数学历史故事之中国数学发展大事件

合集下载

中国数学发展简史

中国数学发展简史

中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。

到原始公社末期,就已开始用文字符号取代结绳记事了。

(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。

《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。

这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。

秦汉是封建社会的上升时期,经济和文化均得到迅速发展。

中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。

《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。

例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。

就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。

(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。

吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。

古今数学发展史

古今数学发展史

古今数学发展史我们从小学就开始学习数学,我们现在接触数学已经12年了,到了高考完填志愿我们还是选择了与数学打交道,算起来我们与数学的缘分颇深,那么你对数学的了解又有多少呢?数学又是怎样发展过来的呢?约公元前4000年,中国西安半坡的陶器上出现数字刻符。

公元前3000~前1700年,巴比伦的泥版上出现数学记载。

公元前2700年,中国黄帝时代传说隶首做算数之说,大挠发明了甲子。

公元前2500年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。

这相当于在已有“圆,方、平、直”等形的概念。

公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。

美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。

公元前2500年前,据中国战国时尸佼著《尸子》记载:“古者,陲(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”。

这相当于在已有“圆,方、平、直”等形的概念。

公元前2100年,中国夏朝出现象征吉祥的河图洛书纵横图,即为“九宫算”,这被认为是现代“组合数学”最古老的发现。

最早的数学知识可以追溯到古代埃及和美索不达米亚(现今伊拉克地区)。

这些文明的人民使用数学来解决土地测量、建筑和贸易等实际问题。

古代埃及人发展了一套用于计数和计量的系统,而美索不达米亚人则使用了一套基于60进制的计数系统,我们现在仍在钟面上使用这个系统。

中世纪欧洲的数学主要受到阿拉伯数学的影响。

阿拉伯学者在代数学、三角学和算术方面有重要发展,他们还引入了十进制的数字系统和算术符号,这对现代数学的发展起到了关键作用。

在欧洲,数学家斯内尔发明了现代代数学中的符号表示法,他的著作《代数的演绎术》对代数学有深远影响。

当代数学仍在不断发展中,涌现出了许多新的领域、理论和应用。

随着技术的进步,数学在解决现实世界的问题以及推动科学和技术的发展中扮演着越来越重要的角色。

中国数学历史发展

中国数学历史发展
623年
《缉古算经》中有世界上最早的一元三次方程的数值解法
656年
李淳风等注释十部算经,后通称“算经十书”
724年
一行发起与组织大规模天文测量活动,实测出地球子午线一度的长
727年
一行编成大衍历,使用等间距和不等间距二次内插法
1000-1019年
刘益著《议古根源》,提出“正负开方术”
1050年
贾宪著《算法古集》、《黄帝九章算法细草》,提出多种开方法
《考工记》记载了分数的简单运算法及一些特殊角度的概念和名称
约公元前100年
《九章算术》经历代增补修订基本定形,包含比例计算、线性方程组解法等
约公元前100年
《周髀算经》成书,记载勾股定理未及证明、利用相似勾股形性质测日径等
220-265年
赵爽注《周髀算经》,论证了勾股形三边关系的命题及定理
263年
刘徽用割圆术计算圆周率,提出解决球体积的方法等
1350年
珠算开始广泛地流行起来,并逐渐代替了筹算
1400年
珠算在中国普及
1607年
徐光启与意大利利玛窦合译《欧几里得几何原本》前六卷
1247年
秦九韶著《数书九章》,给出一次同余式组的正确解法等
1248年
李冶的数学著作《测圆海镜》系统论述天元术
1261年
李冶完成另一数学著作《益古演段》
1275年
杨辉编《详解九章算法》,选取ห้องสมุดไป่ตู้九章算术》80题进行详解
1280年
王恂与郭守敬合编《授时历》,广泛地使用三次内插法
1303年
朱世杰著《四元玉鉴》,系统介绍四元术、垛积术与四次内插法等
约公元前1100年
殷商时代甲骨文卜辞中已有十进制数字的记录

数学大国——中国数学发展轨迹

数学大国——中国数学发展轨迹

追寻数学大国的历史脉络李文林有位著名的数学家说过,“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家都有着深远的影响”。

对于数学史有着深厚研究的中国科学院数学与系统科学研究院研究员李文林认为,数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。

因而,数学史是人类文明史最重要的组成部分。

近年来,李文林研究员执著地在中国数学史领域求索,曾发表过大量关于数学史的研究论文。

他专门为大学学生撰写的《数学史教程》,被广泛地应用于大学数学史学科的教学。

他是上一届中国数学会数学史分会的秘书长。

不久前,李文林研究员还参与了一项重要的研究工作。

中国首届国家最高科学技术奖获得者、著名数学家吴文俊先生设立了“数学与天文丝路基金”,用于资助年轻学者研究古代中国与世界进行数学交流的历史,揭示部分东方数学成果如何从中国经“丝绸之路”传往欧洲之谜。

该研究旨在纠正世界科技界对中国数学认识上存在的偏颇,通过对中国古代数学遗产的进一步发掘,探明近代科学的源流,鼓舞中国人在数学研究上的自信心和发愤图强的勇气。

李文林作为该学术委员会组长参与了很多工作。

日前,本报记者采访了李文林研究员。

李文林把中国数学史称为波澜壮阔的中华文明史中最亮丽的篇章。

在李文林的娓娓叙述中,中国数学对于世界的卓越贡献,如盛开着的中国文明之花,一朵朵展现开来。

古代数学领跑世界中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就。

中国数学的起源与早期发展,在古代著作《世本》中就已提到黄帝使“隶首作算数”,但这只是传说。

在殷商甲骨文记录中,中国已经使用完整的十进制记数。

至迟到春秋战国时代,又开始出现严格的十进位制筹算记数。

筹算作为中国古代的计算工具,是中国古代数学对人类文明的特殊贡献。

关于几何学,《史记》“夏本纪”记载说:夏禹治水,“左规矩,右准绳”。

中国数学发展简史

中国数学发展简史

中国数学发展简史翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。

中国数学的起源(上古~西汉末期)古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。

的确,一个没有数的世界是不堪设想的。

今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。

在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。

如果当时要有人能数到10,那一定会被认为是杰出的天才了。

后来人们慢慢地会把数字和双手联系在一起了。

每只手各拿一件东西,就是2数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。

先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。

就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。

到了战国时期,祖先们的数学知识已远远超出了会数1~3000的水平。

这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。

算术领域,四则运算在这一时期内得到了确立,乘法中诀已经各种著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。

几何领域,出现了勾股定理。

代数领域,出现了负数概念的萌芽。

当历史推进到秦汉时期,我们发现,这一时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。

在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。

(2)中国数学的发展繁荣时期(西汉末期~隋朝中叶)(3)这是中国数学理论的第一个高峰期。

这个高峰的标志就是数学专著《九章算术》的诞生。

这本书的诞生,不仅说明我国古代完整的数学体系已经形成,而且在世界上,当时也很难找到另一本能同媲美的数学专著。

在这一数学理论发展的高峰期,除了《九章算术》这部巨著之外,还出现祖冲之的《缀术》等数学专著。

中国数学历史发展史

中国数学历史发展史

中国数学历史发展史话说中国这片古老而又神奇的土地,不仅有悠久的历史,还蕴藏着璀璨的数学智慧。

咱们今天就来聊聊,中国数学历史发展那点事儿,看看咱们老祖宗是怎么玩转数字的。

早在很久很久以前,那会儿咱们还没用上计算器、电脑这些高科技玩意儿,古人就已经开始琢磨数学了。

最早的数学记录可以追溯到甲骨文时代,那时候的古人啊,用简单的符号来记录数目,虽然看起来简单,但那可是数学的萌芽啊!想象一下,在那个时候,能算出多少东西,那简直就是神一般的存在。

到了商周时期,咱们的祖先们就开始玩起了“算术”这个高级游戏。

那时候有个叫《九章算术》的宝贝,那可是中国古代数学的经典之作,里面的内容涵盖了面积、体积、勾股定理、方程求解等等,简直就是一部古代的“数学百科全书”。

你说咱们现在学的数学知识,很多都是从那时候传承下来的呢!春秋战国时期,诸子百家争鸣,数学也跟着沾光。

那时候的数学家们,不仅研究数学,还把它应用到了天文、历法、建筑等各个领域。

比如咱们现在说的“勾三股四弦五”,就是那时候的数学家们通过观察和实践,得出的宝贵结论。

那时候的人,真是既聪明又勤奋,让人不得不佩服。

汉朝时期,数学又有了新的发展。

张衡,大家知道他吧?他不仅是天文学家,还是数学家呢!他发明的地动仪,那可是世界级的科技发明。

在数学上,他也做出了不少贡献,推动了数学的发展。

那时候的数学,已经开始涉及到几何、代数等领域,真是越来越深奥了。

唐宋时期,数学更是迎来了黄金时代。

那时候有个叫李冶的数学家,他写了一本《测圆海镜》,专门研究圆和三角函数的问题。

还有祖冲之,他算出的圆周率,那可是精确到了小数点后七位,比欧洲人要早几百年呢!你说这厉害不厉害?那时候的数学家们,真是把数学玩出了花儿,让人叹为观止。

明清时期,数学虽然受到了一些冲击,但依然在艰难中前行。

那时候的数学家们,开始尝试用西方的数学方法来研究问题,比如徐光启翻译的《几何原本》,就让中国人第一次接触到了欧几里得的几何学。

《数学史》之数学大事年表

《数学史》之数学大事年表

《数学史》之数学大事年表数学史大事迹数学发展至今,不知道经历了多少人的呕心沥血,现在把数学历史上发生的大事年表列出:1、约公元前3000年埃及象形数字2、公元前2400~前1600年早期巴比伦泥版楔形文字,采用60进位值制记数法。

已知勾股定理3、公元前1850~前1650年埃及纸草书(莫斯科纸草书与莱茵德纸草书),使用10进非位值制记数法4、公元前1400~前1100年中国殷墟甲骨文,已有10进制记数法5、周公(公元前11世纪)、商高时代已知勾三、股四、弦五6、约公元前600年希腊泰勒斯开始了命题的证明7、约公元前540年希腊毕达哥拉斯学派,发现勾股定理,并导致不可通约量的发现8、约公元前500年印度《绳法经》中给出√2相当精确的值,并知勾股定理9、约公元前460年希腊智人学派提出几何作图三大问题:化圆为方、三等分角和二倍立方10、约公元前450年希腊伊利亚学派的芝诺提出悖论11、公元前430年希腊安提丰提出穷竭法12、约公元前387年希腊柏拉图在雅典创办“学园”,主张通过几何的学习培养逻辑思维能力13、公元前370年希腊欧多克索斯创立比例论14、约公元前335年欧多莫斯著《几何学史》15、中国筹算记数,采用十进位值制16、约公元前300年希腊欧几里得著《几何原本》,是用公理法建立演绎数学体系的最早典范17、公元前287~前212年希腊阿基米德,确定了大量复杂几何图形的面积与体积;给出圆周率的上下界;提出用力学方法推测问题答案,隐含近代积分论思想18、公元前230年希腊埃拉托塞尼发明“筛法”19、公元前225年希腊阿波罗尼奥斯著《圆锥曲线论》20、约公元前150年中国现存最早的数学书《算数书》成书(1983~1984年间在湖北江陵出土)21、约公元前100年中国《周髀算经》成书,记述了勾股定理22、中国古代最重要的数学著作《九章算术》经历代增补修订基本定形(一说成书年代为公元50~100年间),其中正负数运算法则、分数四则运算、线性方程组解法、比例计算与线性插值法盈不足术等都是世界数学史上的重要贡献23、约公元62年希腊海伦给出用三角形三边长表示面积的公式(海伦公式)24、约公元150年希腊托勒密著《天文学》,发展了三角学25、约公元250年希腊丢番图著《算术》,处理了大量不定方程问题,并引入一系列缩写符号,是古希腊代数的代表作26、约公元263年中国刘徽注解《九章算术》,创割圆术,计算圆周率,证明圆面积公式,推导四面体及四棱锥体积等,包含有极限思想.27、约公元300年中国《孙子算经》成书,系统记述了筹算记数制,卷下“物不知数”题是孙子剩余定理的起源28、公元320年希腊帕普斯著《数学汇编》,总结古希腊各家的研究成果,并记述了“帕普斯定理”和旋转体体积计算法29、公元410年希腊许帕提娅,历史上第一位女数学家,曾注释欧几里得、丢番图等人的著作30、公元462年中国祖冲之算出圆周率在3.1415926与3.1415927之间,并以22/7为约率,355/113为密率(现称祖率)31、中国祖冲之和他的儿子祖暅提出“幂势既同则积不容异”的原理,现称祖暅原理,相当于西方的卡瓦列里原理(1635)32、公元499年印度阿耶波多著《阿耶波多文集》,总结了当时印度的天文、算术、代数与三角学知识。

数学史第十讲中国数学发展简史1

数学史第十讲中国数学发展简史1

数学史第十讲:中国数学发展简史(上)导言中国是世界上最早有数学发展的国家之一,中国古代数学的发展历史悠久,影响深远。

本文将简要介绍中国古代数学的发展,重点关注中国数学的早期发展和重要成就。

中国古代数学的起源中国古代数学起源于原始社会时期,古人在实际生活中通过计算和测量解决问题。

最早的数学活动主要集中在农业、商业和建筑等领域。

古代中国人通过实际经验逐渐积累了一定的数学知识。

商周时期的数学成就在商、周时期,古代中国的数学活动开始系统化。

当时的古人创造了一套独特的计数制度,称为“六十进制”。

这一计数制度是基于六十个基本符号,并且有一定的进位规则。

这种计数制度的特殊性使其对后来的数学发展产生了深远的影响。

此外,商、周时期的古代中国人还开始研究几何学和代数学。

他们在实际工程建设中运用几何知识来解决测量计算问题,并发展了一些几何方法。

在代数学方面,他们开始应用方程来解决问题,并发展出了一些基本的代数运算法则。

秦汉时期的数学进步在秦汉时期,中国的数学发展取得了显著进步。

这一时期的数学活动主要体现在“史书”和“九章算术”两部著作中。

“史书”是当时最早的数学著作,记录了中国古代数学的一些成就。

其中包括数论、代数学和几何学等方面的内容。

这对后来的数学发展起到了重要的引导作用。

“九章算术”是中国古代数学的一部重要著作,共有九章。

它包含了古代中国数学的基本概念、运算法则和解题方法。

其中最著名的章节是“方程章”,它主要介绍了一元二次方程的解法和应用。

魏晋南北朝时期的数学繁荣在魏晋南北朝时期,中国的数学繁荣达到了顶峰。

当时出现了一系列重要的数学家和数学著作,对中国古代数学的发展产生了深远的影响。

其中最著名的数学家是刘徽,他是中国古代数学史上的重要人物之一。

刘徽的主要贡献是建立了一套完整的天元术,解决了很多几何和代数问题。

他的著作《九章算术注》被后人广泛传颂,并对后来的中国数学发展产生了深远影响。

此外,魏晋南北朝时期还出现了很多其他的数学著作,如刘徽的《神农算经》、嵇中散的《数书九章》等,都对中国古代数学的发展起到了积极的推动作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学历史故事之中国数学发展大事件
数学发展过程中,有许多具有里程碑的大事件,今天极客数学帮《数学历史故事》就来说说数学发展史中中国有哪些了不起的成就,感兴趣的同学们一起来看看今天的数学历史故事吧。

公元前600年以前据中国战国时尸佼著《尸子》记载:“古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”,这相当于在公元前2500年前,已有“圆、方、平、直”等形的概念。

400年继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。

三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊丢番都)。

三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国赵爽)。

三世纪至四世纪魏晋时期,发明“割圆术”,得π=3.1416(中国刘徽)。

三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国刘徽)。

六世纪,隋代《皇极历法》内,已用“内插法”来计算日、月的正确位置(中国刘焯)。

七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国王孝通)。

七世纪,唐代有《“十部算经”注释》。

“十部算经”指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国李淳风等)。

727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国僧一行)。

1086-1093年,宋朝的《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究(中国沈括)。

十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,列出二项式定理系数表,这是现代“组合数学”的早期发现。

后人所称的“杨辉三角”即指此法(中国贾宪)。

1247年,宋朝的《数书九章》共十八卷,推广了“增乘开方法”。

书中提出的联立一次同余式的解法,比西方早五百七十余年(中国秦九韶)。

1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述“天元术”的著作(中国李治)。

1261年,宋朝发表《详解九章算法》,用“垛积术”求出几类高阶等差级数之和(中国杨辉)。

1274年,宋朝发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法(中国杨辉)。

1280年,元朝《授时历》用招差法编制日月的方位表(中国王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,元朝发表《四元玉鉴》三卷,把“天元术”推广为“四元术”(中国朱世杰)。

相关文档
最新文档