(n-1)+(n-2)+…+1】个。
②运用分析法解决求用时最短的路线问题:
要想使每次走的路线最短,就应从每个顶点向与对面路
垂直的方向走,即点到对边的垂直线段最短。
欢迎下载编辑修改打印
苏教版四年级数学第二学期
苏教版四年级数学第二学期
七 三角形、平行四边形和梯形
一、三角形
1.认识三角形:
要点提示:三角形具有稳定
(1)生活中的三角形:生活中的三角形无处不在,如大桥的 性。
桥柱、斜拉索与桥面可以组成三角形。生活中一些物体的包
装盒的面,一些积木的面等都是三角形。
三角形是由三条线段首
(2)画三角形:(步骤)
尾相接围成的图形。
三角形平行四边形和梯形的知识点

三角形平行四边形和梯形的知识点三角形平行四边形和梯形的知识点一、三角形1. 定义三角形是由三条线段组成的图形,其中的每条线段都称为边,它们的端点称为顶点。
2. 分类根据边长和角度的关系,可以将三角形分为等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等五种类型。
3. 性质(1)任意两边之和大于第三边。
(2)任意两角之和小于180度。
(3)对于等腰三角形,其底边上的两个底角相等。
(4)对于直角三角形,其斜边上的一直角等于90度。
(5)对于等边三角形,其内部所有角均为60度。
二、平行四边形1. 定义平行四边形是由四条线段组成的图像,其中相邻两条线段互相平行。
2. 性质(1)对于平行四边形,对续线即相邻两个顶点连线所得到的线段互相平分。
(2)对于平行四边形,对顶线即连接非邻接顶点所得到的线段互相平分。
(3)对于平行四边形,对角线互相平分。
3. 判定方法(1)判断对续线是否相等,如果相等,则为平行四边形。
(2)判断对顶线是否平行,如果平行,则为平行四边形。
三、梯形1. 定义梯形是由两个平行的底边和连接这两条底边的两条斜边组成的图像。
2. 分类梯形根据斜边长度关系可以分为等腰梯形和普通梯形两种类型。
3. 性质(1)对于等腰梯形,其上下底角度相等。
(2)对于普通梯形,其上下底角度不等。
(3)对于任意梯形,其对顶角互补。
(4)对于任意梯形,其中线长度为上下底之和的一半。
4. 判定方法(1)判断上下底是否平行,如果平行,则为梯形。
(2)判断对顶角是否互补,如果互补,则为梯形。
总结:三角形、平行四边形和梯形是初中数学中比较基础且重要的图像。
在学习这些图像时需要掌握它们的定义、分类、性质和判定方法。
只有充分理解它们的特点,才能更好地应用到数学问题中,提高数学解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、平行四边形:
两组对边都平行的四边形叫平行四边形
从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。
垂足所在的边叫做平行四边形的底。
长方形和正方形是特殊的平行四边形。
平行四边形是由两个相等的三角形拼成的,
平行四边形面积S=底×高
底=平行四边形面积÷高
高=平行四边形面积÷底
将一个平行四边形拉成长方形,面积变大,周长不变。
将一个平行四边形剪成长方形,面积不变,周长变小。
2、梯形:
(1)梯形:一组对边平行而另一组对边不平行的四边形叫梯形
梯形有上底和下底,从上底到下底的垂线叫梯形的高,两边叫梯形的腰。
梯形的面积S=(上底﹢下底)×高÷2
高=梯形的面积×2÷(上底﹢下底)
(上底﹢下底)=梯形的面积×2÷高
3、三角形
三角形具有稳定性,并在生活中被广泛应用。
三角形的内角和180°
知识点一:三角形与四边形的关系。
任何两个相同的三角形都可以拼成一个平行的四边形;两个
相同的直角三角形可以拼成一个长方形平行四边形;两个相同的等腰三角形可以拼成一个正方形或平行四边形;三个相同的三角形可以拼成一个梯形。
三角形面积S=底×高÷2
高=三角形的面积×2÷底底=三角形的面积×2÷高
等底等高的三角形和平行四边形,三角形的面积是平行四边形的一般,平行四边形是三角形面积的两倍。
在一个平行四边形中剪一个最大的三角形,三角形的面积是平行四边形的一半。