非线性控制系统

合集下载

第8章 非线性系统分析

第8章 非线性系统分析
14
一、非线性控制系统概述(11)
考虑著名的范德波尔方程
x 2 (1 x2 ) x x 0, 0
该方程描述具有非线性阻尼的非线性二阶系统。当扰动使 x 1 时,因为 (1 x 2 ) 0 系统具有负阻尼,此时系统 x(t ) 的运动呈发散形式;当 x 1 时,因为 从外部获得能量, 2 (1 x 2)>0,系统具有正阻尼,此时系统消耗能量, x(t ) 的运动呈收敛形式;而 当x=1 时,系统为零阻尼, 系统运动呈等幅振荡形式。 上述分析表明,系统能克 服扰动对 的影响,保持幅 值为1的等幅振荡,见右图。
1
第八章 非线性控制系统分析
本章主要内容: 一、非线性控制系统概述 二、常见非线性特性及其对系统运动的影响 三、描述函数法
2
第八章、非线性控制系统分析
本章要求 : 1、了解非线性系统的特点 2、了解常见非线性特性及其对系统运动的影响 3、掌握研究非线性系统描述函数法
3
一、非线性控制系统概述
本节主要内容: 1、研究非线性控制理论的意义 2、非线性系统的特征 3、非线性系统的分析与设计方法
5
一、非线性控制系统概述(2)
6
一、非线性控制系统概述(3)
在下图所示的柱形液位系统中,设 H为液位高度,Qi 为 C 为贮槽的截面积。根据水力 液体流入量, Q0为液体流出量, 学原理知
Q0 k H
其中比例系数 k 取决于液体的粘度的阀阻。 液体系统的动态方程为
dH C Qi Q 0 Qi k H dt
显然,液位和液体输入量的数字关系式为非线性微分方程。 由此可见,实际系统中普遍存在非线性因素。
7
一、非线性控制系统概述(4)

非线性控制系统理论与应用

非线性控制系统理论与应用

非线性控制系统理论与应用第一章线性控制系统概述线性控制系统是一类基于线性系统理论的控制系统。

线性系统是指系统的输入与输出成比例的关系,即如果输入信号增加一倍,输出信号也会增加一倍。

线性系统具有稳定性和可控性的优点,因此在控制系统设计中有广泛的应用。

线性控制系统分为时不变系统和时变系统两种。

在时不变系统中,系统参数固定不变。

在这种情况下,可以针对系统的等效传递函数或状态方程进行设计和分析。

时变系统中,系统参数随时间变化。

需要对系统进行时变分析,以便针对不同时间点设计控制器。

第二章非线性控制系统概述非线性系统是指系统的输入与输出不成比例的关系。

非线性系统不同于线性系统的特点是可能出现复杂的动态行为和稳定性问题。

因此,非线性系统的控制设计比线性系统更加复杂,需要更高级的系统理论和控制方法。

非线性控制系统包括分段线性系统、滞后系统、时变系统和混沌系统等。

非线性控制系统设计需要掌握许多高级数学工具,如微积分、变分法、拓扑学、非线性动力学和控制理论等。

第三章非线性控制系统的分析由于非线性系统比线性系统更为复杂,因此非线性控制系统的分析也更加困难。

但是,通过一些数学工具和技术,可以对非线性系统进行分析和解决。

非线性系统最重要的特征之一是稳定性。

非线性系统有时会出现不稳定的情况。

在设计非线性控制系统时,需要对系统的稳定性进行分析,以便在设计和实现控制器时考虑哪些因素会对稳定性产生影响。

另外一个重要的因素是动态行为。

非线性系统可能显示出复杂的动态行为,如周期性行为或混沌行为。

在非线性控制系统设计中,控制器必须能够应对这些复杂的动态行为。

第四章非线性控制系统的设计在非线性控制系统设计中,需要考虑许多因素。

首先,需要选择适当的控制策略,如状态反馈、输出反馈、模糊控制或神经网络控制。

其次,需要选择适当的控制器类型,如比例控制器、PID控制器或先进控制器。

最后,在设计非线性控制系统时,需要注意以下几个方面:1、控制器必须能够适应系统的非线性特性。

自动控制原理第十章非线性控制系统

自动控制原理第十章非线性控制系统

自动控制原理第十章非线性控制系统非线性控制系统是指系统动态特性不能用线性数学模型表示或者用线性控制方法解决的控制系统。

非线性控制系统是相对于线性控制系统而言的,在现实工程应用中,许多系统经常具有非线性特性,例如液压系统、电力系统、机械系统等。

非线性控制系统的研究对于实现系统的高效控制和稳定运行具有重要意义。

一、非线性控制系统的特点1.非线性特性:非线性控制系统的动态特性往往不能用线性方程或者线性微分方程描述,经常出现非线性现象,如饱和、死区、干扰等。

2.多变量关联:非线性系统动态关系中存在多个变量之间的相互影响,不同变量之间存在复杂的耦合关系,难以分离分析和解决。

3.滞后响应:非线性系统的响应时间较长,且在过渡过程中存在较大的像后现象,不易预测和控制。

4.不确定性:非线性系统通常存在参数变化、外部扰动和测量误差等不确定性因素,会导致系统性能变差,控制效果下降。

二、非线性控制系统的分类1.反馈线性化控制:将非线性系统通过适当的状态反馈、输出反馈或其它形式的反馈转化为线性系统,然后采用线性控制方法进行设计。

2.优化控制:通过建立非线性系统的数学模型,利用优化理论和方法,使系统达到其中一种性能指标最优。

3.自适应控制:根据非线性系统的参数变化和不确定性,设计自适应控制器,实时调整控制参数,以适应系统的动态变化。

4.非线性校正控制:通过建立非线性系统的映射关系,将测量信号进行修正,以减小系统的非线性误差。

5.非线性反馈控制:根据非线性系统的特性,设计合适的反馈控制策略,使得系统稳定。

三、非线性控制系统设计方法1.线性化方法:通过将非线性系统在其中一工作点上线性化,得到局部的线性模型,然后利用线性控制方法进行设计和分析。

2.动态编程方法:采用动态系统优化的方法,建立非线性系统的动态规划模型,通过求解该模型得到系统的最优控制策略。

3.反步控制方法:通过构造适当的反步函数和反步扩散方程,实现系统状态的稳定和输出的跟踪。

自动控制原理第八章非线性控制系统

自动控制原理第八章非线性控制系统
稳定性定义
如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03

自动控制原理-第8章非线性控制系统

自动控制原理-第8章非线性控制系统

8非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。

本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。

8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。

严格来讲,所有的控制系统都是非线性系统。

例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。

当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。

实际上,所有的物理元件都具有非线性特性。

如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。

图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u为电机的控制电压,纵坐标为电机的输出转速,如果伺服电动机工作在A1OA2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。

但如果电动机的工作区间在B1OB2区段•那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。

8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。

例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。

实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。

常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。

第八章 非线性控制系统分析

第八章 非线性控制系统分析
x x
整理后得: x
2
x (x x )
2 2 0 2 0
相轨迹
2.等倾线法 --不解微分方程,直接在相平面上绘制相轨迹。 等倾线: 相平面上相轨迹斜率相等的诸点的连线。 等倾线法基本思想: 先确定相轨迹的等倾线,进而绘出相轨迹的切线 方向场,然后从初始条件出发,沿方向场逐步绘制相
四、继电特性
y M 0 x
M y M
x 0 x 0
-M
对系统的影响:
1可能会产生自激振荡,使系统不稳定或稳态误差增大;
2.如选得合适可能提高系统的响应速度。
其他继电特性
y
M -h 0 h -M x M -△ 0
y
-△

y M 0 △ -M x
-M
死区 + 继电
x
滞环 + 继电
x ,从x, x 中消
(2)直接积分法
dx dx dx dx x x dt dx dt dx
dx x f ( x, x ) dx
g ( x)dx h( x)dx

x
x0
g ( x)dx h( x)dx
x1,2 0.25 1.39 j
系统在奇点(0,0)处有一对具有负实部的共轭复根, 故奇点(0,0)为稳定的焦点。
f ( x, x ) 奇点(-2,0)处 x
x 2 x 0
2
f ( x, x ) x

c
c
c
c
(6)≤-1 s1s2 --两个正实根
四、奇点和奇线
1.奇点 --同时满足 x 0 和 f ( x, x) 0 的点。

非线性控制系统

非线性控制系统
中, 令斜率为某一指定的常数
a ,则可得:
, x) f (x a x
上式表示一条曲线,该曲线上每一点处的相轨迹的
切线斜率都是
a ,这样的曲线称为 等倾线 。
48
x
0
x
等倾线 切线方向 斜率固定
相轨迹
49
[例7-7]
画出二阶线性系统的相轨迹。
x 0 x 2n x
第七章
7.1 引言
非线性控制系统
非线性系统在实际物理系统中大量存在。 本章主要讨论两种经典的方法: 相平面法 描述函数法
1
7.1.1 非线性系统
非线性系统 运动规律要用非线性代数方程或
不能用 非线性微分方程、非线性差分方程来描述,
线性方程描述的系统。
另外,控制系统中若含有非线性环节,则称为 非线性系统。 非线性系统一般不满足叠加原理。
15
3
非线性控制系统的频率响应
非线性系统 正弦输入信号 含有高次谐波分量 的非正弦周期函数
不能用频率特性或传递函数方法来分析和综合
非线性系统。
16
4
非线性控制系统的其他特性
跳跃共振
次谐波振荡
异步抑制
分形现象
混沌现象
17
7.1.3 非线性系统的分析方法
1
2 3 4 5
线性近似方法
分段线性化方法 相平面方法 描述函数法 李雅普诺夫直接法
y(t ) Y sin t
系统的输出也是一种等幅振荡。
13
临界稳定线性系统 的等幅振荡输出
两者之间 完全不同!
非线性系统的 等幅振荡极限环
14
不同点
极限环自激振荡的幅值与初始条件无关; 而临界稳定线性系统的等幅振荡幅值由初始条件

§7.1 非线性控制系统概述

§7.1 非线性控制系统概述

第7章 非线性控制系统分析在构成控制系统的环节中,如果有一个或一个以上的环节具有非线性特性,则此控制系统就属于非线性控制系统。

本章涉及的非线性环节是指输入、输出间的静特性不满足线性关系的环节。

由于非线性问题概括了除线性以外的所有数学关系,包含的范围非常广泛,因此,对于非线性控制系统,目前还没有统一、通用的分析设计方法。

本章主要介绍工程上常用的相平面分析法和描述函数法。

7.1 非线性控制系统概述7.1.1 非线性现象的普遍性组成实际控制系统的元部件总存在一定程度的非线性。

例如,晶体管放大器有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输入超过启动电压后,电动机才会转动,存在不灵敏区,而当输入达到饱和电压时,由于电动机磁性材料的非线性,输出转矩会出现饱和,因而限制了电动机的最大转速;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙;开关或继电器会导致信号的跳变;等等。

实际控制系统中,非线性因素广泛存在,线性系统模型只是在一定条件下忽略了非线性因素影响或进行了线性化处理后的理想模型。

当系统中包含有本质非线性元件,或者输入的信号过强,使某些元件超出了其线性工作范围时,再用线性分析方法来研究这些系统的性能,得出的结果往往与实际情况相差很远,甚至得出错误的结论。

由于非线性系统不满足叠加原理,前六章介绍的线性系统分析设计方法原则上不再适用,因此必须寻求研究非线性控制系统的方法。

7.1.2 控制系统中的典型非线性特性实际控制系统中的非线性特性种类很多。

下面列举几种常见的典型非线性特性。

1.饱和非线性特性只能在一定的输入范围内保持输出和输入之间的线性关系,当输入超出该范围时,其输出限定为一个常值,这种特性称为饱和非线性特性,如图7-1所示。

图中,x ,分别为非线性元件的输入、输出信号,其数学表达式为y()()()()()sgn ()()⎧≤⎪=⎨>⎪⎩Kx t x t a y t Ka x t x t a (7-1) 式中 —线性区宽度; a K —线性区的斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2篇 先进控制控制系统第8章 非线性控制系统前面的章节所讨论的都是线性系统,但是实际上,大多数物理过程都具有一定程度的非线性。

即使如此,如果系统的非线性程度不高,或者仅存在于较窄的操作范围内,可将其近似为一个线性系统来进行处理,则前面所讨论的控制技术,例如常规PID 控制仍旧是有效的。

但是对于一些具有不可忽视的非线性的过程,这种方法就不适用了。

这种情况下,采用非线性控制策略能进一步提高控制品质。

随着控制理论的进展,自动化技术工具的发展,尤其是计算机的使用,使非线性控制系统在工业控制中逐步多了起来。

如果对非线性控制系统粗略地进行分类,可以分为两类:一类过程是线性的(或近似按线性处理),为了满足控制系统的某种要求或改善控制系统质量而引入非线性的控制规律;另一类过程本身是非线性的,引入非线性的补偿元件或控制规律,以达到系统规定的控制指标。

8.1 线性过程的非线性控制8.1.1 液位的非线性控制(1)均匀控制的实现在均匀控制系统一节中,曾提到可以采用非线性控制规律来实现均匀控制,其中最常用的是采用带不灵敏区的非线性控制。

这种带不灵敏区的非线性控制规律如图8-1所示。

当系统偏差e 在不灵敏区内,控制器的增益很小,即δ很大;偏差e 超出不灵敏区后,控制器增益将增大(增大十倍或更多)。

利用非线性控制规律实现均匀控制的原理较简单,只要根据工艺允许的液位波动范围,合理设置不灵敏 区宽度,就能做到在较小的外扰作用下,使液位偏差 信号在不灵敏区内变化,非线性控制器工作在小增益 区域,从而输出变化不大,控制阀的开度变化也不大,流量仅仅在小范围内波动。

也就是说,液位在允许范 围内波动的同时,流量不至于有较大的变化,达到液 位和流量的均匀控制。

只有在较大的外扰作用进入系 统时,液位偏差信号一旦超出不灵敏区,非线性控制 器才工作在高增益区域,其控制作用有一个较大的输出变化,使流量也产生一个较大的变化。

但这种作较大变化的时间是短暂的,因为较强的控制作用驱使流量作较大的变化,可以很快地把液位偏差信号拉回到不灵敏区,于是整个系统又回复到上述的不灵敏区内的工作情况。

因此,这种非线性液位控制系统经常工作在不灵敏区范围内,液位和流量均在小范围内波动,仅仅为了有力地克服大扰动作用,系统才工作在高增益区,造成流量的较大波动,但这种情况是不太多的,维持的时间也是较短的。

实际系统的组成可采用单回路控制或非线性串级控制等形式,其系统构成分别示于图8—2(a)、(b)。

引入非线性串级均匀控制,有利于减少流量的波动,适用于控制阀前后压力波动较大的场合。

e比例部分的输出特性(2)非线性控制器的类型及应用情况带不灵敏区的非线性控制器的实际类型是很多的,这里介绍常用的几种。

①控制器是具有PI 或PID 作用的(当然对用于实际均匀控制目的的液位系统,D 作用一般是不需要的),控制器在不灵敏区内外仅仅是增益K C 发生了变化,例如可相差十倍,而积分时间T i 是不变化的。

有些资料上称其为A 型。

②控制器是具有PI 作用的,控制器从不灵敏区内到不灵敏区外,在增益K C 增加的同时,T i 随之减少,例如K C 增加十倍,T i 将缩小十倍。

有些资料上称其为B 型。

可以说它的不灵敏区不仅对于增益高低而言,也是对积分作用的强弱而言。

③控制器是具有PI 作用的,在不灵敏区内通过上、下限报警器,切断内设定信号而以测量信号代之,因此偏差始终为零。

这样,不灵敏区成了真正的死区,比例增益趋近于零,积分作用基本消失。

这类非线性控制器如果就不灵敏区内外PI 作用的变化情况而言,与上述的B 型极为相似。

这些不同类型的带不灵敏区的非线性控制器已用于过程控制中,实现均匀控制的目的。

在实际应用中,其参数整定还需考虑到以下几点。

①液位控制器(非线性控制器)的比例带(指不灵敏区外的控制作用)必须比通常均匀控制的液位控制器的比例带小,这才能有利于当液位偏差一旦超出不灵敏区后,能较快地把液位拉回到不灵敏区内。

一般来说,δ减少得越多,液位就越能迅速地调回到不灵敏区内,而流量的波动却要加大。

②不灵敏区宽度的设置应视工艺要求而定。

一般地说,应略低于工艺允许的极限值,以便液位超出不灵敏区后有一定的控制过程,同时,流量也不至于有过大的波动。

③不灵敏区内增益K C 的设定。

一般说来K C 小些是有利的,有时也可按工艺对被控变量的品质要求来设定。

K C 的增大有利于液位的控制,而要牺牲一些流量的平稳。

在实际应用时,可以把K C 的大小与不灵敏区的宽度综合起来考虑。

不灵敏区设置宽一些,则K C 也应略选大一些。

在使用过程中,对A 、B 两种类型的非线性控制器的效果进行分析比较证实:B 型非线性控制器较为理想,它不仅能使液位参数得到较好的控制质量,而且在超 o o (a)单回路非线性液位控制系统 (b)串级非线性液位控制系统 图8—2 非线性液位控制系统出不灵敏区时,液位能迅速地响应,及早返回到不灵敏区内,这对于流量参数来说,在一定程度上也是有利的。

而且在不灵敏区内,不只是K C 减少,同时T i 也增大,可以说在系统经常工作的不灵敏区内,流量参数不至于因积分作用没有减弱而造成过多的波动。

实现均匀控制除了采用带不灵敏区的非线性控制器外,也可使用选择性控制方法来实现非线性控制;图8—3示出了一个用选择性控制方法实现非线性控制的示意图。

整个控制装置有一个常规的气动PI 控制器,两个高增益纯比例控制器(具有固定增益的气动继动器)、两个自动选择器(高选择器及低选择器)。

液位在中间范围时,由常规PI 控制器控制,一旦液位太高或太低时,一个高增益的纯比例控制器将经过高值或低值选择器取代PI 控制器,于是送到控制阀上的将是一个变化很大的控制信号,把阀门迅速打开或关上,以避免液位进一步偏离给定值。

因此可以收到与使用非线性PI在30万吨合成氨生产的水预处理 装置中,应用了与此类似的非线性控制 系统。

液位的非线性控制还可采用变增益 的非线性控制器。

变增益控制器的特点 是:控制器的增益或积分时间与输入偏差以一定关系连续地变化,例如控制器 的增益K C 及积分时间T i 与液位偏差以 一个指数关系连续地变化,同时增益和 积分时间之间为使系统ζ值恒定,保证 T i K C 恒定。

偏差与K C 、T i 间的关系可 用下式表示:)/100(25)25ln 1(0PB K e K K e c += (8-1) K e oi K e T T 25)25ln 1(+=(8-2) 式中 |e|——偏差的绝对值;K ——幅度变化范围系数(可视需要调整);PB 0——零偏差时设置的百分比例度,PB o 在10~2500范围内可调;T 0——零偏差时的积分时间,T 0在0.3~375分范围内可调。

如果把这种非线性控制器用于液位控制,随着液位偏差的增大,控制器的增益增大,而积分时间减少。

也就是说,小偏差时,控制作甩弱,偏差越大,控制作用越强。

应用这样的控制作用就能达到液位和流量的均匀控制的目的。

8.1.2 线性过程的其他非线性控制为了达到一定的控制要求,线性过程也使用多种形式的非线性控制。

但是经正作用图8-3 以选择性控制实现液位非线性控制示意图过分析,这些非线性控制器与线性过程所组成的控制系统,很大一部分均可归并为可变化结构控制(VSS)。

而线性过程的可变化结构控制则是通过控制装置——可变化结构控制器(VSC)来完成的。

具体来说,这种控制器能够根据系统的要求和特点,组合若干现有控制结构的有效性能,形成一种增强控制性能的结构形式。

结构形式的可变,使其具有一般线性控制器所不能达到的性能。

因此,线性过程的可变化结构控制能够超过一般线性控制的质量,并能实现某些特殊的控制要求。

可变化结构控制系统的示意框图如图8—4所示。

由图看出,可变化结构控制系统由逻辑单元接受过程变化的信息,按规定的逻辑规律,其输出一方面控制开关元件,选择运算通道,另一方面控制执行装置,根据运算单元输出信息完成某些函数的总和运算。

这样依据选择的控制算法及过程的信息,能够组合各个控制装置的有用特性,得到任何一个控制装置所不具备的新的特性。

可变化结构控制器可以用计算机来实现,对于简单的情况,也可在常规模拟式仪表的基础上;使用一些运算单元和开关元件的组合来实现。

图8—5是一种较为简单的可变化结构控制器的组成图,它仅仅是用一些微分器、积分器、平方器、开方器、乘除器和加法器等运算单元及开关元件所组成。

与一般形式相比,运算通道的选择很简单,它只根据偏差及其导数的运算,确定通道运算式的正负。

执行装置也只选择比例、积分的运算。

整个可变化结构控制器的输入偏差e与输出u之间的关系,可由下式表示:∙+=eTeepp (8-3)图8—4 可变化结构控制系统示意框图图8—5 一种可变化结构控制器的组成())sgn(212221p p e e K e K u ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=∙ (8-4) p i A u s T G u ⎪⎭⎫ ⎝⎛+=1 (8-5) 这种VSC 控制器与常规PID 控制在图8—6所示的三阶系统中作过运行试验的比较。

在单位阶跃R 输入作用下,输出C 的变化曲线如图8—7所示。

由图可明显地看出,可变化结构控制比常规PID 控制的控制质量好得多,不仅超调量基本消除,而且响应快,很快就回复到新的设定值上。

在实际生产过程中,还有一些 非线性控制方式,也可作为可变化 结构控制的一类实例,如适用于间歇过程的最短时间控制的双重控制 系统。

图8—8是一种简单双重控 制系统的原理图。

控制组合形式为 一种恒定输出(最大输出)十PI 控制。

系统用于间歇过程的启动。

在启动时,监视开关根据被控变量的大小,把恒定的最大输出送入被控过程,使被控过程以很快的速度,从起始状态向系统工作点变化。

当被控过程的被控变量达到某一规定值时,监视开关自动地把恒定输出切换到PI 控制,系统进入正常工作状态。

可以看出,采用这种双重控制比起单独使用PI 控制,具有过程启动速度快,防止积分饱和,减少超调量的优点。

8.2 非线性过程的非线性控制在非线性过程中,静态增益随负荷而变化的情况是常见的。

当非线性程度不很严重时,采用一般的线性控制或在控制阀的流量特性选择上稍加考虑;往往就可满足控制要求。

然而在非线性较为严重且控制要求比较高的场合,有时不得不以非线性控制取代常规的线性控制。

8.2.1 pH 过程的非线性控制图8-6 三阶模拟系统2 4 6 8 10 12 14 16 图8—7 三阶系统的动态响应 C Y 图8—8 双重控制系统pH 控制过程往往被人们视为典型的 非线性过程,它的严重非线性滴定曲线示于图8—9。

在实际生产过程中pH 控制除了应用于某些中和反应外。

主要是在污水处理中得到了较多的应用。

相关文档
最新文档