广西桂林市2019-2020学年高二下学期期末质量检测数学(理)试题含答案
2019-2020年高二下学期期末考试数学(理)试题 含答案

2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。
广西桂林市2022-2023学年高二上学期期末考试化学试题含答案

桂林市2022~2023学年度上学期期末质量检测高二年级化学(答案在最后)(考试用时75分钟,满分100分)可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 S 32 Zn 65 Mn 55第Ⅰ卷(选择题,共40分)一、单项选择题(本题包括15小题。
其中第1~10题每小题2分,第11~15题每小题4分,共40分)请将答...案填在答题卡上.......1.下列关于金属腐蚀及防护的说法中,不正确的是( ) A .在钢铁表面镀铬可防止钢铁生锈 B .地下钢铁管道连接镁块可防止钢铁生锈C .将钢铁制品与电源正极连接可减缓钢铁腐蚀的速率D .金属腐蚀绝大多数属于电化学腐蚀 2.下列叙述与盐类水解无关的是( ) A .过氧化钠遇水产生大量气泡 B .常用可溶性的铝盐做净水剂 C .利用4NH Cl 溶液的酸性除铁锈D .热的23Na CO 溶液去污效果更好3.下列原子的电子排布式中,处于激发状态的是( ) A .钠原子:22611s 2s 2p 3s B .氟原子:22411s 2s 2p 3s C .锰原子:52[Ar]3d 4sD .铜原子:101[Ar]3d 4s4.一定温度下,在5L 的恒容密闭容器中,反应()()()()3224NH g 5O g 4NO g 6H O g ++进行半分钟后,测得NO 的物质的量增加了0.3mol 。
在此段时间内,用3NH 表示的化学反应速率为( ) A .110.002mol L s --⋅⋅B .110.06mol L s --⋅⋅C .110.01mol L s --⋅⋅D .110.12mol L s --⋅⋅5.下列叙述中,能证明3CH COOH 是弱酸的是( ) A .醋酸易溶于水B .醋酸溶液的导电能力比盐酸弱C .常温下,10.010mol L -⋅的醋酸溶液pH 3.38= D .等体积、等浓度的醋酸溶液与NaOH 溶液恰好完全反应6.在自然界中,原生铜的硫化物转变成4CuSO 后遇到地壳深层的ZnS 和PbS 便慢慢转变为CuS 。
广西省玉林市2019-2020学年数学高二下期末经典试题含解析

广西省玉林市2019-2020学年数学高二下期末经典试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量8X ξ+=,若()~10,0.6X B ,则()E ξ,()D ξ分别为( ) A .6和2.4 B .6和5.6C .2和2.4D .2和5.6【答案】C 【解析】 【分析】利用二项分布的数学期望和方差公式求出()E X 和()D X ,然后利用期望和方差的性质可求出()E ξ和()D ξ的值.【详解】()~10,0.6X B ,()100.66E X ∴=⨯=,()100.60.4 2.4D X =⨯⨯=.8X ξ+=,8X ξ∴=-,由期望和方差的性质可得()()()882E E X E X ξ=-=-=,()()()8 2.4D D X D X ξ=-==.故选:C. 【点睛】本题考查均值和方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用. 2.在三棱柱1111,ABC A B C AA -⊥面ABC ,23BAC π∠=,14AA =,AB AC ==,则三棱柱111ABC A B C -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】利用余弦定理可求得BC ,再根据正弦定理可求得ABC ∆外接圆半径r;由三棱柱特点可知外接球半径R =R 后代入球的表面积公式即可得到结果.【详解】AB AC ==23BAC π∠=22222cos363BC AB AC AB AC π∴=+-⋅= 6BC ∴=由正弦定理可得ABC ∆外接圆半径:622sin 2sin 3BC r BAC π===∠∴三棱柱111ABC A B C -的外接球半径:221112442R r AA ⎛⎫=+=+= ⎪⎝⎭ ∴外接球表面积:2464S R ππ==本题正确选项:C 【点睛】本题考查多面体外接球表面积的求解问题,关键是能够明确外接球球心的位置,从而利用底面三角形外接圆半径和三棱柱的高,通过勾股定理求得外接球半径.3.已知非空集合,A B ,全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃则( )A .MN M = B .M N ⋂=∅ C .M ND .M N ⊆【答案】B 【解析】分析:根据题意画出图形,找出M 与 N 的并集,交集,判断M 与 N 的关系即可 详解:全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃M N U ∴⋃=,M N ⋂=∅,M N ≠故选B点睛:本题主要考查的是交集,并集,补集的混合运算,根据题目画出图形是解题的关键,属于基础题。
选修2-1学霸必刷题 空间向量与立体几何(选择题、填空题)

空间向量与立体几何(选择题、填空题)一、单项选择题1.(江西省赣州市赣县第三中学2020-2021学年高二8月入学考试)已知点(,1,2)A x 和点(2,3,4)B ,且AB =x 的值是( )A .6或2-B .6或2C .3或4-D .3-或4【答案】A【解析】AB ==()2216x -=,解得:2x =-或6x =.故选A2.(2020江西省新余期末质量检测)在空间直角坐标系中,已知P(-1,0,3),Q(2,4,3),则线段PQ 的长度为( )A B .5C D 【答案】B【解析】由题得2(3,4,0),35PQ PQ =∴=+=,所以线段PQ 的长度为5. 故答案为B3.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间向量()3,1,3m =,()1,,1n λ=--,且//m n ,则实数λ=( )A .13- B .-3 C .13D .6【答案】A【解析】因为//m n ,所以,m n R μμ=∈,即:()3,1,3m ==(),,n μλμμμ--=, 所以3,1μλμ=-=,解得13λ=-.故选A .4.(江西省新余一中、宜春一中2021届高二联考)如图所示,在正方体1111ABCD A B C D -中,O 是底面正方形ABCD 的中心,M 是1D D 的中点,N 是11A B 的中点,则直线NO ,AM 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直【答案】C【分析】建立空间直角坐标系,写出NO 与AM 的坐标,即可判断位置关系.【解析】建立空间直角坐标系,如图所示.设正方体的棱长为2,则(2,0,0)A ,(0,0,1)M ,(1,1,0)O ,(2,1,2)N ,∴(1,0,2)NO =--,(2,0,1)AM =-.∵0NO AM ⋅=,∴直线NO ,AM 的位置关系是异面垂直. 故选: C5.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE AF ⋅的值为( ) A .2aB .212aC .214a D 2 【答案】C【分析】由题意可得11()22AB AC AE AF AD ⋅=+⋅,再利用两个向量的数量积的定义求得结果.【解析】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a ︒︒=+=,故选C. 6.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知M ,N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且2MP PN =,设向量OA a =,OBb =,OC c =则OP =( )A .111666a b c ++B .111333a b c ++C .111633a b c ++D .111366a b c ++【答案】C【解析】如图所示,连接ON ,∵OP ON NP =+,1()2ON OB OC =+,所以13NP NM =,NM OM ON =-,12OM OA =,∴13OP ON NP ON NM =+=+121()333ON OM ON ON OM =+-=+21()32OB OC =⨯+1132OA +⨯111633OA OB OC =++111633a b c =++.故选C . 7.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-,则1l 和2l 的位置关系是( ) A .平行 B .相交 C .垂直D .不确定【答案】A【解析】因为两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-, 所以212v ν=-,即2ν与1v 共线,所以两条不重合直线1l 和2l 的位置关系是平行,故选A8.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)设,x y R ∈,向量()()(),1,1,1,,1,2,4,2,a x b y c ===-且,//a c b c ⊥,则a b +=( )A .BC .3D .4【答案】C【分析】根据向量垂直和平行的坐标表示求得参数,x y ,再求向量模长即可. 【解析】()//,241,2,1,21b c y y b ∴=-⨯∴=-∴=-,,(),1210,1a b a b x x ⊥∴⋅=+⋅-+=∴=,()()1,112,1,2a a b ∴=∴+=-,,(2213a b ∴+=+-=,故选C .9.(江西省宜春市2016-2017学年高二上学期期末统考理)如图所示,在空间四边形OABC 中,OA a OB b OC c ===,,,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( )A .121232a b c -+B .211322a b c -++ C .111222a b c +-D .221b 332a c -+-【答案】B【解析】由向量的加法和减法运算:12211()23322MN ON OM OB OC OA a b c =-=+-=-++.故选B10.(陕西省商洛市商丹高新学校2019-2020学年高二下学期4月学情质量检测数学(理))如图,已知正方体ABCD A B C D ''''-,点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =,则AF =( )A .1122AA AB AD '++ B .111222AA AB AD '++ C .111266AA AB AD '++D .111366AA AB AD '++【答案】D【解析】∵点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =, ∴111111()333236AF AE AA A E AA A C AA A C ⎛⎫''''''''==+=+=+ ⎪⎝⎭ 11()36AA A B A D '''''=++111366AA AB AD '=++,故选D . 11.(安徽省六安市舒城中学2020-2021学年高二上学期开学考试数学(文)试题)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .1【答案】D【解析】()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅,AB ⊥平面286BP P P ,i AB BP ∴⊥,i AB BP ∴⋅=,21i AB AP AB ∴⋅==,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个,故选D .12.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)点P (1,2,3)关于xOy 平面的对称点的坐标为( ) A .(-1,2,3) B .(1,-2,-3) C .(-1,-2,-3) D .(1,2,-3)【答案】D【分析】关于xOy 平面对称的点的,x y 坐标不变,只有z 坐标相反. 【解析】点P (1,2,3)关于xOy 平面的对称点的坐标为(1,2,)3-.故选D .13.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若向量(2,0,1)a =-,向量(0,1,2)b =-,则2a b -=( )A .(4,1,0)-B .(4,1,4)--C .(4,1,0)-D .(4,1,4)--【答案】C【分析】根据题意求出2(4,0,2)a=-,再根据向量的减法坐标运算,由此即可求出结果.【解析】因为向量(2,0,1)a =-,向量(0,1,2)b =-,则2(4,0,2)a =-,则2(4,0,2)(0,1,2)(4,1,0)a b -=---=-,故选C .14.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知正方体1111ABCD A B C D -,点E 是上底面11A C 的中心,若1AE AA xAB yAD =++,则x y +等于( ) A .13B .12C .1D .2【答案】C【解析】如图,()111111112AE AA A E AA A B A D =+=++ ()11111222AA AB AD AA AB AD =++=++,所以12x y ==,所以1x y +=.故选C15.(江苏省南京市秦淮区2019-2020学年高一下学期期末)空间直角坐标系O xyz -中,已知两点()11,2,1P -,()22,1,3P -,则这两点间的距离为( )A BC .D .18【答案】B【解析】根据题意,两点()11,2,1P -,()22,1,3P -,则12||PP =B .16.(湖北省恩施高中2020届高三下学期四月决战新高考名校交流卷(B ))已知向量()1,2a =,()3,b x =,()1,1c y =--,且//a b ,b c ⊥,则x y ⋅的值为( )A .6B .32 C .9D .132-【答案】C【解析】∵//a b ,∴60x -=,6x =,∴向量()3,6b =, ∵b c ⊥,∴()3610y -+-=,∴32y =,∴9x y ⋅=.故选C . 17.(四川省绵阳市2019-2020学年高二下学期期末教学质量测试数学(理)试题)在空间直角坐标系中,若()1,1,0A ,()13,0,12AB =,则点B 的坐标为( ) A .()5,1,2-- B .()7,1,2- C .()3,0,1 D .()7,1,2【答案】D【分析】首先设出点(,,)B x y z ,利用向量坐标公式以及向量相等的条件得到等量关系式,求得结果. 【解析】设(,,)B x y z ,所以(1,1,)2(3,0,1)(6,0,2)AB x y z =--==,所以16102x y z -=⎧⎪-=⎨⎪=⎩,所以712x y z =⎧⎪=⎨⎪=⎩,所以点B 的坐标为(7,1,2),故选D .18.(广东省云浮市2019-2020学年高二上学期期末)如图,在三棱锥P ABC -中,点D ,E ,F 分别是AB ,PA ,CD 的中点,设PA a =,PB b =,PC c =,则EF =( )A .111442a b c --B .111442a b c -+ C .111442a b c +-D .111442a b c -++【答案】D 【解析】点D ,E ,F 分别是AB ,PA ,CD 的中点,且PA a =,PB b =,PC c =,∴()11112224EF EP PC CF PA PC CD PA PC CA CB =++=-++=-+++()1111124442PA PC PA PC PB PC PA PB PC =-++-+-=-++111442a b c =-++.故选D .19.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)一个向量p 在基底{},,a b c 下的坐标为()1,2,3,则p 在基底{},,a b a b c +-下的坐标为( )A .31322⎛⎫- ⎪⎝⎭,,B .31322⎛⎫- ⎪⎝⎭,, C .13322⎛⎫- ⎪⎝⎭,,D .13322⎛⎫- ⎪⎝⎭,,【答案】B【解析】因为向量p 在基底{},,a b c 下的坐标为()1,2,3,所以23p a b c =++, 设p 在基底{},,a b a b c +-下的坐标为(),,x y z ,所以()()()()p x a b y a b zc x y a x y b zc =++-+⇒++-+,有13223x y x y x z +=⎧⎪-=⇒=⎨⎪=⎩,12y,3z =,p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭.故选B .20.(湖北省武汉襄阳荆门宜昌四地六校考试联盟2020-2021学年高三上学期起点联考)如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA AB ==,60BAD ∠=︒,M 是1BB 的中点,则异面直线1A M 与1B C所成角的余弦值为( )A. B .15- C .15D.5【答案】D【分析】用向量1,,AB BC BB 分别表示11,AM BC ,利用向量的夹角公式即可求解. 【解析】由题意可得221111111111,5,2A M AB B M AB BB A M A B B M=+=-=+=221111,2BC BC BB B C BC BB =-=+=,()211111111111cos ,AB BB BC BB AB BC BB A M B C A M B C A M B C⎛⎫-⋅-⋅+ ⎪⋅⎝〈〉===0122cos604⨯⨯+⨯==故选D21.(河北省石家庄市第二中学2020-2021学年高二上学期8月线上考试(二))长方体1111ABCD A B C D -中,11,2,AB AD AA E ===为棱1AA 的中点,则直线1C E 与平面11CB D 所成角的余弦值为( ) A.9 B.9CD .23【答案】A【解析】根据题意,建立如图所示直角坐标系:则1C E (1,1,1)=--,设平面11B D C 的法向量为n (,,)x y z =,则100n B D n BC ⎧⋅=⎪⎨⋅=⎪⎩可得:020x y x z --=⎧⎨--=⎩,取n (2,2,1)=--,则1,cos n C E =11n C E nC E⋅9==,设直线1C E 与平面11B D C 的夹角为θ,则9sin θ=,9cos θ==.故选A . 22.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知点()1,1,A t t t --,()2,,B tt ,则A ,B 两点的距离的最小值为A.10 B.5C.5D .35【答案】C【分析】由两点之间的距离公式求得AB 之间的距离用t 表示出来,建立关于t 的函数,转化为求函数的最小值.【解析】因为点()1,1,A t t t --,()2,,B t t ,所以22222(1)(21)()522AB t t t t t t =++-+-=-+,有二次函数易知,当15t =时,取得最小值为95,AB ∴,故选C .23.(湖南省邵阳市邵东县第十中学2020届高三下学期模拟考试数学(文)试题)如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C【答案】B【解析】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-,设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为||(1PM ==||(11)(1PN z =--+=所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,由空间两点间的距离公式可得||PQ ===12c =时,||PQ 取得最小值4,此时P 为线段1CA 的中点,由于||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点.故选B24.(云南省梁河县第一中学2019-2020学年高二7月月考数学(理)试题)长方体1111ABCD A B C D -中,12AB AA ==,1AD =,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A BCD .【答案】B【分析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得异面直线1BC 与AE 所成角的余弦值.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,则()0,0,0A 、()2,0,0B 、()12,1,2C 、()2,1,1E ,()2,1,1AE =,()10,1,2BC =,111cos ,6AE BC AE BC AEBC ⋅<>===⋅. 因此,异面直线1BC 与AE .故选B . 25.(广西桂林市2019-2020学年高二下学期期末质量检测数学(理))在正方体ABCD --A 1B 1C1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( ) A.5-B.5C .D 【答案】B【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【解析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,, ∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,, 设平面1B BD 的法向量为() ,,x n y z =,∵ n BD ⊥,1n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则() 110n =-,,,∴10cos ,n BE n BE n BE ⋅==⋅,设直线BE 与平面1B BD 所成角为θ,则10sin cos ,5n BE θ==,故选B .26.(陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练理科)如图在平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则1AC =( )A . BC .D 【答案】B【解析】因为底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则2=1AB ,2=1AD ,21=4AA ,0AB AD ⋅=,111cos 1AB AA AB AA A AB ⋅=⋅⋅∠=,111cos 1AD AA AD AA A AD ⋅=⋅⋅∠=,则1AC 1AB AD AA =++()1222111222AB AD AA AB AA AB AD AD AA =+++⋅+⋅+⋅==,故选B .27.(2020届上海市七宝中学高三高考押题卷)已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN →→⋅的取值范围为( ) A .[]0,4 B .[]0,2 C .[]1,4D .[]1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO →-,根据正方体的特点可确定PO →的最大值和最小值,代入即可得到所求范围.【解析】设正方体内切球的球心为O ,则1OM ON ==,2PM PN PO OM PO ON PO PO OM ON OM ON →→→→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,MN 为球O 的直径,0OM ON →→∴+=,1OM ON →→⋅=-,21PM PN PO →→→∴⋅=-,又P 在正方体表面上移动,∴当P 为正方体顶点时,PO →P 为内切球与正方体的切点时,PO →最小,最小值为1,[]210,2PO →∴-∈,即PM PN →→⋅的取值范围为[]0,2.故选B .【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.28.(湖北省荆门市2019-2020学年高二下学期期末)在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( )A .52B .2C .32D .116【答案】A【解析】由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝, 由题可知,2AC x AB y BC z CC →→→→''=++,则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=.故选A .29.(安徽省六校教育研究会2020-2021学年高三上学期第一次素质测试理科)如图,在直三棱柱111ABC A B C -中,已知90ABC ∠=︒,P 为侧棱1CC 上任意一点,Q 为棱AB 上任意一点,PQ 与AB 所成角为α,PQ 与平面ABC 所成的角为β,则α与β的大小关系为( )A .αβ=B .αβ<C .αβ>D .不能确定【答案】C【分析】建立空间直角坐标系设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,利用空间向量法分别求得cos ,cos αβ,然后根据(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,利用余弦函数的单调性求解.【解析】建立如图所示空间直角坐标系:设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,则()(),,,0,,0QP x y z QB y =-=-, 所以2222,,QP QB y QP x y z QB y ⋅==++=,所以2cos QP QB QP QBx zα⋅==⋅+又(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,sin QP CP QPβ⋅==所以cos β=cos cos βα>,因为cos y x = 在0,2π⎛⎫⎪⎝⎭上递减,所以αβ>,故选C 30.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53 C .2D .259【答案】B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【解析】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=,||BP ∴==9255=, ||5tan ||3AB BP θ∴=,tan θ∴的最大值为53.故选B .31.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大【答案】D【解析】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BD m ED⎧⊥⎨⊥⎩,即02(1)0t k t x k ⎧++=⎪⎨+-=⎪⎩,令k =33,1t x s x =-=+,所以平面BDE的一个法向量(m x=+-,底面ABC的一个法向量为(0,0,1)n =,cos|cos,|m nα=<>==当1(0,)2x∈,cosα随着x增大而增大,则α随着x的增大而减小,当1(,2)2x∈,cosα随着x增大而减小,则α随着x的增大而增大.故选D.32.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)已知空间直角坐标系O xyz-中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q在直线OP上运动,则当QA QB⋅取得最小值时,点Q 的坐标为()A.131,,243⎛⎫⎪⎝⎭B.133,,224⎛⎫⎪⎝⎭C.448,,333⎛⎫⎪⎝⎭D.447,,333⎛⎫⎪⎝⎭【答案】C【分析】设(,,)Q x y z,根据点Q在直线OP上,求得(,,2)Qλλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB⋅取得最小值,即可求解.【解析】设(,,)Q x y z,由点Q在直线OP上,可得存在实数λ使得OQ OPλ=,即(,,)(1,1,2)x y zλ=,可得(,,2)Qλλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选C .【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得关于λ的二次函数是解答的关键,着重考查运算与求解能力.33.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23,所以11238BD AB BD AB ⋅==⋅,即2222,16,483h h h h ===+.所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+.故选A.34.(安徽省阜阳市太和第一中学2020-2021学年高二(平行班)上学期开学考试)在正方体1111ABCD A B C D -中,直线1BC 与平面1A BD 所成角的余弦值为( )A .24B .23 C .3 D .3 【答案】C【分析】分别以1,,DA DC DD 为,,x y z 轴建立如图所示空间直角坐标系,求出直线的方向向量和平面的法向量后可得所求线面角的余弦值. 【解析】分别以1,,DA DC DD 为,,x y z轴建立如图所示空间直角坐标系,设正方体的棱长为1,可得()()()()110,0,0,1,1,0,0,1,1,1,0,1D B C A ∴()()()111,0,1,1,0,1,1,1,0BC A D BD =-=--=--, 设(),,n x y z =是平面1A BD 的一个法向量,∴100n A D n BD ⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,取1x =,得1y z ==-,∴平面1A BD 的一个法向量为()1,1,1n =--,设直线1BC 与平面1A BD 所成角为θ, ∴11126sin cos ,323BC nBC n BC nθ⋅-=〈〉===⨯, ∴23cos 1sin θθ=-1BC 与平面1A BD 所成角的余弦值是33, 故选C.【点睛】用向量法求二面角大小的两种方法:(1)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小即为二面角的大小;(2)分别求出二面角的两个半平面的法向量,然后通过两个法向量的夹角得到二面角大小,解题时要注意结合图形判断出所求的二面角是锐角还是钝角.35.(2020届重庆市第一中学高三下学期6月模拟数学(理)试题)如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1, 则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈, ()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2AP λ=,设1A P 与BD 所成角为θ,则cos 2DB APDB APθ⋅===⋅ ==12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C . 36.(重庆市第八中学2020届高三下学期第五次月考数学(理)试题)如图,矩形ABCD 中,2AB AD ==E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.在翻折过程中,直线1A C 与平面ABCD 所成角的正弦值最大为()A.4B .6C.14D【答案】A【解析】分别取DE ,DC 的中点O ,F ,则点A 的轨迹是以AF 为直径的圆, 以,OA OE 为,x y 轴,过O 与平面AOE 垂直的直线为z 轴建立坐标系,则()2,1,0C -,平面ABCD 的其中一个法向量为n = (0,0.1), 由11A O =,设()1cos ,0,sin A αα,则()1cos 2,1,sin CA αα=+-,记直线1A C 与平面ABCD 所成角为θ,则11sin 4cos ||CA nCAn θ⋅===⋅设315cos ,,sin 222t αθ⎡⎤=+∈=≤=⎢⎥⎣⎦ 所以直线1A C 与平面ABCD ,故选A . 二、多项选择题37.(江苏省南京市秦淮中学2019-2020学年高二(美术班)上学期期末)对于任意非零向量()111,,a x y z =,()222,,b x y z =,以下说法错误的有( )A .若a b ⊥,则1212120x x y y z z ++=B .若//a b ,则111222x y z x y z == C .cos ,a b =><D .若1111===x y z ,则a为单位向量 【答案】BD【解析】对于A 选项,因为a b ⊥,则1212120a b x x y y z z ⋅=++=,A 选项正确;对于B 选项,若20x =,且20y ≠,20z ≠,若//a b ,但分式12x x 无意义,B 选项错误; 对于C 选项,由空间向量数量积的坐标运算可知cos ,a b =><,C 选项正确;对于D 选项,若1111===x y z,则211a =+=,此时,a 不是单位向量,D 选项错误.故选BD .38.(2020届百师联盟高三开学摸底大联考山东卷)下面四个结论正确的是( ) A .向量(),0,0a b a b ≠≠,若a b ⊥,则0a b ⋅=.B .若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线. C .已知向量()1,1,a x =,()3,,9b x =-,若310x <,则,a b 为钝角.D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅. 【答案】AB【解析】由向量垂直的充要条件可得A 正确;1344PC PA PB =+,∴11334444PC PA PB PC -=-即3AC CB =,∴A ,B ,C 三点共线,故B 正确;当3x =-时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.故选AB.39.(广东省中山市2019-2020学年高一下学期期末)在空间直角坐标系中,下列结论正确的是( ) A .点()2,1,4-关于x 轴对称的点的坐标为()2,1,4 B .到()1,0,0的距离小于1的点的集合是()(){}222,,11x y z x y z -++<C .点()1,2,3与点()3,2,1的中点坐标是()2,2,2D .点()1,2,0关于平面yOz 对称的点的坐标为()1,2,0- 【答案】BCD【解析】对于选项A :点()2,1,4-关于x 轴对称的点的坐标为()2,1,4---,所以A 不正确; 对于选项B :点(),,x y z到()1,0,0的距离小于11<,所以B 正确;对于选项C :点()1,2,3与点()3,2,1的中点坐标是()132231,,2222,2,2⎛⎫=⎪⎝⎭+++,所以C 正确;对于选项D :由点(),,x y z 关于平面yOz 对称的点的坐标为(),,x y z -,所以D 正确. 故选B C D .40.(山东省威海市文登区2019-2020学年高二上学期期末)正方体1111ABCD A B C D -的棱长为a ,则下列结论正确的是( )A .211AB AC a ⋅=- B .212BD BD a ⋅= C .21AC BA a⋅=- D .212AB AC a ⋅=【答案】BC【解析】如下图所示:对于A 选项,()2211AB AC AB AC AB AB AD AB a ⋅=⋅=⋅+==,A 选项错误;对于B ,()()()()2221112BD BD AD AB BD DD AD AB AD AB AA AD AB a ⋅=-+=--+=+=,B 选项正确;对于C 选项,()()2211AC BA AB AD AA AB AB a ⋅=+⋅-=-=-,C 选项正确;对于D 选项,()2211AB AC AB AB AD AA AB a ⋅=⋅++==,D 选项错误.故选BC .41.(福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理))如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒【答案】ABD【解析】如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-,()11,1,1BD =-,()1,1,0BD =-,()11,0,1BA =-,所以()111011110B C BD =-⨯+⨯+-⨯=,即11BC BD ⊥,所以11B C BD ⊥,故B 正确;()11011101B C BD =-⨯+⨯+-⨯=,12B C =,2BD =,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BDθ==,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =,则1·0·0n BA n BD ⎧=⎨=⎩,即0x y x z -+=⎧⎨-+=⎩,取()1,1,1n =,则()10111110n B C =⨯+⨯+⨯-=,即1C n B ⊥,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选ABD.42.(海南省海南中学2019-2020学年高三第四次月考)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是()A .113P AA D V -=B .点P 必在线段1BC 上C .1AP BC ⊥D .//AP 平面11AC D【答案】BD 【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确;对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=,设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确.故选BD . 43.(福建省宁德市2019-2020学年高二上学期期末考试)如图所示,棱长为1的正方体1111ABCD A B C D-中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .平面11D A P ⊥平面1A APB .1AP DC ⋅不是定值 C .三棱锥11BD PC -的体积为定值 D .11DC D P ⊥【答案】ACD【解析】A .因为是正方体,所以11D A ⊥平面1A AP ,11D A ⊂平面11D A P ,所以平面11D A P ⊥平面1A AP ,所以A 正确;B .11111111()AP DC AA A P DC AA DC A P DC ⋅=+⋅=⋅+⋅ 11112cos 45cos901212AA DC A P DC =+=⨯⨯=,故11AP DC ⋅=,故B 不正确; C .1111B D PC P B D C V V --=,11B D C 的面积是定值,1//A B 平面11B D C ,点P 在线段1A B 上的动点,所以点P 到平面11B D C 的距离是定值,所以1111B D PC P B D C V V --=是定值,故C 正确; D .111DC A D ⊥,11DC A B ⊥,1111A D A B A =,所以1DC ⊥平面11A D P ,1D P ⊂平面11A D P ,所以11DC D P ⊥,故D 正确.故选ACD44.(山东省济南莱芜市第一中学2019-2020学年高二下学期第一次质量检测)关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面 C .设{},,a b c 是空间中的一组基底,则{},,a b b c c a +++也是空间的一组基底 D .若0a b ⋅<,则,a b 是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有111632OP OA OB OC =++,根据空间向量的基本定理,可得,,,P A B C 四点一定共面,所以是正确的;对于C 中,由{},,a b c 是空间中的一组基底,则向量,,a b c 不共面,可得向量,a b b c ++,c a +也不共面,所以{},,a b b c c a +++也是空间的一组基底,所以是正确的; 对于D 中,若0a b ⋅<,又由,[0,]a b π∈,所以,(,]2a b ππ∈,所以不正确.故选ABC .45.(河北省沧州市盐山中学2019-2020学年高一下学期期末)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-,设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =,所以(1,2,1)n =, 同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△,故C 正确; 三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确.故选CD .46.(山东省济南市2019-2020学年高二下学期末考试)如图,棱长为的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6π B .平面11D A P ⊥平面1A AP C .三棱锥1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形 【答案】BC【解析】对于A ,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,()()()10,0,1,1,0,0,0,1,0D A C ,设()()1,,01,01P a b a b <<<< ()()11,,1,1,1,0D P a b AC =-=-,(111cos ,01D P AC D P AC D P ACa b ⋅==<++-1301,01,,24a b D P AC ππ<<<<∴<<∴直线D 1P 与AC 所成的角为,42ππ⎛⎫⎪⎝⎭,故A 错误; 对于B ,正方体ABCD ﹣A 1B 1C 1D 1中,A 1D 1⊥AA 1,A 1D 1⊥AB , ∵AA 1AB =A ,∴A 1D 1⊥平面A 1AP ,∵A 1D 1⊥平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,故B 正确;对于C ,1111122CDD S=⨯⨯=,P 到平面CDD 1的距离BC =1, ∴三棱锥D 1﹣CDP 的体积:111111326D CDP P CDD V V --==⨯⨯=为定值,故C 正确;对于D ,平面APD 1截正方体所得的截面不可能是直角三角形,故D 错误;故选BC .47.(江苏省苏州中学园区校2020-2021学年高三上学期8月期初调研)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中正确的是( )A .线段11B D 上存在点F ,使得AC AF ⊥ B .//EF 平面ABCD C .AEF 的面积与BEF 的面积相等 D .三棱锥A BEF -的体积为定值【答案】BD【解析】如图,以C 为坐标原点建系CD ,CB ,1CC 为x ,y ,z 轴,()1,1,0A ,()0,0,0C ,()1,1,0AC =--,1B F B λ=11D ,即()()0,1,11,1,0x y z λ---=-,∴x λ=,1y λ=-,1z =,∴(),1,1F λλ-,()1,,1AF λλ=--,()()11010AC AF λλ⋅=--++=≠, ∴AC 与AF 不垂直,A 错误.E ,F 都在B ,D 上,又11//BD B D ,∴//EF BD ,BD ⊂平面ABCD ,EF ⊄平面ABCD ,∴//EF 平面ABCD ,B 正确AB 与EF 不平行,则1A B 与EF 的距离相等,∴AEF BEF S S ≠△△,∴C 错误A 到BEF 的距离就是A 到平面11BDDB 的距离,A 到11BDD B 的距离为22AC =1111224BEF S =⨯⨯=△,∴1134224A BEF V -=⨯⨯=是定值,D 正确.故选BD .48.(江苏省扬州市宝应中学2020-2021学年高三上学期开学测试)在正三棱柱ABC A B C '''-中,所有棱长为1,又BC '与B C '交于点O ,则( )A .AO =111222AB AC AA '++ B .AO B C '⊥C .三棱锥A BB O '-D .AO 与平面BB ′C ′C 所成的角为π6【答案】AC【解析】由题意,画出正三棱柱ABC A B C '''-如图所示,向量()()111222AO AB BO AB BC BB AB AC AB AA ''=+=++=+-+ 111222AB AC AA '=++,故选项A 正确;在AOC △中,1AC =,22OC,1OA ==, 222OA OC AC +≠,所以AO 和B C '不垂直,故选项B 错误;在三棱锥A BB O '-中,14BB O S '=,点A 到平面BB O '的距离即ABC 中BC 边上的高,所以h =以111334A BB O BB O V S h ''-==⨯=C 正确; 设BC 中点为D ,所以AD BC ⊥,又三棱柱是正三棱柱,所以AD ⊥平面BB C C '',所以AOD ∠即AO 与平面BB ′C ′C 所成的角,112cos 12OD AOD OA ∠===,所以3AOD π∠=,故选项D 错误.故选AC49.(山东省泰安肥城市2020届高三适应性训练(一))如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为ABCD 为矩形,CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC所成角的余弦值为3C .三棱锥B ACQ -的体积为D .四棱锥Q ABCD -外接球的内接正四面体的表面积为【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD ,因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD 的中点,所以Q ,平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅==⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==(1,2,3)n =--,设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===,所以22cos 3θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V S OP --==⋅ 1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以22222222a a ⎛⎫⎛++-=++ ⎪ ⎪ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以2236⎫=⎪⎪⎝⎭,得224x =,所以正四面体的表面积为244x ⨯=,所以D 正确.故选BD.50.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【解析】对于A ,1233AD AC AB =+,32AD AC AB ∴=+, 22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=,即111333PQ PA PB PC ∴=++,故B 正确;对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+==2MN ∴=D 错误.故选ABC.三、填空题51.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =_________.。
广西桂林市2018-2019学年高二数学下学期期末考试试卷文(含解析)

2018-2019学年广西桂林市高二(下)期末考试数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项项是符合最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。
题目要求的中,有且只有一个选项是符合题目要求的)1.已知f(x)=x2+2x,则f′(0)=()A.0 B.﹣4 C.﹣2 D.22.复数z=﹣3+2i的实部为()A.2i B.2 C.3 D.﹣33.“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”以上推理的大前提是()A.矩形都是四边形B.四边形的对角线都相等C.矩形都是对角线相等的四边形D.对角线都相等的四边形是矩形4.函数y=e x﹣x在x=0处的切线的斜率为()A.0 B.1 C.2 D.e5.把平面内两条直线的四种位置关系:①平行;②垂直;③相交;④斜交.分别填入图中的M,N,E,F中,顺序较为恰当的是()A.①②③④ B.①④②③ C.①③②④ D.②①④③6.已知变量x与y负相关,且由观测数据算得样本平均数=3,=2.7,则由该观测数据算得的线性回归方程可能是()A.y=﹣0.2x+3.3 B.y=0.4x+1.5 C.y=2x﹣3.2 D.y=﹣2x+8.67.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根据上述规律,13+23+33+43+53+63=()A.192B.202C.212D.2228.用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设()A.x>0或y>0 B.x>0且y>0 C.xy>0 D.x+y<09.如图程序框图输出的结果为()A.52 B.55 C.63 D.6510.已知i是虚数单位,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若函数y=x3﹣x2+a在[﹣1,1]上有最大值3,则该函数在[﹣1,1]上的最小值是()A.﹣ B.0 C.D.112.设函数f′(x)是偶函数f(x)的导函数,当x≠0时,恒有xf′(x)>0,记a=f(log0.53),b=f(log25),c=f(log32),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<b<a D.c<a<b二、填空题(共4小题,每小题5分,满分20分)13.曲线y=x3﹣2x+1在点(1,0)处的切线方程为.14.已知复数z满足=2﹣i,则z= .15.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= .16.已知函数f(x)=lnx+ax2﹣2x存在单调递减区间,则实数a的取值范围为.三、解答题(共6小题,满分70分.解答应给出文字说明、证明过程及演算步骤)17.(10分)用分析法证明:已知a>b>0,求证﹣<.18.(12分)医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将列联表补充完整;患三高疾病不患三高疾病合计男 6 30女合计 36②能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?下列的临界值表供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 (参考公式:K2=.19.(12分)已知函数处都取得极值.(1)求a,b的值;(2)求f(x)的单调区间.20.(12分)某市春节7家超市的广告费支出x(万元)和销售额y(万元)数据如下,超市 A B C D E F G1 2 4 6 11 13 19 广告费支出x销售额y 19 32 40 44 52 53 54(1)请根据上表提供的数据.用最小二乘法求出y关于x的线性回归方程;y=x+(2)用二次函数回归模型拟合y与x的关系,可得回归方程:y=﹣0.17x2+5x+20.经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适.并用此模型预测A超市广告费支出为3万元时的销售额,参考数据及公式:=8,=42.x i y i=2794,x=708,==,=﹣x.21.(12分)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=+10(x﹣6)2,其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.22.(12分)已知函数f(x)=ax﹣lnx,F(x)=e x+ax,其中x>0.(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;(2)设函数h(x)=x2﹣f(x)有两个极值点x1、x2,且x1∈(0,),求证:h(x1)﹣h(x2)>﹣ln2.2016-2017学年广西桂林市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项项是符合题目要求的中,有且只有一个选项是符合题目要求的)1.)已知f(x)=x2+2x,则f′(0)=()A.0 B.﹣4 C.﹣2 D.2【考点】63:导数的运算.【专题】52 :导数的概念及应用.【分析】先计算函数f(x)的导数,再将x=0代入即可.【解答】解:∵f(x)=x2+2x,∴f′(x)=2x+2,∴f′(0)=2×0+2=2.故选D.【点评】本题考查导数求值,正确求导是计算的关键.2.)复数z=﹣3+2i的实部为()A.2i B.2 C.3 D.﹣3【考点】A2:复数的基本概念.【专题】35 :转化思想;4A :数学模型法;5N :数系的扩充和复数.【分析】直接由复数z求出实部得答案.【解答】解:复数z=﹣3+2i的实部为:﹣3.故选:D.【点评】本题考查了复数的基本概念,是基础题.3.)“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”以上推理的大前提是()A.矩形都是四边形B.四边形的对角线都相等C.矩形都是对角线相等的四边形D.对角线都相等的四边形是矩形【考点】F5:演绎推理的意义.【专题】11 :计算题;5M :推理和证明.【分析】用三段论形式推导一个结论成立,大前提应该是结论成立的依据,由四边形ABCD 为矩形,得到四边形ABCD的对角线互相相等的结论,得到大前提.【解答】解:用三段论形式推导一个结论成立,大前提应该是结论成立的依据,∵由四边形ABCD是矩形,所以四边形ABCD的对角线相等的结论,∴大前提一定是矩形都是对角线相等的四边形,故选C.【点评】本题考查用三段论形式推导一个命题成立,要求我们填写大前提,这是常见的一种考查形式,三段论中所包含的三部分,每一部分都可以作为考查的内容.4.)函数y=e x﹣x在x=0处的切线的斜率为()A.0 B.1 C.2 D.e【考点】6H:利用导数研究曲线上某点切线方程.【专题】35 :转化思想;48 :分析法;52 :导数的概念及应用.【分析】求出函数的导数,由导数的几何意义,将x=0代入计算即可得到所求值.【解答】解:函数y=e x﹣x的导数为y′=e x﹣1,由导数的几何意义,可得:在x=0处的切线的斜率为e0﹣1=1﹣1=0.故选:A.【点评】本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确求导是解题的关键.5.)把平面内两条直线的四种位置关系:①平行;②垂直;③相交;④斜交.分别填入图中的M,N,E,F中,顺序较为恰当的是()A.①②③④ B.①④②③ C.①③②④ D.②①④③【考点】LO:空间中直线与直线之间的位置关系.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5B :直线与圆.【分析】利用两直线的位置关系直接求解.【解答】解:如图,平面内两直线的位置关系可表示为:∴平面内两条直线的四种位置关系:①平行;②垂直;③相交;④斜交.分别填入图中的M,N,E,F中,顺序较为恰当的是①③②④.故选:C.【点评】本题考查命题真假的判断,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.6.)已知变量x与y负相关,且由观测数据算得样本平均数=3,=2.7,则由该观测数据算得的线性回归方程可能是()A.=﹣0.2x+3.3 B.=0.4x+1.5 C.=2x﹣3.2 D.=﹣2x+8.6【考点】BK:线性回归方程.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】利用变量x与y负相关,排除选项,然后利用回归直线方程经过样本中心验证即可.【解答】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3,=2.7,代入A成立,代入D不成立.故选:A.【点评】本题考查回归直线方程的求法,回归直线方程的特征,基本知识的考查.7.(2013•青羊区校级模拟)观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根据上述规律,13+23+33+43+53+63=()A.192B.202C.212D.222【考点】F1:归纳推理;8M:等差数列与等比数列的综合.【专题】11 :计算题.【分析】解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个等式左边为立方和,右边为平方的形式,且左边的底数在增加,右边的底数也在增加.从中找规律性即可.【解答】解:∵所给等式左边的底数依次分别为1,2;1,2,3;1,2,3,4;右边的底数依次分别为3,6,10,(注意:这里3+3=6,6+4=10),∴由底数内在规律可知:第五个等式左边的底数为1,2,3,4,5,6,右边的底数为10+5+6=21.又左边为立方和,右边为平方的形式,故有13+23+33+43+53+63=212.故选C.【点评】本题考查了,所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.属于基础题.8.)用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设()A.x>0或y>0 B.x>0且y>0 C.xy>0 D.x+y<0【考点】FC:反证法.【专题】14 :证明题;35 :转化思想;49 :综合法;5M :推理和证明.【分析】熟记反证法的步骤,直接填空即可.反面有多种情况,需一一否定.【解答】解:用反证法证明“若x+y≤0则x≤0或y≤0”时,应先假设x>0且y>0.故选:B.【点评】此题主要考查了反证法的第一步,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.)如图程序框图输出的结果为()A.52 B.55 C.63 D.65【考点】EF:程序框图.【专题】11 :计算题;27 :图表型;4B :试验法;5K :算法和程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:模拟程序的运行,可得:s=0,i=3执行循环体,s=3,i=4不满足条件i>10,执行循环体,s=7,i=5不满足条件i>10,执行循环体,s=12,i=6不满足条件i>10,执行循环体,s=18,i=7不满足条件i>10,执行循环体,s=25,i=8不满足条件i>10,执行循环体,s=33,i=9不满足条件i>10,执行循环体,s=42,i=10不满足条件i>10,执行循环体,s=52,i=11满足条件i>10,退出循环,输出s的值为52.故选:A.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答,属于基础题.10.(2013•新余二模)已知i是虚数单位,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【专题】11 :计算题.【分析】利用运算法则展开:(1+i)3=1+3i+3i2+i3=1+3i﹣3﹣i=﹣2+2i,进而得出此复数所对应的点.【解答】解:∵(1+i)3=1+3i+3i2+i3=1+3i﹣3﹣i=﹣2+2i,∴==,对应的点为,位于第二象限.故选B.【点评】本题考查了复数的运算法则和几何意义,属于基础题.11.)若函数y=x3﹣x2+a在[﹣1,1]上有最大值3,则该函数在[﹣1,1]上的最小值是()A.﹣ B.0 C.D.1【考点】6E:利用导数求闭区间上函数的最值.【专题】53 :导数的综合应用.【分析】求函数的导数,利用函数的最大值求出a的值即可得到结论.【解答】解:函数的导数f′(x)=3x2﹣3x=3x(x﹣1),由f′(x)>0得x>1或x<0,此时函数递增,由f′(x)<0得0<x<1,此时函数递减,故x=0时,函数f(x)取得极大值,同时也是在[﹣1,1]上的最大值,即f(0)=a=3,f(1)=1﹣+3=.f(﹣1)=﹣1﹣+3=,∴f(﹣1)<f(1),即函数在[﹣1,1]上的最小值是,故选:C.【点评】本题主要考查函数在闭区间上的最值问题,根据导数先求出a的值是解决本题的关键.12.)设函数f′(x)是偶函数f(x)的导函数,当x≠0时,恒有xf′(x)>0,记a=f (log0.53),b=f(log25),c=f(log32),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【考点】63:导数的运算.【专题】11 :计算题;33 :函数思想;4O:定义法;52 :导数的概念及应用.【分析】当x≠0时,有x f′(x)>0,可得x>0时,f′(x)>0,函数f(x)在(0,+∞)单调递增.又函数f(x)为R上的偶函数,可得a=f(log0.53)=f(log23),利用对数函数的单调性及其f(x)的单调性即可得出.【解答】解:∵当x≠0时,有xf′(x)>0,∴x>0时,f′(x)>0,函数f(x)在(0,+∞)单调递增.又函数f(x)为R上的偶函数,∴a=f(log0.53)=f(log23),∵0<log32<log23<log25,∴f(log32)<f(log23)<f(log25),∴c<a<b.故选:D.【点评】本题考查了利用导数研究函数的单调性、函数的奇偶性与单调性的应用,考查了推理能力与计算能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.)曲线y=x3﹣2x+1在点(1,0)处的切线方程为x﹣y﹣1=0 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】52 :导数的概念及应用.【分析】求出函数的导函数,取x=1得到函数在x=1处的导数,直接代入直线方程的点斜式得答案.【解答】解:由y=x3﹣2x+1,得y′=3x2﹣2.∴y′|x=1=1.∴曲线y=x3﹣2x+1在点(1,0)处的切线方程为y﹣0=1×(x﹣1).即x﹣y﹣1=0.故答案为:x﹣y﹣1=0.【点评】本题考查了利用导数研究曲线上某点处的切线方程,关键是区分给出的点是不是切点,是中档题也是易错题.14.)已知复数z满足=2﹣i,则z= 3+i .【考点】A5:复数代数形式的乘除运算.【专题】11 :计算题;34 :方程思想;4O:定义法;5N :数系的扩充和复数.【分析】利用复数的代数形式的乘除运算法则直接求解.【解答】解:∵=2﹣i,∴z=(2﹣i)(1+i)=2﹣i+2i﹣i2=2+i+1=3+i.故答案为:3+i.【点评】本题考查复数的求法,是基础题,解题时要认真审题,注意复数的代数形式的乘除运算法则的合理运用.15.(2011•福建模拟)若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= R(S1+S2+S3+S4).【考点】F3:类比推理;LF:棱柱、棱锥、棱台的体积.【专题】16 :压轴题;29 :规律型.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.故答案为:R(S1+S2+S3+S4).【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).16.)已知函数f(x)=lnx+ax2﹣2x存在单调递减区间,则实数a的取值范围为(﹣∞,1).【考点】6B:利用导数研究函数的单调性.【专题】52 :导数的概念及应用.【分析】利用导数进行理解,即f'(x)<0在(0,+∞)上有解.可得ax2+2x﹣1>0在正数范围内至少有一个解,结合根的判别式列式,不难得到a的取值范围.【解答】解:对函数求导数,得f′(x)=,(x>0)依题意,得f′(x)<0在(0,+∞)上有解.即ax2﹣2x+1<0在x>0时有解.①显然a≤0时,不等式有解,②a>0时,只需a<在x>0有解,即只需a<,令g(x)=,g(x)在(0,1)递增,在(1,+∞)递减,∴g(x)最大值=g(1)=1,∴a<1,综合①②得a<1,故答案为:(﹣∞,1).【点评】本题主要考查函数与导数,以及函数与方程思想,体现了导数值为一种研究函数的工具,能完成单调性的判定和最值的求解方程,同时能结合常用数学思想,来考查同学们灵活运用知识解决问题的能力.三、解答题(共6小题,满分70分.解答应给出文字说明、证明过程及演算步骤)17.(10分))用分析法证明:已知a>b>0,求证﹣<.【考点】R9:反证法与放缩法.【专题】14 :证明题;48 :分析法.【分析】根据题意,将原不等式两边平方,整理,利用分析法即可得证.【解答】证明:∵a>b>0,∴>,∴要证﹣<,只需证()2,即a+b ﹣2<a﹣b,只需证b,即证b<a,显然b<a成立,因此﹣<成立.【点评】本题主要考查了用分析法证明不等式,属于基本知识的考查.18.(12分))医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将列联表补充完整;患三高疾病不患三高疾病合计6 30男24女12 18 30合计 3624 60②能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关?下列的临界值表供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=.【考点】BO:独立性检验的应用.【专题】38 :对应思想;4A :数学模型法;5I :概率与统计.【分析】(1)根据题意,填写列联表即可;(2)根据表中数据,计算观测值K2,对照临界值即可得出结论.【解答】解:(1)根据题意,填写列联表如下;患三高疾病不患三高疾病合计男24 6 30女 1218 30合计 3624 60(2)根据表中数据,计算K2===10>7.879;∴在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关.【点评】本题考查了列联表与独立性检验的应用问题,是基础题.19.(12分))已知函数处都取得极值.(1)求a,b的值;(2)求f(x)的单调区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】33 :函数思想;49 :综合法;52 :导数的概念及应用.【分析】(1)求出函数的导数,得到关于a,b的方程组,解出即可求出a,b的值;(2)解关于导函数的不等式,从而求出函数的单调区间.【解答】解:(1)由已知可得f'(x)=3x 2+2ax+b,由…(3分)可得;…(6分)(2)由(1)知f'(x)=3x2﹣x﹣2=(3x+2)(x﹣1),由.列表如下:x 1 (1,+∞)f'(x)+ 0 ﹣0 +f(x)增极大减极小增所以函数f (x)的递增区间为与(1,+∞),递减区间为;…(12分)【点评】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.20.(12分))某市春节7家超市的广告费支出x(万元)和销售额y(万元)数据如下,超市 A B C D E F G1 2 4 6 11 13 19 广告费支出x销售额y 19 32 40 44 52 53 54 (1)请根据上表提供的数据.用最小二乘法求出y 关于x 的线性回归方程;=x+(2)用二次函数回归模型拟合y 与x的关系,可得回归方程:=﹣0.17x2+5x+20.经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适.并用此模型预测A超市广告费支出为3万元时的销售额,参考数据及公式:=8,=42.x i y i =2794,x=708,==,=﹣x.【考点】BK:线性回归方程.【专题】38 :对应思想;4A :数学模型法;5I :概率与统计.【分析】(1)由题意求出回归系数、,写出线性回归方程;(2)根据线性回归模型的相关指数判断用二次函数回归模型更合适,计算x=3时的值即可.【解答】解:(1)由题意,n=7,=8,=42,x i y i=2794,x=708,∴===1.7,=﹣=42﹣1.7×8=28.4,∴y关于x的线性回归方程是=1.7x+28.4;(2)∵线性回归模型的R2:0.75<0.93,∴用二次函数回归模型拟合更合适,当x=3时,得=﹣0.17×32+5×3+20=33.47,预测A超市广告费支出为3万元时销售额为33.47万元.【点评】本题考查了线性回归方程的应用问题,是基础题.21.(12分))某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=+10(x﹣6)2,其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.【考点】6K:导数在最大值、最小值问题中的应用.【专题】34 :方程思想;48 :分析法;51 :函数的性质及应用;53 :导数的综合应用.【分析】(1)由x=5时,y=11,代入函数的解析式,解关于a的方程,可得a值;(2)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值.【解答】解:(1)因为x=5时,y=11,y=+10(x﹣6)2,其中3<x<6,a为常数.所以+10=11,故a=2;(2)由(1)可知,该商品每日的销售量y=+10(x﹣6)2,所以商场每日销售该商品所获得的利润为f(x)=(x﹣3)[+10(x﹣6)2]=2+10(x﹣3)(x﹣6)2,3<x<6.从而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣6)(x﹣4),于是,当x变化时,f(x)、f′(x)的变化情况如下表:x (3,4) 4 (4,6)f'(x)+ 0 ﹣f(x)单调递增极大值42 单调递减由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.所以,当x=4时,函数f(x)取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【点评】本题考查导数在实际问题中的运用:求最值,求出利润的函数式和正确求导是解题的关键,考查运算能力,属于中档题.22.(12分))已知函数f(x)=ax﹣lnx,F(x)=e x+ax,其中x>0.(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;(2)设函数h(x)=x2﹣f(x)有两个极值点x1、x2,且x1∈(0,),求证:h(x1)﹣h (x2)>﹣ln2.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】33 :函数思想;4R:转化法;53 :导数的综合应用.【分析】(1)求出函数的导数,通过讨论a的范围,结合函数的单调性确定a的范围即可;(2)先求出h(x1)﹣h(x2)=ln2+2lnx1﹣x12+,构造函数,求出函数的导数,得到函数的单调区间,求出函数的最小值,从而证明结论.【解答】(1)解:f′(x)=a﹣=,F′(x)=e x+a,x>0,∵a<0,f′(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上单调递减,当﹣1≤a<0时,F′(x)>0,即F(x)在(0,+∞)上单调递增,不合题意;当a<﹣1时,由F′(x)>0,得x>ln(﹣a),由F′(x)<0,得0<x<ln(﹣a),∴F(x)的单调减区间为(0,ln(﹣a)),单调增区间为(ln(﹣a),+∞).∵f(x)和F(x)在区间(0,ln3)上具有相同的单调性,∴ln(﹣a)≥ln3,解得a≤﹣3,综上,a的取值范围是(﹣∞,﹣3].(2)证明:h(x)=x2﹣ax+lnx,∴h′(x)=,(x>0),x1•x2=,则x2=,h(x1)﹣h(x2)=lnx1+x12﹣ax1﹣lnx2﹣x22+ax2=ln +[x1+x2﹣2(x1+x2)(x1﹣x2)=ln2+2lnx1﹣x12+,令g(x1)=ln2+2lnx1﹣x12+,则g′(x)=﹣2x1﹣=﹣,∵0<x1<,∴g′(x1)<0,∴g(x1)在(0,)上单调递减,∴g(x1)>g(),而g()=﹣ln2,即g(x1)>﹣ln2,∴h(x1)﹣h(x2)>﹣ln2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用,不等式的证明问题,是一道难题.。
2020届高考数学(理)一轮必刷题 专题48 圆的方程(解析版)

考点48 圆的方程1.(广东省2019届高考适应性考试理)若向量a ,b ,c 满足a b ≠,0c ≠,且()()0c a c b -⋅-=,则a b a bc++-的最小值是()AB .C .2D .32【答案】C 【解析】设向量a OA =,b OB =,c OC =,则由()()0c a c b -⋅-=得0AC BC ⋅=,即C 的轨迹为以AB 为直径的圆,圆心为AB 中点M ,半径为1||2AB , 因此11||||||(||)||22c OC OM r OA OB AB =≤+=++ 1111(||)(||)(||)(||)2222OA OB OA OB a b a b =++-=++- 从而2a b a bc++-≥,选 C.2.(河南省重点高中2019届高三4月联合质量检测数学理)设是圆 上的点,直线与双曲线:的一条斜率为负的渐近线平行,若点到直线距离的最大值为8,则()A .9B .C .9或D .9或【答案】C 【解析】 因为双曲线的一条斜率为负的渐近线的斜率为,所以,解得. 圆的圆心坐标是,半径为,因为圆心到直线距离为, 所以点到直线距离的最大值为,解得或.当时,;当时,.综上,或.故选.3.(广西桂林市、崇左市2019届高三下学期二模联考数学理)过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为()A.5 B.4 C.3 D.2【答案】A【解析】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,,连接,,,,可得.当且仅当为右顶点时,取得等号,即最小值5.故选:.4.(福建省龙岩市2019届高三5月月考数学理)已知点A 在圆22(2)1x y -+=上,点B 在抛物线28y x=上,则||AB 的最小值为( ) A .1 B .2 C .3 D .4【答案】A 【解析】由题得圆()2221x y -+=的圆心为(2,0),半径为1. 设抛物线的焦点为F(2,0),刚好是圆()2221x y -+=的圆心, 由题得|AB|≥|BF|-|AF|=|BF|-1, 设点B 的坐标为(x,y),所以|AB|≥x -(-2)-1=x+1,因为x≥0, 所以|AB|≥1,所以|AB|的最小值为1. 故选:A5.(新疆2019届高三第三次诊断性测试数学理)若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆221x y +=的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都有可能【答案】B 【解析】解:因为直线1ax by +=与圆221x y +=有两个公共点,1<,即1<因为点P 1, 所以点P 在圆外,故选B .6.(河南省焦作市2018-2019学年高三年级第三次模拟考试数学理)已知抛物线E :y 2=2px (p >0)的准线为l ,圆C :(x ﹣2p )2+y 2=4,l 与圆C 交于A ,B ,圆C 与E 交于M ,N .若A ,B ,M ,N 为同一个矩形的四个顶点,则E 的方程为( )A .y 2=xB .y 2C .y 2=2xD .y 2=x【答案】C 【解析】 【分析】 如图,圆C :(x ﹣2p )2+y 2=4的圆心C (2p ,0)是抛物线E :y 2=2px (p >0)的焦点, ∵圆C :(x ﹣2p )2+y 2=4的半径为2, ∴|NC|=2,根据抛物线定义可得:|NA|=|NC|=2. ∵A ,B ,M ,N 为同一个矩形的四个顶点, ∴点A ,N 关于直线x =2p 对称,即22N A P x x P +=⨯=,∴32N x p =, ∴|NA|=322p p ⎛⎫-- ⎪⎝⎭=2,∴2p =2,则E 的方程为y 2=2x . 故选:C .7.(闽粤赣三省十校2019届高三下学期联考数学理)过抛物线24y x =的焦点F 的直线交抛物线于A B 、两点,分别过A B 、作准线的垂线,垂足分别为A B ''、两点,以线段A B ''为直径的圆C 过点(2,3)-,则圆C 的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)17x y +++=C .22(1)(2)26x y +++=D .22(1)(2)2x y ++-=【答案】A 【解析】由抛物线方程可知:()1,0F ,准线方程为:1x =-设直线AB 方程为:1x my =+,代入抛物线方程得:2440y my --= 设()11,A x y ,()22,B x y ,则124y y m +=,124y y = 又()11,A y '-,()21,B y '-,C 在圆上 0A C B C ''∴⋅=即()()()()1211330y y -⨯-+--= ()12121030y y y y ⇒-++= 即101240m -+= 12m ⇒=∴圆心坐标为:()1,2m -,即()1,1-=∴圆的方程为:()()22115x y ++-=本题正确选项:A .8.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)Rt ABC ∆中,090ABC ∠=,AB =4BC =,ABD ∆中,0120ADB ∠=,则CD 的取值范围是( ) A.2,2] B.(4,2] C.2,2]+ D.2,2]【答案】C 【解析】由题,以点B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y轴建立直角坐标系;(0,0);(0,4)B A C设点(,)D x y ,因为0120ADB ∠=,所以由题易知点D 可能在直线AB 的上方,也可能在AB 的下方; 当点D 可能在直线AB 的上方;直线BD 的斜率1yk x=;直线AD的斜率2k =由两直线的夹角公式可得:2121tan12011k k k k x-=⇒=+⋅化简整理的22((1)4x y ++=可得点D的轨迹是以点1)M -为圆心,半径2r =的圆,且点D 在AB 的上方,所以是圆在AB 上方的劣弧部分;此时CD的最短距离为:22CM r -== 当当点D 可能在直线AB 的下方;同理可得点D的轨迹方程:22((1)4x y +-=此时点D的轨迹是以点N 为圆心,半径2r =的圆,且点D 在AB 的下方,所以是圆在AB 下方的劣弧部分;此时CD的最大距离为:22CN r +==所以CD的取值范围为2⎡⎤⎣⎦.9.(湖北省黄冈市2019届高三上学期元月调研理)已知圆关于对称,则的值为A .B.1 C.D.0【答案】A【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得.当时,,不合题意,.故选A.10.(北京市朝阳区2018-2019学年度高三期末)在平面直角坐标系xOy中,过A(4,4),B(4,0),C (0,4)三点的圆被x轴截得的弦长为()A.2 B.C.4 D.【答案】C【解析】根据题意,设过三点的圆为圆,其方程为,又由,则由,解得,即圆,令,得,解得,即圆M与轴的交点坐标分别为,所以圆M被轴截得的弦长为4,故选C.11.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考)数学理)已知点,,则以线段为直径的圆的方程为A .B .C .D .【答案】D 【解析】 圆心为的中点,半径为,则以线段为直径的圆的方程为.故选D.12.(四川省南充市2018-2019学年上学期高2019届高三年级第一次高考适应性考试)点,是圆上的不同两点,且点,关于直线对称,则该圆的半径等于A .B .C .1D .3【答案】D 【解析】圆x 2+y 2+kx+2y-4=0的圆心坐标为(,因为点M ,N 在圆x 2+y 2+kx+2y-4=0上,且点M ,N 关于直线l :x-y+1=0对称, 所以直线l :x-y+1=0经过圆心, 所以.所以圆的方程为:x 2+y 2+4x+2y-4=0,圆的半径为:故选:C .13.(2017届四川省成都市石室中学高三二诊模拟考试数学理)在直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存在唯一一点M ,使2M A M O =,则圆心C 的非零横坐标是__________. 【答案】125【解析】圆心在l 上,设(),24C a a -,点(),M x y ,因为2MA MO ==,化简得:()2214x y ++=,所以点(),M x y 在以()0,1D -为圆心,以2为半径的圆上,又点(),M x y 在圆C 上,所以圆C 与圆D 有唯一公共点,即两圆相切,211CD =-=,或者213CD =+=,即251280a a -+=或25120a a -=,解得0a =(舍)或125,故填125. 14.(广东省肇庆市2019届高中毕业班第三次统一检测数学理)已知椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,则过点A ,B 且与直线m :43x =相切的圆的方程为______. 【答案】2211639x y ⎛⎫+-= ⎪⎝⎭. 【解析】解:椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,联立可得:22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 可得,2225848y xy x xy x +--+,解得0x =或43x =,可得(0,1)A -,41(,)33B , 过点A ,B 且与直线m :43x =相切的圆切点为B ,圆的圆心1(0,)3,半径为:43.所求圆的方程为:2211639x y ⎛⎫+-= ⎪⎝⎭.故答案为:2211639x y ⎛⎫+-= ⎪⎝⎭. 15.(宁夏石嘴山市第三中学2019届高三四模考试数学理)点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 【答案】1 【解析】曲线C 可整理为:()22225x y -+= 则曲线C 表示圆心为()2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---设d =d 表示圆上的点到()6,6-的距离则max 515d ==2max 15222t a b ∴=--=,整理得:14a b ++=()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b ++的最小值为1 本题正确结果:116.(贵州省贵阳市2019年高三5月适应性考试二理)圆与曲线相交于,,,四点,为坐标原点,则__________.【答案】.【解析】 ∵圆的圆心为M (-3,2), ∴圆关于M (-3,2)中心对称,又曲线,关于(-3,2)中心对称, ∴圆与曲线的交点关于(-3,2)中心对称,不妨设与,与关于(-3,2)中心对称,则,,∴,故答案为.17.(北京市房山区2019年高考第一次模拟测试数学理)已知点A (-2,0),B (0,2),若点P 在圆(x-3)2+(y+1)2=2上运动,则面积的最小值为______.【答案】4 【解析】∵点A (-2,0),B (0,2),∴AB 的直线方程为=1,即x-y+2=0.圆心C (3,-1)到直线AB 的距离为d=,因为点P 在圆(x-3)2+(y+1)2=2上运动,所以点P到直线AB距离的最小值为:=,且.则ABP面积的最小值为.故答案为:4.18.(湖南省长沙市第一中学2018届高三下学期高考模拟卷三数学理)已知直线过定点,线段是圆的直径,则________.【答案】7.【解析】直线可化为,联立,解得点,∵线段是圆的直径,∴19.(广西桂林市、崇左市2019届高三下学期二模联考数学理)以抛物线:的顶点为圆心的圆交于两点,交的准线于两点.已知,,则等于__________.【答案】.【解析】如图:,,,,,,,,解得:,故答案为:.20.(北京市大兴区2019届高三4月一模数学理)在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q距离的最小值为_________.1 【解析】由题得点P 的直角坐标为(0,1),222222cos 2cos +201)1x y x x y ρθρρθ=∴=∴-=∴-+=,,,(,所以曲线是以点(1,0)为圆心,以1为半径的圆,所以点P 11-=.1.21.(江苏省南京市、盐城市2019届高三第二次模拟考试)在平面直角坐标系xOy 中,已知点()1,0A -,()5,0B .若圆()()22:44M x y m -+-=上存在唯一点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为______.【答案】【解析】根据题意,设P 的坐标为(,)a b ,直线PA 的方程为(1)1by x a =++,其在y 轴上的截距为1b a +, 直线PB 的方程为(5)5b y x a =--,其在y 轴上的截距为55b a --,若点P 满足使得直线PA ,PB 在y 轴上的截距之积为5,则有5()()515b b a a ⨯-=+-, 变形可得22(2)9b a +-=,则点P 在圆22(2)9x y -+=上,若圆22:(4)()4M x y m -+-=上存在唯一点P ,则圆M 与22(2)9x y -+=有且只有一个公共点,即两圆内切或外切,2,则两圆只能外切, 则有2425m +=,解可得:m =故答案为:22.(湖北省十堰市2019届高三年级元月调研考试理)已知圆22:(6)(6)16M x y -+-=,点(8,4)A ,过点A 的动直线与圆M 交于P ,Q 两点,线段PQ 的中点为N ,O 为坐标原点,则OMN ∆面积的最大值为______. 【答案】12 【解析】由题可知MN PQ ⊥,所以点N 在以线段AM 为直径的圆上,OMN ∆的边OM =N 到直线OM 的距离最大时,OMN ∆的面积最大,以线段AM 为直径的圆的圆心为()7,5,直线OM的方程为0x y -=,点()7,5到直线OM=所以N 到直线OM 的距离的最大值为故OMN ∆的面积的最大值为1122⨯=. 故答案为:1223.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考数学理)已知圆与轴相切于点,与轴正半轴交于点,,且,设点是圆上的动点,则的取值范围是__________. 【答案】【解析】由题意,可设圆C 的方程为,则,,所以, 则圆C 的方程为,即,可得,设,则== =,由题意可知,,所以.故答案为:. 24.(江苏省苏州市2018届高三调研测试理)在平面直角坐标系中,已知过点的圆和直线相切,且圆心在直线上,则圆的标准方程为__________. 【答案】【解析】根据题意,设圆C 的圆心为(m ,n ),半径为r ,则圆C 的标准方程为(x ﹣m )2+(y ﹣n )2=r 2,则有, 解可得:m =1,n =﹣2,r,则圆C 的方程为:(x ﹣1)2+(y +2)2=2, 故答案为:(x ﹣1)2+(y +2)2=225.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)已知椭圆1C :2214x y +=的左、右两个顶点分别为,A B ,点P 为椭圆1C 上异于,A B 的一个动点,设直线,PA PB 的斜率分别为12,k k ,若动点Q 与,A B 的连线斜率分别为34,k k ,且3412(0)kk kk λλ=≠,记动点Q的轨迹为曲线2C .(1)当4λ=时,求曲线2C 的方程;(2)已知点1(1,)2M ,直线AM 与BM 分别与曲线2C 交于,E F 两点,设AMF ∆的面积为1S ,BME ∆的面积为2S ,若[1,3]λ∈,求12S S 的取值范围. 【答案】(1) 224(2)x y x +=≠± (2) []5,7【解析】(1)设()00,P x y ()02x ≠±,则220014x y +=,因为()()2,0,2,0A B -,则2020001222000011422444x y y y k k x x x x -=⋅===-+---(),Q x y 设 ()2x ≠±所以2341222244y y y k k k k x x x λλ=⋅===-+--,整理得 2214x y λ+= ()2x ≠±.所以,当4λ=时,曲线2C 的方程为 ()2242x y x +=≠±.(2)设()()1122,,,E x y F x y . 由题意知,直线AM 的方程为:62x y =-,直线BM 的方程为:22x y =-+.由(Ⅰ)知,曲线2C 的方程为2214x y λ+= ()2x ≠±,联立 ()2262244x y x x y λλ=-⎧≠±⎨+=⎩,消去x ,得()29160y y λλ+-=,得 1691y λλ=+ 联立()2222244x y x x y λλ=-+⎧≠±⎨+=⎩,消去x ,得()2120y y λλ+-=,得 221y λλ=+2212111111sin 91222211111sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y λλ∠--+=====+∠-- 设()918911g ,λλλλ+==-++ 则()g λ在[]1,3上递增 又()()15,37g g ==,12S S ∴的取值范围为[]5,7 26.(四川省成都市高新区2019届高三上学期“一诊”模拟考试数学理)已知抛物线,过点的直线与抛物线相切,设第一象限的切点为. (Ⅰ)证明:点在轴上的射影为焦点; (Ⅱ)若过点的直线与抛物线相交于两点,圆是以线段为直径的圆且过点,求直线与圆的方程.【答案】(I )详见解析;(II )详见解析. 【解析】(Ⅰ)由题意知可设过点的直线方程为,由消去整理得,又因为直线与抛物线相切, 所以,解得.当时,直线方程为,可得点坐标为,又因为焦点,所以点在轴上的射影为焦点. (Ⅱ)设直线的方程为,由,其中恒成立.设,,则,所以,.由于圆是以线段为直径的圆过点,则,所以所以,解得或.当时,直线的方程为,圆的方程为;当时,直线的方程为,圆的方程为.27.(江西省抚州市七校2019届高三10月联考数学理)已知圆与直线相切于点,圆心在轴上.(1)求圆的方程;(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积分别是.求的取值范围.【答案】(1);(2).【解析】(1)由题可知,设圆的方程为,,解得,,所以圆的方程为.(2)由题意知,,设直线的斜率为,则直线的方程为,由,得,解得或,则点的坐标为.又直线的斜率为,同理可得点的坐标为.由题可知,,.因此,又,同理,所以,当且仅当时取等号.又,所以的取值范围是.。
2019-2020学年广西桂林市八年级(下)期末数学试卷(含解析)

2019-2020学年广西桂林市八年级(下)期末数学试卷1.在Rt△ABC中,∠A=70∘,那么另一个锐角∠B的度数是( )A. 10∘B. 20∘C. 30∘D. 40∘2.下列图形不是中心对称图形的是( )A. B. C. D.3.下列坐标平面内的点,在第二象限的是( )A. (1,2)B. (−1,−2)C. (−1,2)D. (1,−2)4.某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下列说法正确的是( )A. 出现正面的频率是6B. 出现正面的频率是60%C. 出现正面的频率是4D. 出现正面的频率是40%5.一次函数y=x+1的图象大致是( )A. B.C. D.6.下列四组线段中,能组成直角三角形的是( )A. a=1,b=2,c=3B. a=2,b=3,c=4C. a=2,b=4,c=5D. a=3,b=4,c=57.在Rt△ABC中,∠C=90∘,若D为斜边AB上的中点,AB的长为2,则DC的长为( )A. 4B. 2C. 1D. 0.58.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解是( )A. (−2,0)B. (0,2)C. x=2D. x=−29.一个菱形的两条对角线分别为4和5,则这个菱形的面积是( )A. 8B. 10C. 15D. 2010.一个正多边形,它的每一个外角都是45∘,则该正多边形是( )A. 正六边形B. 正七边形C. 正八边形D. 正九边形11.下列说法错误的是( )A. 对角线互相垂直的平行四边形是矩形B. 矩形的对角线相等C. 对角线相等的菱形是正方形D. 两组对边分别相等的四边形是平行四边形12.匀速地向一个容器注水,最后把容器注满.在注水的过程中,水面高度h随时间t的变化规律如图所示(图中OEFG为一折线),那么这个容器的形状可能是下列图中的( )A. B. C. D.13.在▱ABCD中,若∠A=115∘,则∠C的度数为______ .14.平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为______ .15.若函数y=4x+3−a是正比例函数,则a=______ .16.如图,在△ABC中,AB=5,BC=6,AC=4,D,E,F分别为AB,BC,AC的中点,连接DF,FE,则四边形DBEF的周长为______ .17.一个直角三角形的两条直角边分别为6和10,则斜边的长为______ .18.如图,在平面直角坐标系xOy中,等边△OAB、等边△BA1B1、等边△B1A2B2…的边OB、BB1、B1B2…依次在直线y=√3x上,且它们的边长依次为1、2、3…(逐次增加1),那么A11的坐标是______ .19.如图,点E,F在线段BD上,已知AF⊥BD,CE⊥BD,AD=CB,DE=BF.求证:△AFD≌△CEB.20.如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.21.△ABC在平面直角坐标系xOy中的位置如图所示,△ABC的顶点均在格点上,且点A的坐标是(−2,−2).(1)直接写出点B和点C的坐标;(2)把△ABC向上平移3个单位,再向右移2个单位得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标.22.平面直角坐标系xOy内,一次函数y=2x−2经过点A(−1,m)和B(n,2).(1)求m,n的值;(2)求该直线与x轴的交点坐标.23.为了了解某校八年级男生的跳高成绩情况,随机抽取该年级50名男生进行跳高测试,并把测试成绩绘制成如图所示不完整的频数表和频数直方图(每组含前一个边界值,不含后一个边界值),已知这些男生的跳高成绩都不低于1.09m,但都低于1.49m.跳高测试成绩的频数表组别/m频数1.09∼1.1981.19∼1.29121.29∼1.39a1.39∼1.4910(1)填空:a=______ ;(2)请把频数直方图补充完整;(3)跳高成绩在1.29m(含1.29m)以上的人数占抽查人数的百分比是多少?24.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:四边形BECD是平行四边形;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.25.新华文具店的某种毛笔每支售价25元,书法练习本每本售价5元,该文具店为促销制定了两种优惠办法.甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打9折付款.某学校欲为书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本.(1)请写出用甲种优惠办法实际付款金额元)与x(本)之间的函数关系式;(2)请写出用乙种优惠办法实际付款金额元)与x(本)之间的函数关系式;(3)当购买的书法练习本数量在什么范围时,用甲种方式付款更优惠.26.如图,在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A、C分别在x轴、y轴上,对角线OB、AC相交于点M,点F是边OA上的动点(不与点O、A重合),连接MF,过点M作EM⊥FM交AB于点E,连接EF.(1)直接写出点M的坐标;(2)求证:△EMF是等腰直角三角形;(3)当OF=2时,求直线ME的解析式和△EMF的面积.答案和解析【答案】1. B2. A3. C4. B5. D6. D7. C8. D9. B10. C11. A12. B13. 115∘14. (2,−3)15. 316. 1117. 2√3418. (45,33√3)19. 证明:∵DE=BF,∴DE+EF=BF+EF;∴DF=BE;在Rt△ADF和Rt△CBE中{DF=BEAD=CB,20. 证明:如图,连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线AC上的两点M、N满足AM=CN,∴OA−AM=OC−CN,即OM=ON,∴四边形BMDN是平行四边形.21. 解:(1)B(3,1),C(0,2);(2)如图:点B1的坐标(5,4).22. 解:(1)当x=−1时,y=2×(−1)−2=−4,∴m=−4;当y=2时,2x−2=2,解得:x=2,∴n=2.(2)当y=0时,2x−2=0,解得:x=1,∴该直线与x轴的交点坐标为(1,0).23. 2024. (1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB//CD,又∵AB=BE,∴BE=DC,又∵AE//CD,∴四边形BECD为平行四边形;(2)证明:由(1)知,四边形BECD为平行四边形∴OD=OE,OC=OB,∵四边形ABCD为平行四边形,∴∠A=∠BCD又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.25. 解:(1)甲种优惠办法的函数关系式,依题意得,即;(2)乙种优惠办法的函数关系式,依题意得,即;(3)由题意得:,即5x+200<4.5x+225,x<50,所以当买10≤x<50时,用甲种方式付款更优惠.26. 解:(1)∵正方形OABC的边长为6,故点B的坐标为(6,6),由正方形的性质知,点M 是OB 的中点,故点M 的坐标为(3,3);(2)∵EM ⊥FM ,∴∠EMF =90∘,则∠AME +∠AMF =90∘,而∠AMF +∠OMF =∠AMO =90∘,∴∠AME =∠OMF ,而∠MOF =∠AME =45∘,OM =AM ,∴△OFM ≌△AME(AAS),∴MF =ME ,OF =AE ,而∠EMF =90∘,∴△EMF 是等腰直角三角形;(3)由(2)知AE =OF =2,故点E 的坐标为(6,2),设直线ME 的表达式为y =kx +b ,则{2=6k +b 3=3k +b ,解得{k =−13b =4, 故直线NE 的表达式为y =−13x +4; ∵△EMF 是等腰直角三角形,∴ME =MF ,由点ME 的坐标得:ME 2=(3−6)2+(3−2)2=10,则△EMF 的面积=12×ME ×MF =12ME 2=5. 【解析】1. 解:在Rt △ABC 中,∠A =70∘,则∠B =90∘−∠A =90∘−70∘=20∘,故选:B.根据直角三角形的两锐角互余计算,得到答案.本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键. 2. 解:A 、不是中心对称图形,故本选项符合题意;B 、是中心对称图形,故本选项不合题意;C 、是中心对称图形,故本选项不合题意;D 、是中心对称图形,故本选项不合题意.故选:A.结合选项根据中心对称图形的概念求解即可.本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. 解:由第二象限内点的坐标特点,横坐标为负数,纵坐标为正数,则(−1,2)在第二象限.故选:C.直接利用第二象限内点的坐标特点得出答案.此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.4. 解:∵某人抛硬币抛10次,其中正面朝上6次,反面朝上4次,∴出现正面的频数是6,出现反面的频数是4,出现正面的频率为6÷10=60%;出现反面的频率为4÷10=40%.故选:B.根据频率=频数÷数据总数,分别求出出现正面,反面的频率.本题考查了频率、频数的概念及频率的求法.频数是指每个对象出现的次数.频率5. 解:∵一次函数解析式为y=x+1中,k=1>0,b=1>0,∴图象经过一二三象限.故选:D.根据一次函数图象与系数的关系进行解答.本题考查了一次函数图象.掌握一次函数图象与系数的关系是解题关键.6. 解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.7. 解:∵∠C=90∘,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为2,∴DC=1,故选:C.利用直角三角形斜边的中线的性质可得答案.此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.8. 解:∵从图象可知:一次函数y=kx+b的图象与x轴的交点坐标是(−2,0),∴关于x的方程kx+b=0的解为x=−2,故选:D.根据图象得出一次函数y=kx+b的图象与x轴的交点坐标,即可得出方程的解.此题主要考查了一次函数与一元一次方程的关系,关键是正确利用kx+b=0解答.9. 解:∵菱形的两条对角线的长分别为4和5,×4×5=10;∴这个菱形的面积为12故选:B.根据菱形的面积公式进行计算即可.本题考查了菱形的性质,熟记菱形的面积=菱形的对角线长乘积的一半是解题的关键.10. 解:360÷45=8,所以这个正多边形是正八边形.故选:C.多边形的外角和是360度,因为是正多边形,所以每一个外角都是45∘,即可得到外角的个数,从而确定多边形的边数.本题主要考查了多边形的外角和定理.已知外角求边数的这种方法是需要熟记的内容.正多边形的各个内角相等,各个外角也相等.11. 解:对角线互相垂直的平行四边形是菱形,故选项A错误;矩形的对角线相等,故选项B正确;对角线相等的菱形是正方形,故选项C正确;两组对边分别相等的四边形是平行四边形,故选项D正确;故选:A.根据各个选项中的说法,可以判断是否正确,从而可以解答本题.本题考查正方形的判定、菱形的判定、矩形的性质、平行四边形的判定,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.12. 解:从图中可以看出,OE上升最快,EF上升较慢,FG上升较快,所以容器的底部容积最小,中间容积最大,上面容积较大,故选:B.根据题意先比较OE、EF、FG三段的变化快慢,再比较三个容器容积的大小,即可得出图形,再根据图形从而画出图象.本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.13. 解:∵四边形ABCD是平行四边形,∴∠A=∠C.∵∠A=115∘,∴∠C=115∘.故答案为:115∘.根据平行四边形的对角相等及已知∠A=115∘,可得答案.本题考查了平行四边形的性质,属于基础知识的考查,比较简单.14. 解:点A(2,3)关于x轴的对称点的坐标是(2,−3),故答案为(2,−3).平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,−y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.15. 解:由题意得:3−a=0,解得:a=3,故答案为:3.形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得3−a=0,进而得出a 的值.此题主要考查了正比例函数定义,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.16. 解:∵D,E,F分别为AB,BC,AC的中点,∴DF=12BC=3,EF=12AB=2.5,BD=12AB=2.5,BE=12BC=3,∴四边形DBEF的周长=DB+BE+EF+DF=11,故答案为:11.根据三角形中位线定理分别求出DF、EF,根据线段中点的定义分别求出BD、BE,根据四边形的周长公式计算,得到答案.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17. 解:∵一个直角三角形的两条直角边分别为6和10,∴斜边的长为√62+102=2√34.故答案为:2√34.直接利用勾股定理求出斜边的长即可.此题主要考查了勾股定理,正确应用勾股定理是解题关键.18. 解:∵等边△OAB、等边△BA1B1、等边△B1A2B2…的边OB、BB1、B1B2…依次在直线y=√3x上,∴BA1//B1A2//…//x轴.∵等边△OAB的边长为1,∴点A的坐标为(1,0),点B的坐标为(12,√3 2).∵BA1=2,∴点A1的坐标为(52,√3 2).又∵△BA1B1为边长为2的等边三角形,∴点B1的坐标为(32,3√3 2).∵B1A2=3,∴点A2的坐标为(92,3√3 2).又∵△B1A2B2为边长为3的等边三角形,∴点B2的坐标为(3,3√3).∵B2A3=4,∴点A3的坐标为(7,3√3).设点B n的横坐标为x n(n为非负整数),则x n=12×(1+2+…+n+n+1)=(n+1)(n+2)4,∴点B10的横坐标为(10+1)(10+2)4=33,∴点B10的坐标为(33,33√3),又∵B10A11=12,∴点A11的坐标为(45,33√3).故答案为:(45,33√3).利用等边三角形的边长及性质可得出点B,B1,B2的坐标,设点B n的横坐标为x n,根据,代入n=10可求出点B10的横坐标,利用一次点的横坐标的变化可找出x n=(n+1)(n+2)4函数图象上点的坐标特征可得出点B10的坐标,再结合B10A11=12及B10A11//x轴,即可得出点A11的坐标.本题考查了规律型:点的坐标、等边三角形的性质以及一次函数图象上点的坐标特征,”是解题的关键.根据点的坐标的变化,找出变化规律“点B n的横坐标为(n+1)(n+2)419. 本题考查了直角三角形全等的判定;由DE=BF通过等量加等量和相等得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.易得DF=BE,再根据直角三角形的全等判定定理证明即可.20. 连接BD,交AC于点O,由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON,即可证明四边形BMDN是平行四边形本题考查了平行四边形的判定与性质,正确的添加辅助线是解题的关键.21. (1)利用坐标系可得答案;(2)确定A、C、B两点平移后的位置,再连接即可.此题主要考查了作图--平移变换,关键是正确确定组成图形的关键点平移后的位置.22. (1)代入x=−1求出与之对应的y值,进而可得出m的值;代入y=2求出与之对应的x值,进而可得出n的值;(2)代入y=0求出与之对应的x值,进而可得出该直线与x轴的交点坐标.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.23. 解:(1)a=50−8−12−10=20,故答案为:20;(2)由(1)知,a=20,补全的频数分布直方图如右图所示;×100%=60%,(3)20+1050即跳高成绩在1.29m(含1.29m)以上的人数占抽查人数的百分比是60%.(1)根据题意和频数分布表中的数据,可以计算出a的值;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以计算出跳高成绩在1.29m(含1.29m)以上的人数占抽查人数的百分比.本题考查频数分布表、频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.24. (1)证出BE=DC,根据平行四边形的判定与性质得到四边形BECD为平行四边形;(2)欲证明四边形BECD是矩形,只需推知BC=ED即可.题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.25. 元)=10支毛笔的总钱数+超过10本练习本的总钱数;元)=(毛笔的总钱数+练习本的总钱数)×0.9;(3)求出y甲<y乙时x的值即可.本题考查一次函数的应用;得到两种购买方案的关系式是解决本题的关键.26. (1)由正方形的性质知,点M是OB的中点,即可求解;(2)证明△OFM≌△AME(AAS),即可求解;(3)由(2)知AE=OF=2,故点E的坐标为(6,2),进而求解.本题是一次函数综合题,主要考查了一次函数的性质、正方形的性质、三角形全等、面积的计算等,有一定的综合性,难度适中.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桂林市2019~2020学年度下学期期末质量检测高二年级 数学(理科) (考试时间120分钟,满分150分)说明:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分2.请在答题卷上答题(在本试卷上答题无效).第Ⅰ卷 选择题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个选项是符合题目要求的.1.23A =( )A.3B.6C.9D.122.(1)i i +=( ) A.1i -+B.1i --C.1i +D.1i -3.函数()ln f x x =的导数是( ) A.x B.1xC.ln xD.x e4.212xdx =⎰( )A.3B.2C.1D.325.5(12)x +的展开式中的常数项为( ) A.-1B.1C.92D.936.用反证法证明命题“在ABC △中,若A B ∠>∠,则a b >”时,应假设( ) A.a b <B.a b ≤C.a b >D.a b ≥7.关于函数3()f x x x =+,下列说法正确的是( ) A.没有最小值,有最大值 B.有最小值,没有最大值 C.有最小值,有最大值D.没有最小值,也没有最大值8.已知随机变量X 的分布列是( )则a b +=( ) A.23B.32C.1D.349.已知随机变量ξ服从正态分布()23,N σ,且(4)0.68P ξ≤=,则(2)P ξ≤=( ) A.0.84B.0.68C.0.32D.0.1610.在正方体1111ABCD A B C D -中,E 是1C C 的中点,则直线BE 与平面1B BD 所成的角的正弦值为( )A. C. 11.根据上级扶贫工作要求,某单位计划从5名男干部和6名女干部中选出1名男干部和2名女干部组成一个扶贫小组,派到某村开展“精准扶贫”工作,那么不同的选法有( ) A.60种B.70种C.75种D.150种12.已知定义在R 上的函数()y f x =与其导函数()f x '满足()()f x f x '>,且()02f =,则不等式()2x f x e <的解集为( )A.(,0)-∞B.(,2)-∞C.(2,)+∞D.(0,)+∞第Ⅱ卷 非选择题二、填空题:本大题共4小题,每小题5分,共20分. 13.已知i 是虚数单位,复数2z i =+,则||z =__________. 14.已知1()2P B A =∣,3()10P AB =,则()P A =__________. 15.经过圆221x y +=上一点()00,x y 的切线方程为001x x y y +=,则由此类比可知:经过椭圆22221(0)x y a b a b+=>>上一点()00,x y 的切线方程为__________. 16.函数()cos f x x x =-在区间[0,]π上的最大值为__________.三、解答题:本大题共6小题,共70分解答应给出文字说眀、证明过程及演算步骤. 17.(本小题满分10分)在91x x ⎛⎫- ⎪⎝⎭展开式中,求:(1)含x 的项; (2)含3x 的项的系数.已知函数1()ln 2f x x x ax =++在(1, (1))f 处的切线方程为2210x y --=. (1)求实数a 的值; (2)求()f x 的单调区间. 19.(本小题满分12分)在数列{}n a 中,已知11a =,112nn na a a +=+.(1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 20.(本小题满分12分)在四棱锥P ABCD -中,已知底面ABCD 为正方形,PA ⊥底面ABCD ,且2PA AD ==,E 为PD 中点.(1)求证:PB ∥平面ACE ; (2)求二面角A BE C --的余弦值. 21.(本小题满分12分)某商店欲购进保质期为两天的某种食品,且每两天购进该食品一次(购进时该食品为刚生产).根据市场调查,该食品每份进价8元,售价12元.如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响.为了了解市场的需求情况,经统计该产品在本地区100天的销售量如下表:若以样本频率为概率,解决以下问题:(1)根据该产品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布与期望; (2)以两天内该产品所获得的利润期望为决策依据,该商店一次性购进32或33份,哪一种得到的利润更大?已知函数()ln 2()f x m x x m =-∈R .(1)当6m =时,试确定()f x 的零点的个数;(2)若不等式(1)2xf x mx e +>-对任意,()0x ∈+∞恒成立,求m 的取值范围.桂林市2019~2020学年度下学期期末质量检测高二年级理科数学参考答案及评分标准一、选择题:二、填空题:14.35 15.00221x x y y a b+= 16.1π+ 三、解答题:17.(本小题满分10分) 解:(1)9921991(1)rrrr r rr T C xC x x --+⎛⎫=-=- ⎪⎝⎭, 令921r -=,得4r =.所以含x 的项为449(1)126C x x -=.(2)由(1),令923r -=,得3r =.所以含3x 的项的系数为339(1)84C -=-.18.(本小题满分12分) 解:(1)()ln 1f x x a '=++, 据题知,(1)1f '=, ∴11a +=,解之得0a =.(2)由(1)可得:()1ln f x x '=+,当10,x e⎛⎤∈ ⎥⎝⎦时,()0f x '≤ ,∴()f x 单调递减当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '> ,∴()f x 单调递增∴()f x 的单调减区间为10,e ⎛⎫ ⎪⎝⎭,()f x 的单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭. 19.(本小题满分12分) 解:(1)∵111,(1,2,3,)12n n a a a n a+===⋅⋅⋅+.∴1211123a a a ==+, 同理可得:315a =,417a =. (2)由(1)计算结果猜想121n a n =-. 下面用数学归纳法证明: ①当1n =时,111211a ==⨯-,猜想成立,②假设当()*1n k k N =+∈时,猜想成立,即:121k a k =-. 则当()*1n k k N =+∈时,111121212212(1)1121k k k a k a a k k k +-====+++-+-, 所以,当1n k =+时,猜想成立. 根据①②可知猜想对任何*n N ∈都成立. 20.(本小题满分12分)解:(1)证明:连接AC 、BD ,ACBD O = ,连接EO∵在BPD △中,BO OD =,PE ED =, ∴OE BP ∥,又∵BP 平面ACE ,OE ⊂平面ACE , ∴BP ∥平面ACE .(2)据题易知PA ,AD ,AB 两两互相垂直, 故可建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(2,2,0)C ,(0,1,1)E ,(2,0,0)B ,设(,,)m x y z =为平面ABE 的一个法向量, 又(0,1,1)AE =,(2,0,0)AB =,∴020y z x +=⎧⎨=⎩,令1y =-,1z =,得(0,1,1)m =-. 同理(1,0,2)n =是平面BCE 的一个法向量,则cos ,||2m n m n m n ⋅〈〉===‖∴二面角A BE C --的余弦值为. 21.(本小题满分12分)解:(1)根据题意可得30,31,32,33,34,35,36ξ=,则111(30)5525P ξ==⨯=,133(31)251025P ξ==⨯⨯=, 12331(32)25510104P ξ==⨯⨯+⨯=,11327(33)2251010525P ξ==⨯⨯+⨯⨯=, 312211(34)210105550P ξ==⨯⨯+⨯=,212(35)251025P ξ==⨯⨯=, 111(36)1010100P ξ==⨯=, 故ξ得分布列如下:()3031323334353632.825254255025100E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯=.(2)当购进32份时,利润为2131324(3148)(30416)252525⨯⨯+⨯-⨯+⨯-⨯ =107.52+13.92+4.16=125.6,当购进33份,利润为59131334(3248)(31416)(30424)10042525⨯⨯+⨯-⨯+⨯-⨯+⨯-⨯ =77.88+30+12.96+3.84=124.68, 125.6>124.68故,当购进32份时,利润更高. 22.(本小题满分12分)(1)当6m =时,知()6ln 2(0)f x x x x =->,则62(3)()2x f x x x-'=-=, ∵当03x <<时,()0f x '>;当3x >,则62(3)()2x f x x x-'=-=,∴()f x 在区间()0,3是单调递增,在区间(3,)+∞单调递减. ∴max ()(3)6ln 360f x f ==->. 又∵1260f e e ⎛⎫=--< ⎪⎝⎭,()221220f e e =-<. ∵()f x 在区间1,3e⎛⎫ ⎪⎝⎭,在区间()23,e 各有1个零点. 综上,函数()f x 零点的个数为2.(2)函数()ln 2f x m x x =-,若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立, 即为ln(1)2(1)2xm x x mx e +-+>-对任意(0,)x ∈+∞恒成立 即有()(ln(1))21x m x x x e +->+-对任意(0,)x ∈+∞恒成立, 设ln(1)y x x =+-,1111xy x x -'=-=++,0x >时,0y '<,函数y 递减, 可得ln(1)0y x x =+-<,则()21ln(1)x x e m x x+-<+-对任意(0,)x ∈+∞恒成立.由()211ln(1)22ln(1)ln(1)x x x e x e x xx x x x+-+--++-=⋅+-+-,设()1ln(1)(0)xg x x e x x x =+--++>,1()21x g x e x '=--+,21()(1)x g x e x ''=-+, 由()y g x ''=在0x >递减,即有()0g x ''<,可得()y g x '=在0x >递减, 即有()0g x '<,可得()g x 在0x >递减,可得()0g x <,而ln(1)0x x +-<,可得1ln(1)20ln(1)x x e x xx x+--++⋅>+-. 则由()212ln(1)x x e x x+->+-,有2m ≤.即m 的范围是(,2]-∞.。